首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of basement membrane components   总被引:23,自引:0,他引:23  
The binding of laminin, type IV collagen, and heparan sulfate proteoglycan to each other was assessed. Laminin binds preferentially to native type IV (basement membrane) collagen over other collagens. A fragment of laminin (Mr 600 000) containing the three short chains (Mr 200 000) but lacking the long chain (Mr 400 000) showed the same affinity for type IV collagen as the intact protein. The heparan sulfate proteoglycan binds well to laminin and to type IV collagen. These studies show that laminin, type IV collagen and heparan sulfate proteoglycan interact with each other. Such interactions in situ may determine the structure of basement membranes.  相似文献   

2.
A collagenous component(s) of Mr = 60K was extracted from glomerular basement membrane with urea and was purified. Upon digestion, it yielded a collagenase-resistant fragment(s) of Mr = 23.5K. Both component and fragment showed immunochemical identity with the noncollagenous domains of the new alpha 3 & alpha 4 chains of collagen IV. The component is characterized by a collagenous domain of about 280 residues and a noncollagenous domain of about 250 residues. These findings further establish these new chains as distinct entities of collagen IV.  相似文献   

3.
The COOH-terminal non-collagenous domains (NC1) of type IV collagen from glomerular basement membranes (GBM), lens capsule basement membranes, and Descemet's membrane varied in the distribution of their NC1 subunits. All of these basement membranes (BMs) contained both classical (alpha 1(IV) and alpha 2(IV)) and novel collagen chains (alpha 3(IV), alpha 4(IV) and the Alport antigen). Whereas GBM had a predominance of disulfide-bonded subunits, the lens capsule and Descemet's membrane were primarily monomeric, differences that are likely related to the functional and structural diversity of collagen in various tissues. A heterodimer formed from monomeric subunits of alpha 3(IV) and the Alport antigen exists in human and bovine GBM. This dimer represents an important cross-link of the NC1 domain of novel collagen. Additionally, immunoaffinity methodology showed that the novel BM collagen hexamers segregate into populations containing only novel BM subunits without the participation of the classical subunits (alpha 1(IV) and alpha 2(IV)). These data provided evidence for the presence of two separate networks of BM collagen: one containing alpha 1(IV) and alpha 2(IV), and the other consisting of the novel collagen chains.  相似文献   

4.
A third chain, alpha 3(IV), of basement membrane collagen was recently discovered and was identified as the primary target for the autoantibodies of patients with Goodpasture syndrome (Saus, J., Wieslander, J., Langeveld, J. P. M., Quinones, S., and Hudson, B. G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, this chain was excised in the form of a truncated promoter by cleavage of basement membrane with Pseudomonas aeruginosa elastase and characterized. The triple helical structure and NC1 domain were retained. Elastase selectively cleaved at a site within the triple helical domain of the alpha 3 chain that is distinct from the cleavage site of the alpha 1 and alpha 2 chains. The truncated alpha 3 chain was found to contain 1460 residues, of which 1225 comprise the collagenous domain, and is cross-linked within this domain by disulfide bonds, forming a high Mr complex (greater than 300,000). Truncated protomers with a length of 340 nm corresponding to the theoretical length for the truncated alpha 3 chain were observed by electron microscopy as suprastructures in which the triple helical domains of three protomers were interwined. These protomers were also connected to each other and to the 140-nm protomers that appear to be comprised of the alpha 1 and alpha 2 chains. These results extended the known length of the alpha 3 chain by about 1000 residues and suggested that protomers of this chain self-associate through interactions between their triple helical domains and between their NC1 domains.  相似文献   

5.
Each type of basement membrane in man contains between two and five genetically distinct type IV collagens: alpha 1(IV)-alpha 5(IV). Genes for alpha 1(IV), alpha 2(IV), alpha 3(IV), and alpha 5(IV) have been isolated. We have recently isolated partial cDNAs for the fifth member of the family, designated alpha 4(IV). On the basis of comparison of the deduced peptide sequences of all five chains, the type IV collagens can be divided into two families: alpha 1-like, comprising alpha 1(IV), alpha 3(IV), and alpha 5(IV); and alpha 2-like, comprising alpha 2(IV) and alpha 4(IV). Genes encoding the alpha 1(IV) and alpha 2(IV) chains (COL4A1 and COL4A2) both map to human chromosome 13q34 and have been shown to be transcribed from opposite DNA strands using a common bidirectional promoter that allows coordinate regulation of the two chains. Indeed, these two chains are commonly found together in basement membrane and form [alpha 1]2.[alpha 2] heterotrimers. Whereas alpha 1(IV) and alpha 2(IV) have been found in all basement membranes studied hitherto, it has been shown that alpha 3(IV) and alpha 4(IV) are found in only a subset of basement membranes. In basement membranes where either of these molecules is present, however, they are found together. In view of this relationship and the structural similarities between alpha 1(IV) and alpha 3(IV) and between alpha 2(IV) and alpha 4(IV), we hypothesized that COL4A3 and COL4A4, the genes encoding alpha 3(IV) and alpha 4(IV), respectively, have a genomic organization similar to that of COL4A1 and COL4A2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Electron immunohistochemical studies demonstrate that cultured embryo-derived parietal yolk sac (ED-PYS) carcinoma cells synthesize type IV collagen. This material has been isolated and characterized. The collagen obtained after limited pepsin digestion from the medium in which the cells are grown is composed of homogeneous components with a molecular mass of approximately 95 000 daltons. When chromatographed on (carboxymethyl)cellulose under denaturing conditions, the chains elute as acidic components slightly before the human alpha 1(I) chain and coincident with the position of elution of the pepsin-derived human alpha 1(IV) chain. This analysis indicates the presence of a single type of collagen chain in the pepsin-derived ED-PYS synthesized material. In addition, the profile of cyanogen bromide (CNBr) cleavage products obtained from the pepsin-derived ED-PYS cell collagen chains is essentially identical with that derived from the human alpha 1(IV) chain. Isolation of the medium collagen in the absence of pepsin digestion reveals the presence of two high molecular weight components equivalent in size to procollagen alpha chains. However, both high molecular weight products yield CNBr cleavage products that correspond to those obtained from the pepsin-derived alpha 1(IV) chain. The ED-PYS cell-associated collagens obtained with or without the use of pepsin contain components that are essentially identical with those isolated from the culture-medium collagen. These data provide definitive evidence for the existence of type IV collagen molecules composed solely of alpha 1(IV) procollagen chains and further document the usefulness of ED-PYS cells for investigating the biosynthesis of basement membrane components.  相似文献   

7.
Protein A-gold immunocytochemistry was applied in combination with morphometrical approaches to reveal the alpha 1(IV), alpha 2(IV), and alpha 3(IV) chains of type IV collagen as well as entactin on renal basement membranes, particularly on the glomerular one, during maturation. The results have indicated that a heterogeneity between renal basement membranes appears during the maturation process. In the glomerulus at the capillary loop stage, both the epithelial and endothelial cell basement membranes were labeled for the alpha 1(IV) and alpha 2(IV) chains of type IV collagen and entactin. After fusion, both proteins were present on the entire thickness of the typical glomerular basement membrane. At later stages, the labeling for alpha 1(IV) and alpha 2(IV) chains of type IV collagen decreased and drifted towards the endothelial side, whereas the labeling for the alpha 3(IV) chain increased and remained centrally located. Entactin remained on the entire thickness of the basement membrane during maturation and in adult stage. The distribution of endogenous serum albumin in the glomerular wall was studied during maturation, as a reference for the functional properties of the glomerular basement membrane. This distribution, dispersed through the entire thickness of the basement membrane at early stages, shifted towards the endothelial side of the lamina densa with maturation, demonstrating a progressive acquisition of the permselectivity. These results demonstrate that modifications in the content and organization of the different constituents of basement membranes occur with maturation and are required for the establishment of the filtration properties of the glomerular basement membrane.  相似文献   

8.
《The Journal of cell biology》1995,130(5):1219-1229
Genes for the human alpha 5(IV) and alpha 6(IV) collagen chains have a unique arrangement in that they are colocalized on chromosome Xq22 in a head-to-head fashion and appear to share a common bidirectional promoter. In addition we reported a novel observation that the COL4A6 gene is transcribed from two alternative promoters in a tissue-specific manner (Sugimoto, M., T. Oohashi, and Y. Ninomiya. 1994. Proc. Natl. Acad. Sci. USA. 91:11679-11683). To know whether the translation products of both genes are colocalized in various tissues, we raised alpha 5(IV) and alpha 6(IV) chain-specific rat monoclonal antibodies against synthetic peptides reflecting sequences near the carboxy terminus of each noncollagenous (NC)1 domain. By Western blotting alpha 6(IV) chain-specific antibody recognized 27-kD monomers and associated dimers of the human type IV collagen NC1 domain, which is the first demonstration of the presence in tissues of the alpha 6(IV) polypeptide as predicted from its cDNA sequence. Immunofluorescence studies using anti-alpha 6(IV) antibody demonstrated that in human adult kidney the alpha 6(IV) chain was never detected in the glomerular basement membrane, whereas the basement membranes of the Bowman's capsules and distal tubules were positive. The staining pattern of the glomerular basement membrane was quite different from that obtained with the anti- alpha 5(IV) peptide antibody. The alpha 5(IV) and alpha 6(IV) chains were colocalized in the basement membrane in the skin, smooth muscle cells, and adipocytes; however, little if any reaction was seen in basement membranes of cardiac muscles and hepatic sinusoidal endothelial cells. Thus, both genes are expressed in a tissue-specific manner, perhaps due to the unique function of the bidirectional promoter for both genes, which is presumably different from that for COL4A1 and COL4A2.  相似文献   

9.
Native type IV collagen was isolated from human placental tissue by pepsin digestion, fractional salt precipitation, reduction and alkylation, a second pepsin digestion, and chromatography on diethylaminoethyl- and carboxymethyl-cellulose. After denaturation, 10 distinct peptides were isolated from this material by molecular sieve, ion-exchange, and high-performance liquid chromatography. All of the peptides were found to have amino acid compositions characteristic of type IV collagen. Analysis of the eight major peptides by amino-terminal amino acid sequencing and by cyanogen bromide and tryptic peptide mapping has revealed the manner in which they are derived from type IV collagen. Pepsin liberates two large peptides by attacking non-triple-helical regions, one derived from the alpha 1 (IV) chain (F2, Mr 90 000) and one derived from the alpha 2 (IV) chain (F3, Mr 75 000). The alpha 1 (IV)-derived F2 peptide is also represented in the pepsin digest by amino-terminal and carboxy-terminal subfragments [F4c (Mr 41 000) and F4a (Mr 60 000)], as is the alpha 2 (IV)-derived F3 peptide [F5 (Mr 28 000) and F4b (Mr 50 000), respectively]. These findings indicate that the molecular regions from which the larger peptides are derived in themselves contain pepsin-sensitive (non-triple-helical) domains. In addition, several of the peptides examined were found to be present in two slightly different forms, suggesting that closely adjacent pepsin-sensitive sites often exist within the type IV collagen molecules. The methods outlined here provide a reliable means by which identifiable type IV collagen peptides can be isolated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A novel type IV collagen, alpha 3(IV), has previously been isolated from a collagenase digest of bovine and human glomerular and lens basement membranes. The cloning and sequencing of a cDNA encoding the alpha 3(IV) chain is described here. Using the polymerase chain reaction, with primers derived from the known 27-residue bovine alpha 3(IV) amino acid sequence, a 68-base pair bovine genomic fragment (KEM68) which encodes the known peptide sequence, was synthesized. KEM68 was then used to screen a bovine lens cDNA library and a 1.5-kilobase partial cDNA clone obtained, encoding 471 residues of the bovine alpha 3(IV) chain: 238 residues from the triple helical collagenous domain and all 233 residues of the noncollagenous domain. The collagenous repeat sequence has three interruptions, coinciding with those in the alpha 1(IV) chain. The noncollagenous domain has 12 cysteine residues in identical positions to those of other type IV collagens and 71, 61, and 70% overall similarity with the human alpha 1(IV), alpha 2(IV), and alpha 5(IV) chains. The noncollagenous domain of alpha 3(IV) is of particular interest as it appears to be the component of glomerular basement membrane that reacts maximally with the Goodpasture antibody. Furthermore, such antigenicity is absent from collagenase digests of the glomerular basement membrane of some patients with Alport syndrome. The alpha 3(IV) cDNA clone described here now permits study of the molecular pathology of COL4A3 in Alport syndrome.  相似文献   

11.
The major collagenous component secreted into the medium of cultured HT-1080 tumor cells was identified as type IV procollagen by specific antibodies and characteristic ratios of incorporated labeled 3-hydroxyproline and 4-hydroxyproline. The disulfide-bonded molecules consisted of two subunits, pro-alpha 1(IV) and pro-alpha 2(IV) chains with apparent molecular weights of 180 000 and 165 000. No conversion of the procollagen to collagen or to procollagen intermediates was detected in the cell cultures. The two subunits apparently represent different gene products, since enzymatic digestion of the separated chains produced quite different peptide maps. Pepsin degraded native type IV procollagen successively into several fragments, some still disulfide-linked, giving rise to a complex set of polypeptide chains (Mr = 30 000-140 000). This agrees with similar diverse patterns produced by pepsin from authentic type IV collagens. The ratio between the pro-alpha 1(IV) and pro-alpha 2(IV) chains varied in several experiments between 1.3 and 1.8, suggesting that the two chains belong to different triple-helical molecules. The cells also produced distinct amounts of fibronectin (subunit Mr = 230 000) and of the basement membrane glycoprotein laminin. The latter showed three subunits with Mr = 220 000, 210 000, and 400 000. A further disulfide-bonded, non-collagenous polypeptide (Mr = 160 000) was detected but not yet identified. Immunofluorescence demonstrated these proteins within the cells but not in a pericellular matrix. The production of basement membrane components by HT-1080 cells and lack of interstitial collagens disagree with the original classification of the cell line as a fibrosarcoma.  相似文献   

12.
The basement membrane is important for proper tissue development, stability, and physiology. Major components of the basement membrane include laminins and type IV collagens. The type IV procollagens Col4a1 and Col4a2 form the heterotrimer [alpha1(IV)]2[alpha2(IV)], which is ubiquitously expressed in basement membranes during early developmental stages. We present the genetic, molecular, and phenotypic characterization of nine Col4a1 and three Col4a2 missense mutations recovered in random mutagenesis experiments in the mouse. Heterozygous carriers express defects in the eye, the brain, kidney function, vascular stability, and viability. Homozygotes do not survive beyond the second trimester. Ten mutations result in amino acid substitutions at nine conserved Gly sites within the collagenous domain, one mutation is in the carboxy-terminal noncollagenous domain, and one mutation is in the signal peptide sequence and is predicted to disrupt the signal peptide cleavage site. Patients with COL4A2 mutations have still not been identified. We suggest that the spontaneous intraorbital hemorrhages observed in the mouse are a clinically relevant phenotype with a relatively high predictive value to identify carriers of COL4A1 or COL4A2 mutations.  相似文献   

13.
H Sage  P Bornstein 《Biochemistry》1979,18(17):3815-3822
A novel collagen chain, termed alpha C, has been isolated from human placenta by limited pepsin digestion. The collagen containing the alpha C chain copurifies with placental AB collagen during selective salt precipitation but is virtually absent from fetal birth membranes, which contain relatively larger amounts of AB. Both native AB and alpha C-containing collagens are resistant to human skin collagenase under conditions that support cleavage of type I by greater than 90%. The alpha C chain was separated from alpha B by phosphocellulose chromatography and subsequently from alpha P by chromatography on CM-cellulose. Its amino acid composition is distinct from alpha A and alha B although all three chains posses compositional features in common; the carbohydrate content of the alpha C chain was intermediate between those of alpha A and alpha B. Analysis by NaDodSO4-polyacrylamide gel electrophoresis of peptides produced by CNBr cleavage and by limited digestion with the enzyme mast cell protease indicated different and unique products for the alpha A, alpha B, and alpha C chains. The data support the existence of another collagen chain which is related to the alpha A and alpha B chains but which is structurally unique. The proteins containing these chains may in turn comprise a subfamily of collagen isotypes which represents a divergence from and/or specialization of the type IV basement membrane collagens.  相似文献   

14.
We have isolated and characterized overlapping cDNA clones which code for a previously unidentified human collagen chain. Although the cDNA-derived primary structure of this new polypeptide is very similar to the basement membrane collagen alpha 1(IV) and alpha 2(IV) chains, the carboxyl-terminal collagenous/non-collagenous junction sequence does not correspond to the junction sequence in either of the newly described alpha 3(IV) or alpha 4(IV) chains (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B. G. (1987) J. Biol. Chem. 262, 7874-7877). Thus the protein presented here has been designated the alpha 5 chain of type IV collagen. Four clones encode an open reading frame of 1602 amino acids that cover about 95% of the entire chain including half of the amino-terminal 7S domain and all of the central triple-helical region and carboxyl-terminal NC1 domain. The collagenous region of the alpha 5(IV) chain contains 22 interruptions which are in most cases identical in distribution to those in both the alpha 1(IV) and alpha 2(IV) chains. Despite the relatively low degree of conservation among the amino acids in the triple-helical region of the three type IV collagen chains, analysis of the sequences clearly showed that alpha 5(IV) is more related to alpha 1(IV) than to alpha 2(IV). This similarity between the alpha 5(IV) and alpha 1(IV) chains is particularly evident in the NC1 domains where the two polypeptides are 83% identical in contrast to the alpha 5(IV) and alpha 2(IV) identity of 63%. In addition to greatly increasing the complexity of basement membranes, the alpha 5 chain of type IV collagen may be responsible for specialized functions of some of these extracellular matrices. In this regard, it is important to note that we have recently assigned the alpha 5(IV) gene to the region of the X chromosome containing the locus for a familial type of hereditary nephritis known as Alport syndrome (Myers, J.C., Jones, T.A., Pohjalainen, E.-R., Kadri, A.S., Goddard, A.D., Sheer, D., Solomon, E., and Pihlajaniemi, T. (1990) Am. J. Hum. Genet. 46, 1024-1033). Consequently, the newly discovered alpha 5(IV) collagen chain may have a critical role in inherited diseases of connective tissue.  相似文献   

15.
The membrane topology and quaternary structure of rat cardiac gap junction ion channels containing alpha 1 connexin (i.e. Cx43) have been examined using anti-peptide antibodies directed to seven different sites in the protein sequence, cleavage by an endogenous protease in heart tissue and electron microscopic image analysis of native and protease-cleaved two-dimensional membrane crystals of isolated cardiac gap junctions. Specificity of the peptide antibodies was established using dot immunoblotting, Western immunoblotting, immunofluorescence and immunoelectron microscopy. Based on the folding predicted by hydropathy analysis, five antibodies were directed to sites in cytoplasmic domains and two antibodies were directed to the two extracellular loop domains. Isolated gap junctions could not be labeled by the two extracellular loop antibodies using thin-section immunogold electron microscopy. This is consistent with the known narrowness of the extracellular gap region that presumably precludes penetration of antibody probes. However, cryo-sectioning rendered the extracellular domains accessible for immunolabeling. A cytoplasmic "loop" domain of at least Mr = 5100 (residues (101 to 142) is readily accessible to peptide antibody labeling. The native Mr = 43,000 protein can be protease-cleaved on the cytoplasmic side of the membrane, resulting in an Mr approximately 30,000 membrane-bound fragment. Western immunoblots showed that protease cleavage occurs at the carboxy tail of the protein, and the cleavage site resides between amino acid residues 252-271. Immunoelectron microscopy demonstrated that the Mr approximately 13,000 carboxy-terminal peptide(s) is released after protease cleavage and does not remain attached to the Mr approximately 30,000 membrane-bound fragment via non-covalent interactions. Electron microscopic image analysis of two-dimensional membrane crystals of cardiac gap junctions revealed that the ion channels are formed by a hexagonal arrangement of protein subunits. This quaternary arrangement is not detectably altered by protease cleavage of the alpha 1 polypeptide. Therefore, the Mr approximately 13,000 carboxyterminal domain is not involved in forming the transmembrane ion channel. The similar hexameric architecture of cardiac and liver gap junction connexins indicates conservation in the molecular design of the gap junction channels formed by alpha or beta connexins.  相似文献   

16.
The sequences of the carboxy-terminal extensions (COOH-propeptides) of at least one chain of all of the major human procollagens have only recently been deduced, and include those of the interstitial (alpha 1(I), alpha 2(I), alpha 1(II), alpha 1(III)), basement membrane (alpha 1(IV)) and pericellular (alpha 2(V)) procollagens. Comparisons of DNA and protein sequences, corresponding to these COOH-propeptides domains, established the early divergence of the basement membrane alpha 1(IV) COOH-propeptide from the corresponding sequences of the interstitial and pericellular procollagens. The latter are relatively highly conserved and share 58% primary peptide sequence similarities, whereas sequence similarities relative to alpha 1(IV) are limited. Hydropathy profiles and secondary structure potentials further emphasize the clustering of conserved and variable regions among the interstitial and pericellular COOH-propeptides, and provided further evidence for significant structural differences between these sequences and the alpha 1(IV) COOH-propeptide. The most highly conserved sequences of the alpha 1(I), alpha 2(I), alpha 1(II), alpha 1(III) and alpha 2(V) COOH-propeptides include regions surrounding the carbohydrate attachment site, cysteine-containing regions and the COOH-terminal sequences. Cysteinyl, tyrosyl and tryptophanyl residues were found to be highly conserved as were most charged residues. Localization of variable regions, in general, occurs within hydrophilic sequences with high beta-turn potentials that are proximal to intron/exon splice junctions. The most variable sequences are associated with the telopeptides and adjoining NH2-terminal portions of the COOH-propeptides as demonstrated by predictive secondary structure analyses. These results, combined with similar analyses of abnormal alpha 2(I) COOH-propeptide (osteogenesis imperfecta) permitted the identification of subsequences that are likely to be a prerequisite for COOH-propeptide functions, namely procollagen chain recognition and nucleation sites for triple helix formation. These functions are also common to the alpha 1(IV) COOH-propeptide; however, the lack of cleavage of this region and its additional postulated structural role in extracellular matrix interactions likely account for its divergent primary and secondary structure.  相似文献   

17.
Goodpasture's (GP) disease is caused by autoantibodies that target the alpha3(IV) collagen chain in the glomerular basement membrane (GBM). Goodpasture autoantibodies bind two conformational epitopes (E(A) and E(B)) located within the non-collagenous (NC1) domain of this chain, which are sequestered within the NC1 hexamer of the type IV collagen network containing the alpha3(IV), alpha4(IV), and alpha5(IV) chains. In this study, the quaternary organization of these chains and the molecular basis for the sequestration of the epitopes were investigated. This was accomplished by physicochemical and immunochemical characterization of the NC1 hexamers using chain-specific antibodies. The hexamers were found to have a molecular composition of (alpha3)(2)(alpha4)(2)(alpha5)(2) and to contain cross-linked alpha3-alpha5 heterodimers and alpha4-alpha4 homodimers. Together with association studies of individual NC1 domains, these findings indicate that the alpha3, alpha4, and alpha5 chains occur together in the same triple-helical protomer. In the GBM, this protomer dimerizes through NC1-NC1 domain interactions such that the alpha3, alpha4, and alpha5 chains of one protomer connect with the alpha5, alpha4, and alpha3 chains of the opposite protomer, respectively. The immunodominant Goodpasture autoepitope, located within the E(A) region, is sequestered within the alpha3alpha4alpha5 protomer near the triple-helical junction, at the interface between the alpha3NC1 and alpha5NC1 domains, whereas the E(B) epitope is sequestered at the interface between the alpha3NC1 and alpha4NC1 domains. The results also reveal the network distribution of the six chains of collagen IV in the renal glomerulus and provide a molecular explanation for the absence of the alpha3, alpha4, alpha5, and alpha6 chains in Alport syndrome.  相似文献   

18.
Collagen type IV is a major component of the basal lamina of blood vessels. Six genetically distinct collagen type IV chains have been identified and are distributed in a tissue-specific manner. Here we define a novel function for soluble non-collagenous (NC1) domains of the alpha2(IV), alpha3(IV), and alpha6(IV) chains of human collagen type IV in the regulation of angiogenesis and tumor growth. These NC1 domains were shown to regulate endothelial cell adhesion and migration by distinct alpha(v) and beta(1) integrin-dependent mechanisms. Systemic administration of recombinant alpha2(IV), alpha3(IV), and alpha6(IV) NC1 domains potently inhibit angiogenesis and tumor growth, whereas alpha1(IV), alpha4(IV), and alpha5(IV) showed little if any effect. These findings suggest that specific NC1 domains of collagen type IV may represent an important new class of angiogenesis inhibitors.  相似文献   

19.
Type IV procollagen-like constituents of glomerular basement membrane were solubilized by reduction and alkylation of disulfide bonds under denaturing conditions. Four polypeptides were observed with apparent Mr = 185,000, 175,000, 164,000, and 152,000. The two largest chains correspond to pro-alpha 1(IV) and pro-alpha 2(IV), described in model systems which secrete a basement membrane-like matrix, while the smaller chains appear to be shortened forms of these polypeptides. Fractionation of the four polypeptides into two groups was achieved by ion exchange chromatography. Pro-alpha 1(IV) and 164,000 polypeptide are relatively acidic with respect to pro-alpha 2(IV) and 152,000 polypeptide, which is due in part to a relatively high content of arginine in the latter. Based on amino acid analysis of the collagenase-sensitive regions of these polypeptides, pro-alpha 1(IV) is the parent molecule from which alpha 1(IV) is derived on pepsin digestion of basement membranes and pro-alpha 2(IV) is the parent molecule of alpha 2(IV). Pro-alpha 1(IV) was isolated by gel filtration and ion exchange chromatography and characterized. It has a molecular weight of 194,000 as determined by sedimentation equilibrium. The polypeptide contains 14% carbohydrate in the form of both disaccharide, glucosylgalactosylhydroxylysine, and heteropolysaccharide units. The polypeptide backbone mass is calculated to be 167,000 daltons. Digestion of pro-alpha 1(IV) with bacterial collagenase resulted in two resistant segments of mass = 31,000 and 33,000 dalton, which make up approximately 30% of the polypeptide.  相似文献   

20.
The interaction between four Crotalus atrox hemorrhagic metalloproteinases and human alpha 2-macroglobulin was investigated. The proteolytic activity of the hemorrhagic toxins Ht-c, -d, and -e against the large molecular weight protein substrates, gelatin type I and collagen type IV, was completely inhibited by alpha 2-macroglobulin. The proteolytic activity of Ht-a against the same substrates was not significantly inhibited. Each mole of alpha 2-macroglobulin bound maximally 2 mol of Ht-e and 1.1 mol of Ht-c and Ht-d. These proteinases interacted with alpha 2-macroglobulin rapidly at 22 degrees C. Rate constants based on intrinsic fluorescence measurements were 0.62 X 10(5) M-1 s-1 for interaction of alpha 2-macroglobulin with Ht-c and -d and 2.3 X 10(5) M-1 s-1 for the interaction of alpha 2-macroglobulin with Ht-e. Ht-a interacted with alpha 2-macroglobulin very slowly at 22 degrees C. Increasing the temperature to 37 degrees C and prolonging the time of interaction with alpha 2-macroglobulin resulted in the formation of Mr 90,000 fragments and high molecular weight complexes (Mr greater than 180,000), in which Ht-a is covalently bound to the carboxy-terminal fragment of alpha 2-M. The identification of the sites of specific proteolysis of alpha 2-macroglobulin shows that the cleavage sites for the four metalloproteinases are within the bait region of alpha 2-macroglobulin. Ht-c and -d cleave only at one site, the Arg696-Leu697 peptide bond, which is also the site of cleavage for plasmin, thrombin, trypsin, and thermolysin. Ht-a cleaves alpha 2-macroglobulin primarily at the same site, but a secondary cleavage site at the His694-Ala695 peptide bond was also identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号