首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CXCL12是趋化因子家族成员之一,是能够特异性结合其受体CXCR4发挥趋化性作用的细胞因子。最初,CXCL12及CXCR4被发现于炎症细胞,参与机体炎症、免疫等病理反应。接下来的几年中发现,它在机体发育、成熟过程中也有重要作用。如今,大量研究表明它与肿瘤的生长、侵袭及转移密切相关。据报道,在乳腺癌、肺癌、卵巢癌等二十余种肿瘤组织中发现CXCL12及CXCR4的表达,其中也包括中枢系统肿瘤-胶质瘤。CXCL12/CXCR4参与胶质瘤生长过程的多个步骤,包括肿瘤增殖、侵袭、转移等。有实验指出,转移灶的CXCR4表达水平较原发灶高,CXCR4有可能成为抑制胶质瘤生长、转移的重要靶目标。  相似文献   

2.
李宣朋  李玉  丁鹏 《生物磁学》2011,(6):1184-1186
CXCL12是趋化因子家族成员之一,是能够特异性结合其受体CXCR4发挥趋化性作用的细胞因子。最初,CXCL12及CXCR4被发现于炎症细胞,参与机体炎症、免疫等病理反应。接下来的几年中发现,它在机体发育、成熟过程中也有重要作用。如今,大量研究表明它与肿瘤的生长、侵袭及转移密切相关。据报道,在乳腺癌、肺癌、卵巢癌等二十余种肿瘤组织中发现CXCL12及CXCR4的表达,其中也包括中枢系统肿瘤-胶质瘤。CXCL12/CXCR4参与胶质瘤生长过程的多个步骤,包括肿瘤增殖、侵袭、转移等。有实验指出,转移灶的CXCR4表达水平较原发灶高,CXCR4有可能成为抑制胶质瘤生长、转移的重要靶目标。  相似文献   

3.
A soluble form of the chemokine receptor CXCR4 was detected in human sera by isoelectric focusing and Western blotting. Sera of patients and normal subjects were analyzed using a panel of specific antibodies. Compared with controls, high levels of serum CXCR4 were found in patients with inflammatory bowel diseases. Serum CXCR4 levels in the majority of HIV patients were similar to those in healthy controls. A sensitive polyclonal antibody was developed in rabbit immunized with a maltose binding protein (MBP) construct expressing the full-length CXCR4. Using anti-MBPCXCR4 antibody, the level of CXCR4 in sera of a majority of patients with fibrosis was very low. The potential of serum CXCR4 as a new diagnostic biomarker warrants further investigation.  相似文献   

4.
Numerous studies have showed that chemokine receptors, such as CXCR4, contribute to the growth and metastasis of a variety of malignant tumors. In this study, we investigated the role of CXCR4 in the production of angiogenic factor, vascular endothelial growth factor (VEGF), in various human glioma cells from astrocytic origin. The expression of CXCR4 mRNA and protein in three glioma cell lines, U87-MG, SHG-44, and CHG-5, was determined by RT-PCR and immunocytochemistry, respectively. The malignancies of three gliomas were evaluated by expression of glial fibrillary acidic protein and vimentin, the differentiation markers of astrocytic cells. The role of functional CXCR4 in tumor cell migration was studied with chemotaxis assay. Ca2+ mobilization and VEGF production were measured in the cells after stimulation with CXCR4 ligand, SDF1beta. The results showed that the levels of functional CXCR4 expression at both mRNA and protein levels by several human glioma cell lines were correlated with the degree of differentiation of the tumor cells. Activation of CXCR4 induced glioma cell chemotaxis and could trigger the increase of intracellular [Ca2+]i. Such an activation could result in the increased production of VEGF by the stimulated tumor cells. Our results suggest that CXCR4 may contribute to the high level of VEGF produced by malignant glioma cells and thus constitute a therapeutic target for antiangiogenesis strategy.  相似文献   

5.
The chemokine receptor CXCR4 was solubilized from the human T-cell line CEM by using the detergent n-dodecyl-beta-maltoside (DDM) and cholesteryl hemisuccinate ester (CHS). Binding studies with (125)I-SDF-1alpha revealed a dissociation constant of 5.33 nM and a receptor density (B(max)) of 2.68 pmol/mg in CEM membranes at 4 degrees C. The affinity of solubilized CXCR4 for SDF-1alpha was identical to membrane-bound CXCR4. Binding of gp120 to solubilized CXCR4 was demonstrated by coprecipitation of gp120 with anti-CXCR4 antibodies.  相似文献   

6.
The mechanisms leading to renal cell carcinoma (RCC) metastasis are incompletely understood. Although evidence shows that the chemokine receptor CXCR4 and its ligand CXCL12 may regulate tumor dissemination, their role in RCC is not clearly defined. We examined CXCR4 expression and functionality on RCC cell lines, and explored CXCL12-triggered tumor adhesion to human endothelium (HUVEC) or extracellular matrix proteins. Functional CXCR4 was expressed on A498 tumor cells, enabling them to migrate towards a CXCL12 gradient. CXCR4 engagement by CXCL12 induced elevated cell adhesion to HUVEC, to immobilized fibronectin, laminin or collagen. Anti-CXCR4 antibodies or CXCR4 knock down by siRNA applied prior to CXCL12 stimulation impaired CXCL12-triggered tumor adhesion. However, blocking CXCR4 subsequent to CXCL12 stimulation did not. This pointed to an indirect control of tumor cell adhesion by CXCR4. In fact, CXCR4 engagement by CXCL12 also induced alterations of receptors of the integrin family, notably alpha3, alpha5, beta1 and beta3 subunits, and blocking beta1 integrins with a function-blocking antibody prevented CXCL12-induced A498 adhesion. Focal adhesion kinase (total and activated) and integrin-linked kinase significantly increased in CXCL12-treated A498 cells, accompanied by a distinct up-regulation of ERK1/2, JNK and p38 phosphorylation. Therefore, CXCR4 may be crucial in controlling adhesion of A498 cells via cross talking with integrin receptors. These data show that CXCR4 receptors contribute to RCC dissemination and may provide a novel link between CXCR4 chemokine receptor expression and integrin triggered RCC adhesion to the vascular wall and subendothelial matrix components.  相似文献   

7.
Chemokines are secreted into the tumor microenvironment by tumor-infiltrating inflammatory cells as well as by tumor cells. Chemokine receptors mediate agonist-dependent cell responses, including migration and activation of several signaling pathways. In the present study we show that several human melanoma cell lines and melanoma cells on macroscopically infiltrated lymph nodes express the chemokine receptors CXCR3 and CXCR4. Using the highly invasive melanoma cell line BLM, we demonstrate that the chemokine Mig, a ligand for CXCR3, activates the small GTPases RhoA and Rac1, induces a reorganization of the actin cytoskeleton, and triggers cell chemotaxis and modulation of integrin VLA-5- and VLA-4-dependent cell adhesion to fibronectin. Furthermore, the chemokine SDF-1alpha, the ligand of CXCR4, triggered modulation of beta(1) integrin-dependent melanoma cell adhesion to fibronectin. Additionally, Mig and SDF-1alpha activated MAPKs p44/42 and p38 on melanoma cells. Expression of functional CXCR3 and CXCR4 receptors on melanoma cells indicates that they might contribute to cell motility during invasion as well as to regulation of cell proliferation and survival.  相似文献   

8.
The chemokine receptor CXCR4 is rapidly targeted for lysosomal degradation by the E3 ubiquitin ligase atrophin-interacting protein 4 (AIP4). Although it is known that AIP4 mediates ubiquitination and degradation of CXCR4 and that perturbations in these events contribute to disease, the mechanisms mediating AIP4-dependent regulation of CXCR4 degradation remain poorly understood. Here we show that AIP4 directly interacts with the amino-terminal half of nonvisual arrestin-2 via its WW domains. We show that depletion of arrestin-2 by small interfering RNA blocks agonist-promoted degradation of CXCR4 by preventing CXCR4 trafficking from early endosomes to lysosomes. Surprisingly, CXCR4 internalization and ubiquitination remain intact, suggesting that the interaction between arrestin-2 and AIP4 is not required for ubiquitination of the receptor at the plasma membrane but perhaps for a later post-internalization event. Accordingly, we show that activation of CXCR4 promotes the interaction between AIP4 and arrestin-2 that is consistent with a time when AIP4 co-localizes with arrestin-2 on endocytic vesicles. Taken together, our data suggest that the AIP4.arrestin-2 complex functions on endosomes to regulate sorting of CXCR4 into the degradative pathway.  相似文献   

9.
Stromal cell-derived factor 1 (SDF-1) is a critical regulator of endothelial progenitor cells (EPCs) mediated physiological and pathologic angiogenesis. It was considered to act via its unique receptor CXCR4 for a long time. CXCR7 is a second, recently identified receptor for SDF-1, and its role in human EPCs is unclear. In present study, CXCR7 was found to be scarcely expressed on the surface of human EPCs derived from cord blood, but considerable intracellular CXCR7 was detected, which differs from that on EPCs derived from rat bone marrow. CXCR7 failed to support SDF-1 induced human EPCs migration, proliferation, or nitric oxide (NO) production, but mediated human EPCs survival exclusively. Besides that, CXCR7 mediated EPCs tube formation along with CXCR4. Blocking CXCR7 with its antagonist CCX733 impaired SDF-1/CXCR4 induced EPCs adhesion to active HUVECs and trans-endothelial migration. Those results suggested that CXCR7 plays an important role in human cord blood derived EPCs in response to SDF-1.  相似文献   

10.
HIV infection is characterized by gradual immune system collapse and hematopoietic dysfunction. We recently showed that HIV enters multipotent hematopoietic progenitor cells and establishes both active cytotoxic and latent infections that can be reactivated by myeloid differentiation. However, whether these multipotent progenitors include long-lived hematopoietic stem cells (HSCs) that could establish viral reservoirs for the life of the infected person remains unknown. Here we provide direct evidence that HIV targets long-lived HSCs and show that infected HSCs yield stable, multilineage engraftment in a xenograft model. Furthermore, we establish that the capacity to use the chemokine receptor CXCR4 for entry determines whether a virus will enter multipotent versus differentiated progenitor cells. Because HSCs live for the life span of the infected person and are crucial for hematopoietic health, these data may explain the poor prognosis associated with CXCR4-tropic HIV infection and suggest HSCs as long-lived cellular reservoirs of latent HIV.  相似文献   

11.
In mouse embryos, germ cells arise during gastrulation and migrate to the early gonad. First, they emerge from the primitive streak into the region of the endoderm that forms the hindgut. Later in development, a second phase of migration takes place in which they migrate out of the gut to the genital ridges. There, they co-assemble with somatic cells to form the gonad. In vitro studies in the mouse, and genetic studies in other organisms, suggest that at least part of this process is in response to secreted signals from other tissues. Recent genetic evidence in zebrafish has shown that the interaction between stromal cell-derived factor 1 (SDF1) and its G-protein-coupled receptor CXCR4, already known to control many types of normal and pathological cell migrations, is also required for the normal migration of primordial germ cells. We show that in the mouse, germ cell migration and survival requires the SDF1/CXCR4 interaction. First, migrating germ cells express CXCR4, whilst the body wall mesenchyme and genital ridges express the ligand SDF1. Second, the addition of exogenous SDF1 to living embryo cultures causes aberrant germ cell migration from the gut. Third, germ cells in embryos carrying targeted mutations in CXCR4 do not colonize the gonad normally. However, at earlier stages in the hindgut, germ cells are unaffected in CXCR4(-/-) embryos. Germ cell counts at different stages suggest that SDF1/CXCR4 interaction also mediates germ cell survival. These results show that the SDF1/CXCR4 interaction is specifically required for the colonization of the gonads by primordial germ cells, but not for earlier stages in germ cell migration. This demonstrates a high degree of evolutionary conservation of part of the mechanism, but also an area of evolutionary divergence.  相似文献   

12.
The interaction of the chemokine stromal cell-derived factor 1 (SDF-1) with its receptor CXCR4 is vital for cell trafficking during development, is capable of inhibiting human immunodeficiency virus type 1 (HIV-1) utilization of CXCR4 as a coreceptor, and has been implicated in delaying disease progression to AIDS in vivo. Because of the importance of this chemokine-chemokine receptor pair to both development and disease, we investigated the molecular basis of the interaction between CXCR4 and its ligands SDF-1 and HIV-1 envelope. Using CXCR4 chimeras and mutants, we determined that SDF-1 requires the CXCR4 amino terminus for binding and activates downstream signaling pathways by interacting with the second extracellular loop of CXCR4. SDF-1-mediated activation of CXCR4 required the Asp-Arg-Tyr motif in the second intracellular loop of CXCR4, was pertussis toxin sensitive, and did not require the distal C-terminal tail of CXCR4. Several CXCR4 mutants that were not capable of binding SDF-1 or signaling still supported HIV-1 infection, indicating that the ability of CXCR4 to function as a coreceptor is independent of its ability to signal. Direct binding studies using the X4 gp120s HXB, BH8, and MN demonstrated the ability of HIV-1 gp120 to bind directly and specifically to the chemokine receptor CXCR4 in a CD4-dependent manner, using a conformationally complex structure on CXCR4. Several CXCR4 variants that did not support binding of soluble gp120 could still function as viral coreceptors, indicating that detectable binding of monomeric gp120 is not always predictive of coreceptor function.  相似文献   

13.
The CXC chemokine receptor CXCR4 is used as a major co-receptor for fusion and entry by syncytia-inducing T-tropic (X4) isolates of HIV-1. In the present study, we report the effects of an antisense oligodeoxyribonucleotide on the inhibition of CXCR4 gene expression in X4 HIV-1 infected HeLa-CD4 cells, to find more efficacious therapeutic possibilities for Human Immunodeficiency Virus type 1 (HIV-1) infection. Antisense phosphorothioate oligodeoxyribonucleotides (anti-S-ODNs) corresponding to the sequence of bases 69 to 88 of the human CXCR4 mRNA gene were synthesized. When the naked anti-S-ODN was incubated with HeLa-CD4 cells, the surface levels of this chemokine receptor were reduced up to 50%, indicating sequence-specific inhibition. We also examined the concomitant use of a basic peptide transfection reagent, nucleosomal histone proteins (RNP), for delivery of anti-S-ODNs. The anti-S-ODN encapsulated with RNP had higher inhibitory effects on p24 products than the naked anti-S-ODN.  相似文献   

14.
Chemokines and their receptors determine the distribution of leukocytes within tissues in health and disease. We have studied the role of the constitutive chemokine receptor CXCR4 and its ligand, stromal-derived factor-1 (SDF-1) in the perivascular accumulation of T cells in rheumatoid arthritis. We show that synovial T cells, which are primed CD45RO+CD45RBdull cells and consequently not expected to express constitutive chemokine receptors, have high levels of the chemokine receptor CXCR4. Sustained expression of CXCR4 was maintained on synovial T cells by specific factors present within the synovial microenvironment. Extensive screening revealed that TGF-beta isoforms induce the expression of CXCR4 on CD4 T cells in vitro. Depletion studies using synovial fluid confirmed an important role for TGF-beta1 in the induction of CXCR4 expression in vivo. The only known ligand for CXCR4 is SDF-1. We found SDF-1 on synovial endothelial cells and showed that SDF-1 was able to induce strong integrin-mediated adhesion of synovial fluid T cells to fibronectin and ICAM-1, confirming that CXCR4 expressed on synovial T cells was functional. These results suggest that the persistent induction of CXCR4 on synovial T cells by TGF-beta1 leads to their active, SDF-1-mediated retention in a perivascular distribution within the rheumatoid synovium.  相似文献   

15.
It is known that beta1 integrins mediate the migratory response of cells to chemokine stimulation. Also, both beta1 integrins and chemokines have roles in tumor development. In the present study, the beta1 integrin-chemokine axis is assessed using human osteosarcoma (HOS) transfectant cells expressing the CXCR4 receptor for chemokine SDF-1 (CXCL12). We first identified in vitro the specific beta1 integrins that mediated the migratory response to SDF-1 stimulation. Results showed that on collagen type I and laminin, the chemotactic response to SDF-1 was predominantly mediated by alpha2beta1 integrin. On fibronectin, SDF-1-stimulated chemotaxis involved both alpha4beta1 and alpha5beta1 integrins. A comparison of the transfectant clones expressing CXCR4 at low, intermediate, and high levels and the control transfectant revealed that the transfectant clones migratory response in vitro and their ability to form tumors in vivo was related to their levels of CXCR4 expression. In addition, treatment by injection with mAbs to CXCR4, integrin alpha2beta1, or integrin alpha5beta1 effectively inhibited the growth of HOS-CXCR4 transfectant cells in vivo. Therefore, our results show that the beta1 integrins that mediated the migratory response were also functionally linked to the enhanced tumor growth of CXCR4-expressing HOS transfectant cells.  相似文献   

16.
Kim J  Yip ML  Shen X  Li H  Hsin LY  Labarge S  Heinrich EL  Lee W  Lu J  Vaidehi N 《PloS one》2012,7(2):e31004
Despite recent advances in targeted therapies, patients with pancreatic adenocarcinoma continue to have poor survival highlighting the urgency to identify novel therapeutic targets. Our previous investigations have implicated chemokine receptor CXCR4 and its selective ligand CXCL12 in the pathogenesis and progression of pancreatic intraepithelial neoplasia and invasive pancreatic cancer; hence, CXCR4 is a promising target for suppression of pancreatic cancer growth. Here, we combined in silico structural modeling of CXCR4 to screen for candidate anti-CXCR4 compounds with in vitro cell line assays and identified NSC56612 from the National Cancer Institute's (NCI) Open Chemical Repository Collection as an inhibitor of activated CXCR4. Next, we identified that NSC56612 is structurally similar to the established anti-malarial drugs chloroquine and hydroxychloroquine. We evaluated these compounds in pancreatic cancer cells in vitro and observed specific antagonism of CXCR4-mediated signaling and cell proliferation. Recent in vivo therapeutic applications of chloroquine in pancreatic cancer mouse models have demonstrated decreased tumor growth and improved survival. Our results thus provide a molecular target and basis for further evaluation of chloroquine and hydroxychloroquine in pancreatic cancer. Historically safe in humans, chloroquine and hydroxychloroquine appear to be promising agents to safely and effectively target CXCR4 in patients with pancreatic cancer.  相似文献   

17.
Chemokines are a family of proteins that chemoattract and activate cells by interacting with specific receptors on the surface of their targets. The chemokine stromal cell-derived factor 1, (SDF1), binds to the seven-transmembrane G protein-coupled CXCR4 receptor and acts to modulate cell migration, differentiation, and proliferation. CXCR4 and SDF1 are reported to be expressed in various tissues including brain. Here we show that SDF1 and CXCR4 are expressed in cultured cortical type I rat astrocytes, cortical neurons, and cerebellar granule cells. In cortical astrocytes, prolonged treatment with lipopolysaccharide induced an increase of SDF1 expression and a down-regulation of CXCR4, whereas treatment with phorbol esters did not affect SDF1 expression and down-modulated CXCR4 receptor expression. We also demonstrated the ability of human SDF1alpha (hSDF1alpha) to increase the intracellular calcium level in cultured astrocytes and cortical neurons, whereas in the same conditions, cerebellar granule cells did not modify their intracellular calcium concentration. Furthermore, in cortical astrocytes, the simultaneous treatment of hSDF1alpha with the HIV-1 capside glycoprotein gp120 inhibits the cyclic AMP formation induced by forskolin treatment.  相似文献   

18.
CXCR4 is a G‐protein‐coupled receptor involved in a number of physiological processes in the hematopoietic and immune systems. CXCL12/CXCR4 axis plays a central role in diseases, such as HIV, cancer, WHIM syndrome, rheumatoid arthritis, pulmonary fibrosis, and lupus and, hence, indicated as putative therapeutic target. Although multiple CXCR4 antagonists have been developed, there is only one marketed drug, plerixafor, indicated for stem cell mobilization in poor mobilizer patients. In this work, we have designed and synthesized two peptides, six and seven residues long, using as template the N‐terminal region of CXCL12; analyzed their conformations by CD, NMR, and molecular dynamics simulations; simulated their complexes with CXCR4 by docking methods; and validated these data by in vitro studies. The results showed that the two peptides are rather flexible in aqueous solution lacking ordered secondary structure elements and present a promising affinity for CXCR4. This affinity is not revealed for CXCR7, indicating a specificity for CXCR4. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The CXC chemokine receptor CXCR4/fusion, a major coreceptor for the T-cell line T-tropic (X4) HIV-1 virus, plays a critical role in T-tropic virus fusion and entry into permissive cells. In the present study, we describe the effects of an antisense phosphorothioate oligodeoxyribonucleotide (anti-S-ODN) on the inhibition of CXCR4 gene expression in X4 HIV-1 infected HeLa-CD4 cells, to find more efficacious therapeutic possibilities for human immunodeficiency virus type 1 (HIV-1) infection. The naked antisense phosphorothioate oligodeoxyribonucleotide (anti-S-ODN-1), containing the AUG initiation codon at the center of the oligodeoxyribonucleotide, showed a slightly higher inhibitory effect on HIV-1 gag p24 production among all sequences tested. We also examined the concomitant use of a basic peptide transfection reagent, nucleosomal histone proteins (RNP), for the delivery of the anti-S-ODN-1. The anti-S-ODN-1 encapsulated with RNP had higher inhibitory effects on p24 products than the naked anti-S-ODN-1. When the anti-S-ODN-1 encapsulated with RNP was incubated with HeLa-CD4 cells, the surface levels of this chemokine receptor showed high suppression, indicating sequence-specific inhibition. The activities of unmodified oligodeoxyribonucleotide are effectively enhanced by using a basic peptide, RNP.  相似文献   

20.
The chemokine receptor CXCR4 possesses multiple critical functions in normal and pathologic physiology. CXCR4 is a G-protein-coupled receptor that transduces signals of its endogenous ligand, the chemokine CXCL12 (stromal cell-derived factor-1, SDF-1). The interaction between CXCL12 and CXCR4 plays an important role in the migration of progenitors during embryologic development of the cardiovascular, hemopoietic, central nervous systems, and so on. This interaction is also known to be involved in several intractable disease processes, including HIV infection, cancer cell metastasis, leukemia cell progression, rheumatoid arthritis (RA), and pulmonary fibrosis. It is conjectured that this interaction may be a critical therapeutic target in all of these diseases, and several CXCR4 antagonists have been proposed as potential drugs. Fourteen-mer peptides, T140 and its analogues, were previously developed in our laboratory as specific CXCR4 antagonists that were identified as HIV-entry inhibitors, anti-cancer-metastatic agents, anti-chronic lymphocytic/acute lymphoblastic leukemia agents, and anti-RA agents. Cyclic pentapeptides, such as FC131 [cyclo(D-Tyr-Arg-Arg-L-3-(2-naphthyl)alanine-Gly)], were also previously found as CXCR4 antagonist leads based on pharmacophores of T140. This review article describes the elucidation of multiple functions of CXCR4 antagonists and the development of a number of low-molecular weight CXCR4 antagonists involving FC131 analogues and other compounds with different scaffolds including linear-type structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号