首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Minor histocompatibility Ags elicit cell-mediated immune responses and graft rejection in individuals receiving MHC-matched tissues. H60 represents a dominant Ag that elicits a strong CTL response in C57BL/6 mice immunized against BALB.B. An 8-aa peptide in the H60 protein is presented by H-2K(b) and this is recognized by the TCR as an alloantigen. The intact H60 glycoprotein is a ligand for the costimulatory NKG2D receptor that is expressed by activated CD8(+) T cells. Thus, H60 may provide both an allogeneic peptide and its own costimulation. We show that mutation of an H-2K(b)-binding anchor residue in the H60 peptide completely abrogates binding of H60 glycoprotein to NKG2D and a synthetic H60 peptide partially blocks the binding of NKG2D to its ligand. Ligands of the human NKG2D receptor are remarkably polymorphic, suggesting that these may also serve as minor histocompatibility Ags.  相似文献   

2.
T cells have the capacity to respond to ligands as full, weak, partial or null agonists, or indeed as antagonists. In the present paper, it is reported that staphylococcal enterotoxin B (SEB) mutated in a T cell receptor (TCR) contact site (SEBDelta61Y) behaves as an altered ligand for a T cell clone (AC20) that expresses the Vbeta17 TCR. The T cells were partially activated by SEBDelta61Y, as shown by TCR down-modulation and up-regulation of the IL-2 receptor. However, these cells did not secrete IL-2, IL-3, IL-4 or IFN-gamma, nor did they proliferate. Analysis of intracellular protein tyrosine phosphorylation after cellular activation provided further evidence that SEBDelta61Y could transduce a signal via the Vbeta17 TCR. The events following receptor ligation were clearly different when the T cells were stimulated with SEB or SEBDelta61Y, manifested as both quantitatively and qualitatively different patterns of phosphorylation of intracellular substrates. In contrast, only quantitative differences were apparent when a transfectant expressing the same alpha/beta TCR was stimulated with the different superantigens. Together, these results provide the first demonstration that altered TCR ligands are not restricted to peptides substituted at secondary TCR contact residues. Rather, an altered superantigenic ligand mutated in the TCR binding site can behave as a partial agonist.  相似文献   

3.
A fusion protein of single chain antibody (scFv) specific for transferrin receptor (TfR, CD71) and viral peptide/HLA-A2 complex was prepared in this study to redirect cytotoxic T cells (CTLs) of viral specificity to tumor cells by attaching the ligand of T cell receptor (TCR) to tumor cells via binding of TfR scFv to TfR. The results demonstrate that the fusion protein can attach the active virus-peptide/HLA-A2 complex to HLA class I-negative, TfR-expressing K562 cells through binding of TfR scFv to TfR, and mediate cytotoxicity of viral peptide-specific CTLs against K562 cells in vitro. In addition, the fusion protein can induce inhibition of solid tumor formation and improve survival time in tumor xenograft nude mouse with the injection of the sorted viral peptide-specific CTLs generated by co-culture of peripheral blood lymphocytes from HLA-A2 positive donors with inactivated T2 cells pulsed with the viral peptide.  相似文献   

4.
Although T cell receptor cross-reactivity is a fundamental property of the immune system and is implicated in numerous autoimmune pathologies, the molecular mechanisms by which T cell receptors can recognize and respond to diverse ligands are incompletely understood. In the current study we examined the response of the human T cell lymphotropic virus-1 (HTLV-1) Tax-specific T cell receptor (TCR) A6 to a panel of structurally distinct haptens coupled to the Tax 11-19 peptide with a lysine substitution at position 5 (Tax5K, LLFG[K-hapten]PVYV). The A6 TCR could cross-reactively recognize one of these haptenated peptides, Tax-5K-4-(3-Indolyl)-butyric acid (IBA), presented by HLA-A*0201. The crystal structures of Tax5K-IBA/HLA-A2 free and in complex with A6 reveal that binding is mediated by a mechanism of cooperative conformational plasticity involving conformational changes on both sides of the protein-protein interface, including the TCR complementarity determining region (CDR) loops, Valpha/Vbeta domain orientation, and the hapten-modified peptide. Our findings illustrate the complex role that protein dynamics can play in TCR cross-reactivity and highlight that T cell receptor recognition of ligand can be achieved through diverse and complex molecular mechanisms that can occur simultaneously in the interface, not limited to molecular mimicry and CDR loop shifts.  相似文献   

5.
A6 and B7 are two alphabeta T cell receptors (TCRs) that recognize the Tax peptide presented by the class I major histocompatibility molecule HLA-A2 (Tax/HLA-A2). Despite the fact that the two TCRs have different CDR loops and use different amino acid residues to contact their ligand, both receptors bind ligand with similar diagonal orientations. Here we show that they also bind with very similar binding affinities and kinetics (the DeltaDeltaG degrees for binding is approximately 0.3kcal/mol at 25 degrees C). The two receptors respond similarly to alterations in the MHC molecule, yet differ dramatically in their responses to ionic strength and temperature. The different responses to temperature indicate markedly different binding thermodynamics, which are not predictable from the surface area buried in the interfaces. A6 and B7 thus represent two TCRs that are both compatible with Tax/HLA-A2, although compatibility has been achieved through the use of different thermodynamic strategies. Finally, neither A6 nor B7 are predicted to undergo large conformational adaptations upon binding, distinguishing them from a number of other TCRs whose structure, thermodynamics, and kinetics have been characterized.  相似文献   

6.
The structural basis that determines the specificity of γδ T cell receptor (TCR) recognition remains undefined. Our previous data show that the complementary determining region of human TCRδ (CDR3δ) is critical to ligand binding. Here we used linear and configurational approaches to examine the roles of V, N-D-N, or J regions in CDR3δ-mediated antigen recognition. Surprisingly, we found that the binding activities of CDR3δ from different γδ TCRs to their target tissues and ligands depend on the conserved flanking sequences (V and J) but not as much on the D region of CDR3δ fragment. We further defined the key residues in the V and J regions of CDR3δ fragments, including the cysteine residue in the V fragment and the leucine residue in the J fragment that determine their ligand binding specificity. Our results demonstrate that TCRδ primarily uses conserved flanking regions to bind ligands. This finding may provide an explanation for the limited number of γδ TCR ligands that have as yet been identified.Extensive studies suggest that γδ T cells play important roles in host defense against microbial infections, monitoring of tumorigenesis, immunoregulation, and development of autoimmunity (13). However, little is known about the structural basis of antigenic recognition by γδ T cell receptor (TCR)3 because of the limited identified specific ligands for γδ TCR and the lack of structural information revealing how γδ TCR might interact with such ligands.The crystallographic structure of a murine γδ TCR in complex with major histocompatibility complex class (MHC) Ib T22 (4, 5) showed that the CDR loops οf γδ TCR, predominantly germline-encoded residues of the complementary determining region of human TCRδ (CDR3δ), are in direct contact with T22, suggesting that the primary sequence of CDR3 in γδ TCR, especially CDR3δ, serves as a key determinant for the specificity of antigen recognition. Our recent finding that CDR3δ peptide mimics human γδ TCR binding to tumor cells and tissues is consistent with the role of CDR3δ in γδ TCR recognition (6).Based on this finding, we used synthesized CDR3δ peptide as a probe to screen putative protein ligands in tumor protein extracts by affinity chromatography analysis. With this novel strategy, we have successfully identified seven tumor-related epitopes, two hepatitis B virus (HBV) infection-related antigenic epitopes, and two self proteins including heat shock protein (HSP) 60 and human mutS homolog 2 (hMSH2) that are recognized by human γδ TCR (7). These results further support that the primary sequence of CDR3δ in γδ TCR determine the specificity of antigen binding.CDR3δ is composed of fragments derived from V, N-D-N, and J gene segments. The flanking sequences composed of V and J fragment is conserved while N-D-N region is diverse. The diversity of γδ TCRs is supposedly higher than that of TCRαβ due to the link of D gene fragment and the insertion of nucleotide acids (8). However, the number of identified antigenic ligands recognized by γδ TCR remains very limited. It has been demonstrated that γδ TCR recognizes some protein antigens and small phosphate or amine-containing compounds, including nonclassical MHC class I molecule T22 and T10 in mice (9), UL-16-binding protein (ULBP) (10) and mitochondrial F1-ATPase in humans (11). Nevertheless, important questions regarding γδ TCR recognition remain to be addressed. For example, given the seemingly high diversity of γδ TCR, why have only limited antigenic ligands been identified? What are the contributions of individual fragments of CDR3δ to antigen recognition? In αβ TCR, a single mutation in D gene fragment (12) abolishes its antigenic recognition, whereas the contribution of the different fragments in γδ TCR recognition remain unknown. Answers to these questions will shed important insights to antigen recognition of γδ T cells.In this study, we investigated the contribution of individual fragments of CDR3δ in antigen recognition. We mutated V, N-D-N, or J fragments of a Vδ2 TCR CDR3 sequence (OT3) in peptide and engineered γδ TCR. We found that the conserved flanking regions of CDR3δ play a critical role in antigenic binding to OEC cells/tissues or hMSH2 protein, a new ligand for γδTCR we found recently (7). Furthermore, we have identified the cysteine residue in V fragment and the leucine residue in J fragment as critical residues in the binding activity of γδ TCR. These results demonstrate that TCRδ chain uses the conserved flanking regions to recognize their antigens, suggesting that ligands for γδ ΤCR may also be conserved and limited in number.  相似文献   

7.
Class I Major Histocompatibility Complex (MHC) molecules evolved to sample degraded protein fragments from the interior of the cell, and to display them at the surface for immune surveillance by CD8+ T cells. The ability of these lymphocytes to identify immunogenic peptide-MHC (pMHC) products on, for example, infected hepatocytes, and to subsequently eliminate those cells, is crucial for the control of hepatitis B virus (HBV). Various protein scaffolds have been designed to recapitulate the specific recognition of presented antigens with the aim to be exploited both diagnostically (e.g. to visualize cells exposed to infectious agents or cellular transformation) and therapeutically (e.g. for the delivery of drugs to compromised cells). In line with this, we report the construction of a soluble tetrameric form of an αβ T cell receptor (TCR) specific for the HBV epitope Env183–191 restricted by HLA-A*02:01, and compare its avidity and fine-specificity with a TCR-like monoclonal antibody generated against the same HLA target. A flow cytometry-based assay with streptavidin-coated beads loaded with Env183–191/HLA-A*02:01 complexes at high surface density, enabled us to probe the specific interaction of these molecules with their cognate pMHC. We demonstrate that the TCR tetramer has similar avidity for the pMHC as the antibody, but they differ in their fine-specificity, with only the TCR tetramer being capable of binding both natural variants of the Env183–191 epitope found in HBV genotypes A/C/D (187Arg) and genotype B (187Lys). Collectively, the results highlight the promiscuity of our soluble TCR, which could be an advantageous feature when targeting cells infected with a mutation-prone virus, but that binding of the soluble oligomeric TCR relies considerably on the surface density of the presented antigen.  相似文献   

8.
A LigandFit shape-directed docking methodology was used to identify the best position at which the melanoma-derived MHC class-I HLA-A2-binding antigenic peptide ELAGIGILTV could be modified by attaching a small molecule capable of fitting at the interface of complementary determining regional (CDR) loops of a T-cell receptor (TCR) while triggering T-cell responses. The small molecule selected here for determining the feasibility of this alternative track to chemical alteration of antigenic peptides was the electrophilic quinone methide (+)-puupehenone (), a natural product that belongs to a family of marine metabolites capable of expressing immunomodulatory activities. A preliminary chemical reactivity model study revealed the efficacy of the thiol group of a cysteine (C) side-chain in its nucleophilic addition reaction with in a regio- and diastereoselective manner. The best TCR/HLA-A2 ligand [i.e., ELAGCGILTV-S-puupehenol ()] then identified by the LigandFit docking procedure was synthesized and used to pulse HLA-A2(+) T2 cells for T-cell stimulation. Among the ELAGIGILTV-specific T-cell clones we tested, five of them recognized the conjugate in spite of its low binding affinity for the HLA-A2 molecules. The resulting T-cell stimulation was determined through the intracytoplasmic secretion of IFN-gamma and the percentage of T-cells thus activated. These highly encouraging results indicate that small non-peptidic natural product-derived molecules attached onto the central part of an antigenic peptide can fit at the TCR/HLA-A2 interface with induction of T-cell responses.  相似文献   

9.
The cell surface molecules CD4 and CD8 greatly enhance the sensitivity of T-cell antigen recognition, acting as "co-receptors" by binding to the same major histocompatibility complex (MHC) molecules as the T-cell receptor (TCR). Here we use surface plasmon resonance to study the binding of CD8alphaalpha to class I MHC molecules. CD8alphaalpha bound the classical MHC molecules HLA-A*0201, -A*1101, -B*3501, and -C*0702 with dissociation constants (K(d)) of 90-220 microm, a range of affinities distinctly lower than that of TCR/peptide-MHC interaction. We suggest such affinities apply to most CD8alphaalpha/classical class I MHC interactions and may be optimal for T-cell recognition. In contrast, CD8alphaalpha bound both HLA-A*6801 and B*4801 with a significantly lower affinity (>/=1 mm), consistent with the finding that interactions with these alleles are unable to mediate cell-cell adhesion. Interestingly, CD8alphaalpha bound normally to the nonclassical MHC molecule HLA-G (K(d) approximately 150 microm), but only weakly to the natural killer cell receptor ligand HLA-E (K(d) >/= 1 mm). Site-directed mutagenesis experiments revealed that variation in CD8alphaalpha binding affinity can be explained by amino acid differences within the alpha3 domain. Taken together with crystallographic studies, these results indicate that subtle conformational changes in the solvent exposed alpha3 domain loop (residues 223-229) can account for the differential ability of both classical and nonclassical class I MHC molecules to bind CD8.  相似文献   

10.
Human killer cell immunoglobulin-like receptors (KIR) recognize A3/11, Bw4, C1, and C2 epitopes carried by mutually exclusive subsets of human leukocyte antigen (HLA)-A, -B, and -C allotypes. Chimpanzee and orangutan have counterparts to HLA-A, -B, and -C, and KIR that recognize the A3/11, Bw4, C1, and C2 epitopes, either individually or in combination. Because rhesus macaque has counterparts of HLA-A and -B, but not HLA-C, we expected that rhesus KIR would better recognize HLA-A and -B, than HLA-C. Comparison of the interactions of nine rhesus KIR3D with 95 HLA isoforms, showed the KIR have broad specificity for HLA-A, -B, and -C, but vary in avidity. Considering both the strength and breadth of reaction, HLA-C was the major target for rhesus KIR, followed by HLA-B, then HLA-A. Strong reactions with HLA-A were restricted to the minority of allotypes carrying the Bw4 epitope, whereas strong reactions with HLA-B partitioned between allotypes having and lacking Bw4. Contrasting to HLA-A and -B, every HLA-C allotype bound to the nine rhesus KIR. Sequence comparison of high- and low-binding HLA allotypes revealed the importance of polymorphism in the helix of the α1 domain and the peptide-binding pockets. At peptide position 9, nonpolar residues favor binding to rhesus KIR, whereas charged residues do not. Contrary to expectation, rhesus KIR bind more effectively to HLA-C, than to HLA-A and -B. This property is consistent with major histocompatibility complex (MHC)-C having evolved in hominids to be a generally superior ligand for KIR than MHC-A and MHC-B.  相似文献   

11.
The keystone of the adaptive immune response is T cell receptor (TCR) recognition of peptide presented by major histocompatibility complex (pMHC) molecules. The crystal structure of AHIII TCR bound to MHC, HLA-A2, showed a large interface with an atypical binding orientation. MHC mutations in the interface of the proteins were tested for changes in TCR recognition. From the range of responses observed, three representative HLA-A2 mutants, T163A, W167A, and K66A, were selected for further study. Binding constants and co-crystal structures of the AHIII TCR and the three mutants were determined. K66 in HLA-A2 makes contacts with both peptide and TCR, and has been identified as a critical residue for recognition by numerous TCR. The K66A mutation resulted in the lowest AHIII T cell response and the lowest binding affinity, which suggests that the T cell response may correlate with affinity. Importantly, the K66A mutation does not affect the conformation of the peptide. The change in affinity appears to be due to a loss in hydrogen bonds in the interface as a result of a conformational change in the TCR complementarity-determining region 3 (CDR3) loop. Isothermal titration calorimetry confirmed the loss of hydrogen bonding by a large loss in enthalpy. Our findings are inconsistent with the notion that the CDR1 and CDR2 loops of the TCR are responsible for MHC restriction, while the CDR3 loops interact solely with the peptide. Instead, we present here an MHC mutation that does not change the conformation of the peptide, yet results in an altered conformation of a CDR3.  相似文献   

12.
Antigen recognition by T cells relies on the interaction between T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) at the interface between the T cell and the antigen presenting cell (APC). The pMHC-TCR interaction is two-dimensional (2D), in that both the ligand and receptor are membrane-anchored and their movement is limited to 2D diffusion. The 2D nature of the interaction is critical for the ability of pMHC ligands to trigger TCR. The exact properties of the 2D pMHC-TCR interaction that enable TCR triggering, however, are not fully understood. Here, we altered the 2D pMHC-TCR interaction by tethering pMHC ligands to a rigid plastic surface with flexible poly(ethylene glycol) (PEG) polymers of different lengths, thereby gradually increasing the ligands’ range of motion in the third dimension. We found that pMHC ligands tethered by PEG linkers with long contour length were capable of activating T cells. Shorter PEG linkers, however, triggered TCR more efficiently. Molecular dynamics simulation suggested that shorter PEGs exhibit faster TCR binding on-rates and off-rates. Our findings indicate that TCR signaling can be triggered by surface-tethered pMHC ligands within a defined 3D range of motion, and that fast binding rates lead to higher TCR triggering efficiency. These observations are consistent with a model of TCR triggering that incorporates the dynamic interaction between T cell and antigen-presenting cell.  相似文献   

13.
The TCR from a xenoreactive murine cytotoxic T lymphocyte clone, AHIII 12.2, recognizes murine H-2D(b) complexed with peptide p1058 (FAPGFFPYL) as well as human HLA-A2.1 complexed with human self-peptide p1049 (ALWGFFPVL). To understand more about T cell biology and cross-reactivity, the ectodomains of the AHIII 12.2 TCR have been produced in E. coli as inclusion bodies and the protein folded to its native conformation. Flow cytometric and surface plasmon resonance analyses indicate that human p1049/A2 has a significantly greater affinity for the murine AHIII 12.2 TCR than does murine p1058/D(b). Yet, T cell binding and cytolytic activity are independent of CD8 when stimulated with human p1049/A2 as demonstrated with anti-CD8 Abs that block CD8 association with MHC. Even in the absence of direct CD8 binding, stimulation of AHIII 12.2 T cells with "CD8-independent" p1049/A2 produces p56(lck) activation and calcium flux. Confocal fluorescence microscopy and fluorescence resonance energy transfer flow cytometry demonstrate CD8 is recruited to the site of TCR:peptide MHC binding. Taken together, these results indicate that there exists another mechanism for recruitment of CD8 during high affinity TCR:peptide MHC engagement.  相似文献   

14.
Fluorescence anisotropy assay was implemented for characterization of ligand binding dynamics to melanocortin 4 (MC4) receptors. This approach enables on-line monitoring of reactions that is essential for estimation of more correct binding parameters, understanding of ligand binding and its regulation mechanisms, and design of new drugs with desirable properties. Two different red-shifted fluorophore-labeled peptide ligands, Cy3B-NDP-α-MSH and TAMRA-NDP-α-MSH, were used and compared in assays that monitored their binding to MC4 receptors in membranes of Sf9 insect cells. The Cy3B dye-labeled ligand exhibited improved performance in assays when compared with the TAMRA-labeled ligand, having higher photostability, insensitivity to buffer properties, and better signal/noise ratio. The binding of both ligands to membranes of Sf9 cells expressing MC4 receptors was saturable and with high affinity. All studied MC4 receptor-specific nonlabeled ligands displaced fluoroligands’ binding in a concentration-dependent manner with potencies in agreement with their pharmacological activities. On-line monitoring of the reactions revealed that equilibrium of peptide binding was not reached even after 3 h. Real-time monitoring of ligand binding dynamics enabled us to find optimal experimental conditions for each particular ligand and an improved estimate of their binding parameters.  相似文献   

15.
T cell receptor (TCR) recognition of peptide takes place in the context of the major histocompatibility complex (MHC) molecule, which accounts for approximately two-thirds of the peptide/MHC buried surface. Using the class I MHC HLA-A2 and a large panel of mutants, we have previously shown that surface mutations that disrupt TCR recognition vary with the identity of the peptide. The single exception is Lys66 on the HLA-A2 alpha1 helix, which when mutated to alanine disrupts recognition for 93% of over 250 different T cell clones or lines, independent of which peptide is bound. Thus, Lys66 could serve as a peptide-independent TCR binding determinant. Here, we have examined the role of Lys66 in TCR recognition of HLA-A2 in detail. The structure of a peptide/HLA-A2 molecule with the K66A mutation indicates that although the mutation induces no major structural changes, it results in the exposure of a negatively charged glutamate (Glu63) underneath Lys66. Concurrent replacement of Glu63 with glutamine restores TCR binding and function for T cells specific for five different peptides presented by HLA-A2. Thus, the positive charge on Lys66 does not serve to guide all TCRs onto the HLA-A2 molecule in a manner required for productive signaling. Furthermore, electrostatic calculations indicate that Lys66 does not contribute to the stability of two TCR-peptide/HLA-A2 complexes. Our findings are consistent with the notion that each TCR arrives at a unique solution of how to bind a peptide/MHC, most strongly influenced by the chemical and structural features of the bound peptide. This would not rule out an intrinsic affinity of TCRs for MHC molecules achieved through multiple weak interactions, but for HLA-A2 the collective mutational data place limits on the role of any single MHC amino acid side-chain in driving TCR binding in a peptide-independent fashion.  相似文献   

16.
Recent advancements in T cell immunotherapy suggest that T cells engineered with high-affinity TCR can offer better tumor regression. However, whether a high-affinity TCR alone is sufficient to control tumor growth, or the T cell subset bearing the TCR is also important remains unclear. Using the human tyrosinase epitope-reactive, CD8-independent, high-affinity TCR isolated from MHC class I-restricted CD4(+) T cells obtained from tumor-infiltrating lymphocytes (TIL) of a metastatic melanoma patient, we developed a novel TCR transgenic mouse with a C57BL/6 background. This HLA-A2-restricted TCR was positively selected on both CD4(+) and CD8(+) single-positive cells. However, when the TCR transgenic mouse was developed with a HLA-A2 background, the transgenic TCR was primarily expressed by CD3(+)CD4(-)CD8(-) double-negative T cells. TIL 1383I TCR transgenic CD4(+), CD8(+), and CD4(-)CD8(-) T cells were functional and retained the ability to control tumor growth without the need for vaccination or cytokine support in vivo. Furthermore, the HLA-A2(+)/human tyrosinase TCR double-transgenic mice developed spontaneous hair depigmentation and had visual defects that progressed with age. Our data show that the expression of the high-affinity TIL 1383I TCR alone in CD3(+) T cells is sufficient to control the growth of murine and human melanoma, and the presence or absence of CD4 and CD8 coreceptors had little effect on its functional capacity.  相似文献   

17.
Several receptors are downregulated by internalization after ligand binding. Regulation of T cell receptor (TCR) expression is an important step in T cell activation, desensitization, and tolerance induction. One way T cells regulate TCR expression is by phosphorylation/dephosphorylation of the TCR subunit clusters of differentiation (CD)3γ. Thus, phosphorylation of CD3γ serine 126 (S126) causes a downregulation of the TCR. In this study, we have analyzed the CD3γ internalization motif in three different systems in parallel: in the context of the complete multimeric TCR; in monomeric CD4/CD3γ chimeras; and in vitro by binding CD3γ peptides to clathrin-coated vesicle adaptor proteins (APs). We find that the CD3γ D127xxxLL131/132 sequence represents one united motif for binding of both AP-1 and AP-2, and that this motif functions as an active sorting motif in monomeric CD4/ CD3γ molecules independently of S126. An acidic amino acid is required at position 127 and a leucine (L) is required at position 131, whereas the requirements for position 132 are more relaxed. The spacing between aspartic acid 127 (D127) and L131 is crucial for the function of the motif in vivo and for AP binding in vitro. Furthermore, we provide evidence indicating that phosphorylation of CD3γ S126 in the context of the complete TCR induces a conformational change that exposes the DxxxLL sequence for AP binding. Exposure of the DxxxLL motif causes an increase in the TCR internalization rate and we demonstrate that this leads to an impairment of TCR signaling. On the basis of the present results, we propose the existence of at least three different types of L-based receptor sorting motifs.  相似文献   

18.
The γδ T cell receptor (TCR) differs from immunoglobulin and αβ TCR in its overall binding mode. In human, genes δ1, δ2, and δ3 are used for TCRδ chains. Previously, we have studied antigen binding determinants of TCRδ2 derived from dominant γδ T cells residing in peripheral blood. In this study we have investigated the critical determinants for antigen recognition and TCR function in TCRδ1 originated from gastric tumor-infiltrating γδ T lymphocytes using three independent experimental strategies including complementary determining region 3 (CDR3) of TCRδ1 (CDR3δ1)-peptide mediated binding, CDR3δ1-grafted TCR fusion protein-mediated binding, and TCRγ4δ1- and mutant-expressing cell-mediated binding. All three approaches consistently showed that the conserved flanking V and J sequences but not the diverse D segment in CDR3δ1 determine the antigen binding. Most importantly, we found that mutations in the V and J regions of CDR3δ1 also abolish the assembly of TCR and TCR-CD3 complexes in TCRγ4δ1-transduced J.RT3-T3.5 cells. Together with our previous studies on CDR3δ2 binding, our finding suggests that both human TCRδ1 and TCRδ2 recognize antigen predominately via flanking V and J regions. These results indicate that TCRγδ recognizes antigens using conserved parts in their CDR3, which provides an explanation for a diverse repertoire of γδTCRs only recognizing a limited number of antigens.  相似文献   

19.
The vast majority of circulating lymphocytes that express the alpha,beta TCR in association with CD3 also express either CD4 or CD8 molecules, which are thought to act as important accessory structures in HLA class II- and I-restricted T cell functions, respectively. In the current study alpha,beta TCR+ clones devoid of detectable CD4 or CD8 were generated by repeated stimulation of fresh CD3+,CD4-,CD8- cells with an allogeneic lymphoblastoid cell line in the presence of conditioned medium containing IL-2. Except for the absence of CD4 and CD8, which was associated with undetectable levels of CD4 and CD8 mRNA, the clones were phenotypically indistinguishable from classical CD3+,alpha,beta TCR+ cells. Furthermore, they mediated potent cytolysis of their specific stimulator line but did not kill irrelevant LCL or NK-sensitive targets. mAb to CD3 and the alpha,beta TCR inhibited cytolysis, suggesting that the clones use the TCR/CD3 complex to recognize and respond to their targets. mAbs to CD2 and CD11a also inhibited cytolysis, indicating that the clones use these accessory molecules to interact with their targets. Finally, cytolysis was inhibited by an HLA-A,B,C framework-specific mAb (W6/32) as well as a mAb (MA2.1) specific for an HLA-A2 epitope. These results demonstrate that CD3+,alpha,beta TCR+,CD4-,CD8- cytotoxic clones can be generated from the peripheral blood of healthy adults, and use their TCR/CD3 complexes to function in an HLA class I-restricted manner.  相似文献   

20.
How a single T cell receptor recognizes both self and foreign MHC   总被引:5,自引:0,他引:5  
alphabeta T cell receptors (TCRs) can crossreact with both self- and foreign- major histocompatibility complex (MHC) proteins in an enigmatic phenomenon termed alloreactivity. Here we present the 2.35 A structure of the 2C TCR complexed with its foreign ligand H-2L(d)-QL9. Surprisingly, we find that this TCR utilizes a different strategy to engage the foreign pMHC in comparison to the manner in which it recognizes a self ligand H-2K(b)-dEV8. 2C engages both shared and polymorphic residues on L(d) and K(b), as well as the unrelated QL9 and dEV8 peptide antigens, in unique pair-wise contacts, resulting in greater structural complementarity with the L(d)-QL9 complex. In the structure of an engineered, high-affinity 2C TCR variant bound to H-2L(d)-QL9, the "wild-type" TCR-MHC binding orientation persists despite modified TCR-CDR3alpha interactions with peptide. Thus, a single TCR recognizes two globally similar, but distinct ligands by divergent mechanisms, indicating that receptor-ligand crossreactivity can occur in the absence of molecular mimicry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号