首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial RNase P consists of one protein and one RNA [RNase P RNA (RPR)]. RPR can process tRNA precursors correctly in the absence of the protein. Here we have used model hairpin loop substrates corresponding to the acceptor, T-stem, and T-loop of a precursor tRNA to study the importance of the T-loop structure in RPR-alone reaction. T-stem/loop (TSL) interacts with a region in RPR [TSL binding site (TBS)], forming TSL/TBS interaction. Altering the T-loop structure affects both cleavage site selection and rate of cleavage at the correct site + 1 and at the alternative site − 1. The magnitude of variation depended on the structures of the T-loop and the TBS region, with as much as a 150-fold reduction in the rate of cleavage at + 1. Interestingly, for one T-loop structure mutant, no difference in the rate at − 1 was detected compared to cleavage of the substrate with an unchanged T-loop, indicating that, in this case, the altered T-loop structure primarily influences events required for efficient cleavage at the correct site + 1. We also provide data supporting a functional link between a productive TSL/TBS interaction and events at the cleavage site. Collectively, our findings emphasize the interplay between separate regions upon formation of a productive RPR substrate that leads to efficient and accurate cleavage. These new data provide support for an induced-fit mechanism in bacterial RPR-mediated cleavage at the correct site + 1.  相似文献   

2.
Manganese (Mn2+) promotes specific cleavage at two major (I and III) and four minor (II, IV, V and VI) sites, in addition to slow non-specific cleavage, in a 659-nucleotide RNA containing the Cr.LSU group I intron. The specific cleavages occurred between G and AAA sequences and thus can be considered Mn2+-GAAA ribozymes. We have estimated rates of specific and non-specific cleavages under different conditions. Comparisons of the rates of major-specific and background cleavages gave a maximal specificity of approximately 900 for GAAA cleavage. Both specific and non-specific cleavages showed hyperbolic kinetics and there was no evidence of cooperativity with Mn2+ concentration. Interestingly, at site III, Mg2+ alone promoted weak, but the same specific cleavage as Mn2+. When added with Mn2+, Mg2+ had a synergistic effect on cleavage at site III, but inhibited cleavage at the other sites. Mn2+ cleavage at site III also exhibited lower values of K (Mn2+ requirement), pH-dependency and activation energy than did cleavage at the other sites. In contrast, the pH-dependency and activation energy for cleavage at site I was similar to non-specific cleavage. These results increase our understanding of the Mn2+-GAAA ribozyme. The implications for evolution of small ribozymes are also discussed.  相似文献   

3.
To monitor functionally important metal ions and possible cross talk in RNase P RNA mediated cleavage we studied cleavage of substrates, where the 2′OH at the RNase P cleavage site (at −1) and/or at position +73 had been replaced with a 2′ amino group (or 2′H). Our data showed that the presence of 2′ modifications at these positions affected cleavage site recognition, ground state binding of substrate and/or rate of cleavage. Cleavage of 2′ amino substituted substrates at different pH showed that substitution of Mg2+ by Mn2+ (or Ca2+), identity of residues at and near the cleavage site, and addition of C5 protein influenced the frequency of miscleavage at −1 (cleavage at the correct site is referred to as +1). From this we infer that these findings point at effects mediated by protonation/deprotonation of the 2′ amino group, i.e. an altered charge distribution, at the site of cleavage. Moreover, our data suggested that the structural architecture of the interaction between the 3′ end of the substrate and RNase P RNA influence the charge distribution at the cleavage site as well as the rate of cleavage under conditions where the chemistry is suggested to be rate limiting. Thus, these data provide evidence for cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. We discuss the role metal ions might play in this cross talk and the likelihood that at least one functionally important metal ion is positioned in the vicinity of, and use the 2′OH at the cleavage site as an inner or outer sphere ligand.  相似文献   

4.
Monoclonal antibodies in liquid formulation undergo nonenzymatic hydrolysis when stored at 5 °C for extended periods. This hydrolysis is enhanced at extreme pH and high temperature. In this study we discover that iron in the presence of histidine also enhanced cleavage of human immunoglobulin gamma (IgG) molecules containing a lambda light chain when incubated at 40 °C. The level of cleavage was concentration dependent on both iron and histidine levels. Enhanced cleavage with iron and histidine was not observed on IgG molecules containing a kappa light chain. Using CE-SDS to quantify levels of Fab + Fc, the Fab arm, and free light chain (LC) and heavy chain (HC) fragments, we show that cleavage resulted in elevated levels of free light and heavy chain fragments. Using MS we find elevated scission between residues E/C on the LC resulting in LC fragment 1-215. We also observed enhanced cleavage between S/C residues of the HC resulting in HC fragment 1-217. The corresponding Fab + Fc fragment beginning with cys-218 was not found. Instead, we find elevation of a Fab + Fc fragment that began with aspartic acid (cleavage between C/D). Further studies to understand how iron and histidine enhance cleavage of lambda light chain IgG molecules are ongoing.  相似文献   

5.
The chemical stability of abasic RNA compared to abasic DNA   总被引:1,自引:1,他引:0  
We describe the synthesis of an abasic RNA phosphoramidite carrying a photocleavable 1-(2-nitrophenyl)ethyl (NPE) group at the anomeric center and a triisopropylsilyloxymethyl (TOM) group as 2′-O-protecting group together with the analogous DNA and the 2′-OMe RNA abasic building blocks. These units were incorporated into RNA-, 2′-OMe-RNA- and DNA for the purpose of studying their chemical stabilities towards backbone cleavage in a comparative way. Stability measurements were performed under basic conditions (0.1 M NaOH) and in the presence of aniline (pH 4.6) at 37°C. The kinetics and mechanisms of strand cleavage were followed by High pressure liquid chromotography and ESI-MS. Under basic conditions, strand cleavage at abasic RNA sites can occur via β,δ-elimination and 2′,3′-cyclophosphate formation. We found that β,δ-elimination was 154-fold slower compared to the same mechanism in abasic DNA. Overall strand cleavage of abasic RNA (including cyclophosphate formation) was still 16.8 times slower compared to abasic DNA. In the presence of aniline at pH 4.6, where only β,δ-elimination contributes to strand cleavage, a 15-fold reduced cleavage rate at the RNA abasic site was observed. Thus abasic RNA is significantly more stable than abasic DNA. The higher stability of abasic RNA is discussed in the context of its potential biological role.  相似文献   

6.
β-Lapachone (β-lap) effectively killed MCF-7 and T47D cell lines via apoptosis in a cell-cycle-independent manner. However, the mechanism by which this compound activated downstream proteolytic execution processes were studied. At low concentrations, β-lap activated the caspase-mediated pathway, similar to the topoisomerase I poison, topotecan; apoptotic reactions caused by both agents at these doses were inhibited by zVAD-fmk. However at higher doses of β-lap, a novel non-caspase-mediated “atypical” cleavage of PARP (i.e., an 60-kDa cleavage fragment) was observed. Atypical PARP cleavage directly correlated with apoptosis in MCF-7 cells and was inhibited by the global cysteine protease inhibitors iodoacetamide and N-ethylmaleimide. This cleavage was insensitive to inhibitors of caspases, granzyme B, cathepsins B and L, trypsin, and chymotrypsin-like proteases. The protease responsible appears to be calcium-dependent and the concomitant cleavage of PARP and p53 was consistent with a β-lap-mediated activation of calpain. β-Lap exposure also stimulated the cleavage of lamin B, a putative caspase 6 substrate. Reexpression of procaspase-3 into caspase-3-null MCF-7 cells did not affect this atypical PARP proteolytic pathway. These findings demonstrate that β-lap kills cells through the cell-cycle-independent activation of a noncaspase proteolytic pathway.  相似文献   

7.
8.
A requisite step in reovirus infection of the murine intestine is proteolysis of outer-capsid proteins to yield infectious subvirion particles (ISVPs). When converted to ISVPs by intestinal proteases, virions of reovirus strain type 3 Dearing (T3D) lose 90% of their original infectivity due to cleavage of viral attachment protein ς1. In an analysis of eight field isolate strains of type 3 reovirus, we identified one additional strain, type 3 clone 31 (T3C31), that loses infectivity and undergoes ς1 cleavage upon conversion of virions to ISVPs. We examined the ς1 deduced amino acid sequences of T3D and the eight field isolate strains for a correlation between sequence variability and ς1 cleavage. The ς1 proteins of T3D and T3C31 contain a threonine at amino acid position 249, whereas an isoleucine occurs at this position in the ς1 proteins of the remaining strains. Thr249 occupies the d position of a heptad repeat motif predicted to stabilize ς1 oligomers through α-helical coiled-coil interactions. This region of sequence comprises a portion of the fibrous tail domain of ς1 known as the neck. Substitution of Thr249 with isoleucine or leucine resulted in resistance to cleavage by trypsin, whereas replacement with asparagine did not affect cleavage susceptibility. These results demonstrate that amino acid position 249 is an independent determinant of T3D ς1 cleavage susceptibility and that an intact heptad repeat is required to confer cleavage resistance. We performed amino-terminal sequence analysis on the ς1 cleavage product released during trypsin treatment of T3D virions to generate ISVPs and found that trypsin cleaves ς1 after Arg245. Thus, the sequence polymorphism at position 249 controls cleavage at a nearby site in the neck region. The relevance of these results to reovirus infection in vivo was assessed by treating virions with the contents of a murine intestinal wash under conditions that result in generation of ISVPs. The pattern of ς1 cleavage susceptibility generated by using purified protease was reproduced in assays using the intestinal wash. These results provide a mechanistic explanation for ς1 cleavage during exposure of virions to intestinal proteases and may account for certain strain-dependent patterns of reovirus pathogenesis.  相似文献   

9.
Rates of phosphorolytic cleavage of β-glucan substrates were determined for cell extracts from Clostridium thermocellum ATCC 27405 and were compared to rates of hydrolytic cleavage. Reactions with cellopentaose and cellobiose were evaluated for both cellulose (Avicel)- and cellobiose-grown cultures, with more limited data also obtained for cellotetraose. To measure the reaction rate in the chain-shortening direction at elevated temperatures, an assay protocol was developed featuring discrete sampling at 60°C followed by subsequent analysis of reaction products (glucose and glucose-1-phosphate) at 35°C. Calculated rates of phosphorolytic cleavage for cell extract from Avicel-grown cells exceeded rates of hydrolytic cleavage by ≥20-fold for both cellobiose and cellopentaose over a 10-fold range of β-glucan concentrations (0.5 to 5 mM) and for cellotetraose at a single concentration (2 mM). Rates of phosphorolytic cleavage of β-glucosidic bonds measured in cell extracts were similar to rates observed in growing cultures. Comparisons of Vmax values indicated that cellobiose- and cellodextrin-phosphorylating activities are synthesized during growth on both cellobiose and Avicel but are subject to some degree of metabolic control. The apparent Km for phosphorolytic cleavage was lower for cellopentaose (mean value for Avicel- and cellobiose-grown cells, 0.61 mM) than for cellobiose (mean value, 3.3 mM).  相似文献   

10.
In our work with designed minimalist proteins based on the bZIP motif, we have found our His-tagged proteins to be prone to inclusion body formation and aggregation; we suspect this problem is largely due to the His tag, known to promote aggregation. Using AhR6–C/EBP, a hybrid of the AhR basic region and C/EBP leucine zipper, as representative of our bZIP-like protein family, we attempted removal of the His tag with enterokinase (EK) but obtained the desired cleavage product in very small yield. EK is known for proteolysis at noncanonical sites, and most cleavage occurred at unintended sites. We manipulated experimental conditions to improve specificity of proteolysis and analyzed the cleavage products; no effect was observed after changing pH, temperature, or the amount of EK. We then suspected the accessibility of the EK site was impeded due to protein aggregation. We found that the easily implemented strategy of addition of urea (1–4 M) greatly improved EK cleavage specificity at the canonical site and reduced adventitious cleavage. We believe that this enhancement in specificity is due to a more “open” protein structure, in which the now accessible canonical target can compete effectively with adventitious cleavage sites of related sequence.  相似文献   

11.
Epithelial Sodium Channel (ENaC) proteolysis at sites in the extracellular loop of the α and γ subunits leads to marked activation. The mechanism of this effect remains debated, as well as the role of the N- and C-terminal fragments of these subunits created by cleavage. We introduced cysteines at sites bracketing upstream and downstream the cleavage regions in α and γ ENaC to examine the role of these fragments in the activated channel. Using thiol modifying reagents, as well as examining the effects of cleavage by exogenous proteases we constructed a functional model that determines the potential interactions of the termini near the cleavage regions. We report that the N-terminal fragments of both α and γ ENaC interact with the channel complex; with interactions between the N-terminal γ and the C-terminal α fragments being the most critical to channel function and activation by exogenous cleavage by subtilisin. Positive charge modification at a.a.135 in the N-terminal fragment of γ exhibited the largest inhibition of channel function. This region was found to interact with the C-terminal α fragment between a.a. 205 and 221; a tract which was previously identified to be the site of subtilisin''s action. These data provide the first evidence for the functional channel rearrangement caused by proteolysis of the α and γ subunit and indicate that the untethered N-terminal fragments of these subunits interact with the channel complex.  相似文献   

12.
Intramembrane proteases regulate diverse processes by cleaving substrates within a transmembrane segment or near the membrane surface. Bacillus subtilis SpoIVFB is an intramembrane metalloprotease that cleaves Pro-σK during sporulation. To elucidate features of Pro-σK important for cleavage by SpoIVFB, coexpression of the two proteins in Escherichia coli was used along with cell fractionation. In the absence of SpoIVFB, a portion of the Pro-σK was peripherally membrane associated. This portion was not observed in the presence of SpoIVFB, suggesting that it serves as the substrate. Deletion of Pro-σK residues 2 to 8, addition of residues at its N terminus, or certain single-residue substitutions near the cleavage site impaired cleavage. Certain multiresidue substitutions near the cleavage site changed the position of cleavage, revealing preferences for a small residue preceding the cleavage site N-terminally (i.e., at the P1 position) and a hydrophobic residue at the second position following the cleavage site C-terminally (i.e., P2′). These features appear to be conserved among Pro-σK orthologs. SpoIVFB did not tolerate an aromatic residue at P1 or P2′ of Pro-σK. A Lys residue at P3′ of Pro-σK could not be replaced with Ala unless a Lys was provided farther C-terminally (e.g., at P9′). α-Helix-destabilizing residues near the cleavage site were not crucial for SpoIVFB to cleave Pro-σK. The preferences and tolerances of SpoIVFB are somewhat different from those of other intramembrane metalloproteases, perhaps reflecting differences in the interaction of the substrate with the membrane and the enzyme.  相似文献   

13.
Human insulin-like growth factor II (IGF-II) mRNA can be cleaved at a specific site in its 4 kb long 3′-UTR. This yields a stable 3′ cleavage product of 1.8 kb consisting of a 3′-UTR and a poly(A) tail and an unstable 5′ cleavage product containing the IGF-II coding region. After cleavage, the 5′ cleavage product is targeted to rapid degradation and consequently is no longer involved in IGF-II protein synthesis. Cleavage is therefore thought to provide an additional way to control IGF-II gene expression. In this paper the kinetics and the efficiency of cleavage of IGF-II mRNAs are examined. The cleavage efficiency of IGF-II mRNAs carrying four different leaders (L1–L4) is enhanced in the highly structured leaders L1 and L3. Additionally, under standard cell culture conditions cleavage is a slow process that only plays a limited role in destabilisation and translation of the IGF-II mRNAs. However, in human Hep3B cells and CaCo2 cells which express IGF-II endogenously, cleavage is upregulated 3–5-fold at high cell densities. Regulated endonucleolytic cleavage of IGF-II mRNAs is restricted to cells in which IGF-II expression is related to specific cell processes.  相似文献   

14.
Previous estimates of the rate of spontaneous cleavage of the glycosidic bond of adenosine were determined by extrapolating the rates of the acid- and base-catalyzed reactions to neutral pH. Here we show that cleavage also proceeds through a pH-independent mechanism. Rate constants were determined as a function of temperature at pH 7 and a linear Arrhenius plot was constructed. Uncatalyzed cleavage occurs with a rate constant of 3.7 × 10−12 s−1 at 25 °C, and the rate enhancement generated by the corresponding glycoside hydrolase is ∼5 × 1012-fold.  相似文献   

15.
The described methods can be used to investigate the effect of proteases on ion channels, receptors, and other plasma membrane proteins heterologously expressed in Xenopus laevis oocytes. In combination with site-directed mutagenesis, this approach provides a powerful tool to identify functionally relevant cleavage sites. Proteolytic activation is a characteristic feature of the amiloride-sensitive epithelial sodium channel (ENaC). The final activating step involves cleavage of the channel’s γ-subunit in a critical region potentially targeted by several proteases including chymotrypsin and plasmin. To determine the stimulatory effect of these serine proteases on ENaC, the amiloride-sensitive whole-cell current (ΔIami) was measured twice in the same oocyte before and after exposure to the protease using the two-electrode voltage-clamp technique. In parallel to the electrophysiological experiments, a biotinylation approach was used to monitor the appearance of γENaC cleavage fragments at the cell surface. Using the methods described, it was demonstrated that the time course of proteolytic activation of ENaC-mediated whole-cell currents correlates with the appearance of a γENaC cleavage product at the cell surface. These results suggest a causal link between channel cleavage and channel activation. Moreover, they confirm the concept that a cleavage event in γENaC is required as a final step in proteolytic channel activation. The methods described here may well be applicable to address similar questions for other types of ion channels or membrane proteins.  相似文献   

16.
We have used model substrates carrying modified nucleotides at the site immediately 5′ of the canonical RNase P cleavage site, the −1 position, to study Escherichia coli RNase P RNA-mediated cleavage. We show that the nucleobase at −1 is not essential but its presence and identity contribute to efficiency, fidelity of cleavage and stabilization of the transition state. When U or C is present at −1, the carbonyl oxygen at C2 on the nucleobase contributes to transition-state stabilization, and thus acts as a positive determinant. For substrates with purines at −1, an exocyclic amine at C2 on the nucleobase promotes cleavage at an alternative site and it has a negative impact on cleavage at the canonical site. We also provide new insights into the interaction between E. coli RNase P RNA and the −1 residue in the substrate. Our findings will be discussed using a model where bacterial RNase P cleavage proceeds through a conformational-assisted mechanism that positions the metal(II)-activated H2O for an in-line attack on the phosphorous atom that leads to breakage of the phosphodiester bond.  相似文献   

17.
3′ Cleavage and polyadenylation are obligatory steps in the biogenesis of most mammalian pre-mRNAs. In vitro reconstitution of the 3′ cleavage reaction from human cleavage factors requires high concentrations of creatine phosphate (CP), though how CP activates cleavage is not known. Previously, we proposed that CP might work by competitively inhibiting a cleavage-suppressing serine/threonine (S/T) phosphatase. Here we show that fluoride/EDTA, a general S/T phosphatase inhibitor, activates in vitro cleavage in place of CP. Subsequent testing of inhibitors specific for different S/T phosphatases showed that inhibitors of the PPM family of S/T phosphatases, which includes PP2C, but not the PPP family, which includes PP1, PP2A, and PP2B, activated 3′ cleavage in vitro. In particular, NCI 83633, an inhibitor of PP2C, activated extensive 3′ cleavage at a concentration 50-fold below that required by fluoride or CP. The testing of structural analogs led to the identification of a more potent compound that activated 3′ cleavage at 200 μM. While testing CP analogs to understand the origin of its cleavage activation effect, we found phosphocholine to be a more effective activator than CP. The minimal structural determinants of 3′ cleavage activation by phosphocholine were identified. Our results describe a much improved small molecule activator of in vitro pre-mRNA cleavage, identify the molecular determinants of cleavage activation by phosphoamines such as phosphocholine, and suggest that a PPM family phosphatase is involved in the negative regulation of mammalian pre-mRNA 3′ cleavage.  相似文献   

18.
Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3′ or the 5′ side of the triplex, and the location of the cleavage site. A previously identified cleavage site was inserted at different positions within two triplex site-containing 59 bp duplexes. Sequence-specific DNA cleavage by topoisomerase I occurs only with triplex conjugates bearing the inhibitor at the 3′-end of the oligonucleotide and on the oligopyrimidine strand of the duplex. The lack of targeted cleavage on the 5′ side is attributed to the structural differences of the 3′ and 5′ duplex–triplex DNA junctions. The changes induced in the double helix by the triple-helical structure interfere with the action of the enzyme according to a preferred spatial organization. Camptothecin conjugates of oligonucleotides provide efficient tools to probe the organization of the topoisomerase I–DNA complex and will be useful to understand the functioning of topoisomerase I in living cells.  相似文献   

19.
Cathepsin D (CD) plays an important role in both biological and pathological processes, although the cleavage characteristics and substrate selection of CD have yet to be fully explored. We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the CD cleavage sites in bovine serum albumin (BSA). We found that the hydrophobic residues at P1 were not only a preferential factor for CD cleavage but that the hydrophobicity at P1’ also contributed to CD recognition. The concept of hydrophobic scores of neighbors (HSN) was proposed to describe the hydrophobic microenvironment of CD recognition sites. The survey of CD cleavage characteristics in several proteins suggested that the HSN was a sensitive indicator for judging the favorable sites in peptides for CD cleavage, with HSN values of 0.5–1.0 representing a likely threshold. Ovalbumin (OVA), a protein resistant to CD cleavage in its native state, was easily cleaved by CD after denaturation, and the features of the cleaved peptides were quite similar to those found in BSA, where a higher HSN value indicated greater cleavability. We further conducted two-dimensional gel electrophoresis (2DE) to find more proteins that were insensitive to CD cleavage in CD-knockdown cells. Based on an analysis of secondary and three-dimensional structures, we postulated that intact proteins with a structure consisting of all α-helices would be relatively accessible to CD cleavage.  相似文献   

20.
Small cytoplasmic RNA (scRNA) of Bacillus subtilis is the RNA component of the signal recognition particle. scRNA is transcribed as a 354-nt precursor, which is processed to the mature 271-nt scRNA. Previous work demonstrated the involvement of the RNase III-like endoribonuclease, Bs-RNase III, in scRNA processing. Bs-RNase III was found to cleave precursor scRNA at two sites (the 5′ and 3′ cleavage sites) located on opposite sides of the stem of a large stem-loop structure, yielding a 275-nt RNA, which was then trimmed by a 3′ exoribonuclease to the mature scRNA. Here we show that Bs-RNase III cleaves primarily at the 5′ cleavage site and inefficiently at the 3′ site. RNase J1 is responsible for much of the cleavage that releases scRNA from downstream sequences. The subsequent exonucleolytic processing is carried out largely by RNase PH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号