首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nuclear DNA helicase II (NDH II), alternatively named RNA helicase A (RHA), is an F-actin binding protein that is particularly enriched in the nucleolus of mouse cells. Here, we show that the nucleolar localization of NDH II of murine 3T3 cells depended on an ongoing rRNA synthesis. NDH II migrated out of the nucleolus after administration of 0.05 microg/ml actinomycin D, while nucleolin and the upstream binding factor (UBF) remained there. In S phase-arrested mouse cells, NDH II was frequently found at the nucleolar periphery, where it was accompanied by newly synthesized nucleolar RNA. Human NDH II was mainly distributed through the whole nucleoplasm and not enriched in the nucleoli. However, in the human breast carcinoma cell line MCF-7, NDH II was also found at the nucleolar periphery, together with the tumor suppressor protein p53. Both NDH II and p53 were apparently attached to the F-actin-based filamentous network that surrounded the nucleoli. Accordingly, this subnuclear structure was sensitive to F-actin depolymerizing agents. Depolymerization with gelsolin led to a striking accumulation of NDH II in the nucleoli of MCF-7 cells. This effect was abolished by RNase, which extensively released nucleolus-bound NDH II when added together with gelsolin. Taken together, these results support the idea that an actin-based filamentous network may anchor NDH II at the nucleolar periphery for pre-ribosomal RNA processing, ribosome assembly, and/or transport.  相似文献   

2.
Summary The silver impregnation of nucleolar material facilitated the study of the morphological changes which take place in the nucleolus throughout the division cycle in root tip cells ofAllium cepa. The nucleolus appears to undergo no morphological changes throughout the interphase. It undergoes disorganization during the prophase, while in the telophase it appears uniformly on the chromatin as condensing into prenucleolar bodies.The appearance of the prenucleolar bodies is unaffected by puromycin, cordycepin, or ethidium bromide. This suggests that the argyrophilic material does not undergo synthesis during the telophase, nor require RNA or protein synthesis to effect the aggregation into prenucleolar bodies. However, the organization of nucleoli from prenucleolar bodies is inhibited by both cordycepin and ethidium bromide, suggesting that RNA synthesis is involved in this proccess.In aneuploid nuclei induced by treatment with colchicine we observed the appearance of prenucleolar bodies during the telophase even in the absence of the nucleolar organizer, but in this case the formation of nucleoli fails to take place. The nucleolar organizers proved to be capable of acting only in the nucleus to which they belong, but not on other nuclei within the same cytoplasm belonging to multinucleate cells.It seems logical to assume that one of the roles of the nucleolar organizer is related with the above-mentioned RNA synthesis, which is required to the aggregation of prenucleolar bodies into nucleoli.The work reported in the paper was undertaken during the tenure of a Research Training Fellowship awarded by the International Agency for Research on Cancer.  相似文献   

3.
4.
Two units of ACTH were administered intraperitoneally to young 20 gm-rats which received an intravenous injection of L-leucine-3H thirteen min later. ACTH-injected rats, and control rats which received the isotope alone, were killed at 2-, 10-, 30- and 60-min intervals. Electron microscope autoradiographs in control animals showed strong amino-acid uptake at pulse time (2-min) in the cytoplasm of adrenal zona fasciculata cells. Label was shared between the endoplasmic reticulum (ER) and mitochondria, and a lower but still considerable uptake was seen in nucleoli. At first chase time interval (10-min) cytoplasmic labelling declined, while nuclear and nucleolar labelling increased, both changing little thereafter, and there was a 10-30 min Golgi peak. ACTH administration provoked an overall increase in amino-acid incorporation into cytoplasm, nucleus and nucleolus at pulse time, with no changes in the distribution of the reactions among organelles. Intensification of labelling was most evident over nucleoli, the grain density of which was four-times as high as in controls. The short-term increase in ER and mitochondrial protein synthesis observed after ACTH injections was considered to be consistent with the hypothesis that most newly-formed proteins in these cells may be involved in the regulation of steroidogenesis. The marked increase in nucleolar labelling suggested the presence of proteins involved in RNA synthesis.  相似文献   

5.
Nuclear export of intron-containing human immunodeficiency virus type 1 RNA is mediated by the viral Rev protein. Rev is a nucleocytoplasmic transport protein that directly binds to its cis-acting Rev-responsive element RNA. Rev function depends on its ability to multimerize. The in vivo dynamics and the subcellular dependence of this process are still largely unexplored. To visualize and quantitatively analyze the mechanism of Rev multimeric assembly in live cells, we used high resolution in vivo fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching. By using two different dynamic FRET approaches (acceptor photobleaching and donor bleaching time measurements), we observed a strong Rev-Rev interaction in the nucleoli of living cells. Most interestingly, we could also detect Rev multimerization in the cytoplasm; however, FRET efficiency in the cytoplasm was significantly lower than in the nucleolus. By using fluorescence recovery after photobleaching, we investigated the mobility of Rev within the nucleolus. Mathematical modeling of the fluorescence recovery after photobleaching recoveries enabled us to extract relative association and dissociation constants and the diffusion coefficient of Rev in the nucleolus. Our results show that Rev multimerizes in the nucleolus of living cells, suggesting an important role of the nucleolus in nucleocytoplasmic transport.  相似文献   

6.
We have used immunofluorescence in parallel with transmission and scanning electron microscopy to characterize the unusual cytoplasmic and nucleolar accumulation of Simian virus 40 (SV40) virion protein (C antigen) at restrictive temperatures (39 to 41 C) in monkey cells infected with a temperature-sensitive mutant of SV40 defective in virion assembly, tsB11. Cytoplasmic and nucleolar accumulation of C antigen did not occur in wild-type-infected cells at any temperature. Wild-type- and tsBll-infected cells were not distinguishable at 33 C by immunofluorescence or electron microscopy. Temperature-shift experiments using metabolic inhibitors of DNA (cytosine arabinonucleoside, 20 mug/ml), RNA (actinomycin D, 5 mug/ml), and protein synthesis (cycloheximide, 2 x 10(-4) to 10 x 10(-4) M) were used to investigate the requirements for ongoing DNA, RNA, and protein synthesis in the distribution of virion protein between the nucleus, nucleolus, and cytoplasm. The transport of C antigen from the nucleolus and cytoplasm into the nucleus was complete after a temperature shift-down (41 and 39 to 33 C). Limited virus particle formation occurred after the shift-down in the presence of actinomycin D and cycloheximide, indicating some of the 39 to 41 C synthesized virion protein could be used for capsid assembly at 33 C in the absence of further virion protein synthesis. Nucleolar and cytoplasmic accumulations of C antigen occurred in the absence of drugs after a shift-up (33 to 39 C and 41 C) indicating a continuous requirement for the tsB11 mutant function. Furthermore, the virion protein synthesized at 33 C remained confined to the nucleus when the cells were shifted to 39 and 41 C in the presence of actinomycin D or cycloheximide. In the presence of cytosine arabinonucleoside, however, the virion protein accumulated in large aggregates in the nucleus and nucleolus after the shift-up, but did not migrate into the cytoplasm as it did in drug-free tsB11-infected control cells. Colchicine (10(-3) M) had no effect on the abnormal accumulation of C antigen during shift-up or shift-down experiments suggesting that microtubular transport plays little if any role in the abnormal transport of tsB11 virion protein from cytoplasm to nucleus. Although virus particles were never observed by electron microscopy and V antigen was not detected by immunofluorescence at 39 or 41 C in tsB11-infected cells, dense amorphous accumulations were formed in the nucleoli and cytoplasm. We suggest that the tsB11 function is continuously required for the normal transport of SV40 virion protein between the cytoplasm, nucleolus, and nucleus and for the assembly of capsids and virions. Several possible mechanisms for the altered tsB11 function or protein are discussed. One of the virion proteins may also be involved in some presently undetermined nucleolar function during SV40 productive infection.  相似文献   

7.
8.
Rex-dependent nucleolar accumulation of HTLV-I mRNAs   总被引:8,自引:0,他引:8  
  相似文献   

9.
The reconstruction of the nucleolus after mitosis was analyzed by electron microscopy in cultured mammalian (L929) cells in which nucleolar RNA synthesis was inhibited for a 3 h period either after or before mitosis. When synchronized mitotic cells were plated into a concentration of actinomycin D sufficient to block nucleolar RNA synthesis preferentially, nucleoli were formed at telophase as usual. 3 h after mitosis, these nucleoli had fibrillar and particulate components and possessed the segregated appearance characteristic of nucleoli of actinomycin D-treated cells. Cells in which actinomycin D was present for the last 3 h preceding mitosis did not form nucleoli by 3 h after mitosis though small fibrillar prenucleolar bodies were detectable at this time. These bodies subsequently grew in size and eventually acquired a particulate component. It took about a full cell cycle before nucleoli of these cells were completely normal in appearance. Thus, nucleolar RNA synthesis after mitosis is not necessary for organization of nucleoli after mitosis. However, inhibition of nucleolar RNA synthesis before mitosis renders the cell incapable of forming nucleoli immediately after mitosis. If cells are permitted to resume RNA synthesis after mitosis, they eventually regain nucleoli of normal morphology.  相似文献   

10.
《The Journal of cell biology》1995,131(6):1649-1658
The dynamic intra-nuclear localization of MRP RNA, the RNA component of the ribonucleoprotein enzyme RNase MRP, was examined in living cells by the method of fluorescent RNA cytochemistry (Wang, J., L.-G. Cao, Y.-L. Wang, and T. Pederson. 1991. Proc. Natl. Acad. Sci. USA. 88:7391-7395). MRP RNA very rapidly accumulated in nucleoli after nuclear microinjection of normal rat kidney (NRK) epithelial cells. Localization was specifically in the dense fibrillar component of the nucleolus, as revealed by immunocytochemistry with a monoclonal antibody against fibrillarin, a known dense fibrillar component protein, as well as by digital optical sectioning microscopy and 3-D stereo reconstruction. When MRP RNA was injected into the cytoplasm it was not imported into the nucleus. Nuclear microinjection of mutant MRP RNAs revealed that nucleolar localization requires a sequence element (nucleotides 23-62) previously implicated as a binding site for a nucleolar protein, the To antigen. These results demonstrate the dynamic localization of MRP RNA in the nucleus and provide important insights into the nucleolar targeting of MRP RNA.  相似文献   

11.
The immunolocalization of An3 protein, an ATP-dependent RNA helicase and a member of the DEAD box family, was compared with the localization of fibrillarin, a protein essential for rRNA processing, and snRNPs, which are involved in mRNA splicing reactions, during oogenesis and embryogenesis in Xenopus laevis. Although An3 protein was detected in the cytoplasm of all stages of oocytes, in most stages An3 protein was also present in the nucleus. Prior to stage I An3 protein was uniformly dispersed throughout the entire germinal vesicle; from stages I to V it was in nucleoli. By stage VI nucleolar labeling with anti An3 disappeared and the protein was no longer present within nuclei. An3 reactivity was also present throughout the nuclei of follicle cells surrounding prestage I to stage VI oocytes. Both cytoplasmic and nuclear An3 staining were present in cells of stages 8 to 35 embryos; however, nuclear staining was punctate and uniformly distributed throughout the nucleoplasm. Fibrillarin was diffusely distributed throughout the entire germinal vesicle prior to stage I, localized exclusively to nucleoli of oocytes between stages I and VI and in nucleoli of stages 12 and 35 embryonic cells. Reactivity for snRNPs (anti-Sm) in germinal vesicles of prestage I oocytes was diffuse, and similar to the distribution of An3 and fibrillarin; in later stage oocytes anti-Sm staining was restricted to a population of granules, much fewer in number and more heterogeneous in size than nucleoli. Anti-Sm activity was apparent in nuclei of embryonic cells of stages 8 to 35 embryos. Although colocalization of the Sm epitope and An3 was not observed in developing oocytes and in embryonic cells, Sm reactive material was frequently found in close association with An3-positive nucleoli (oocytes) and nuclear deposits (embryonic cells). In stage IV and V oocytes treated with actinomycin D (4 μg/ml) to inhibit rRNA synthesis, nucleoli, which continued to possess fibrillarin, lacked An3; staining of follicle cell nuclei for An3 was unchanged. Treatment with 200 μg/ml actinomycin D to block mRNA synthesis, inhibited An3 but not fibrillarin staining in nuclei of prestage I oocytes and follicle cells. The changing patterns of An3 reactivity and the differential effects of actinomycin D on such localizations observed here are consistent with a role for An3 in the processing/production of RNA. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
The RNA and protein content of perennial ryegrass root-tip galls induced by Longidorus elongatus were measured from transverse sections and the morphology described. Galls progressed through five distinct stages and were viable for only 10-12 days at 18 C, after which they collapsed and became necrotic. In the initial stage hypertrophy occurred and cells contained enlarged nuclei and nucleoli, a greater proportion of cytoplasm, and increased concentrations of protein. This was followed by hyperplasia; cells divided to give two or four daughter cells, accompanied by a proportionate reduction in volumes of cytoplasm, nuclei, and nucleoli and reduced concentrations of RNA and protein. The third stage was secondary hypertrophy with enlarged, amoeboid nuclei and nucleoli and a significant increase in concentration of RNA and protein. In the final two stages, as feeding by L. elongatus progressively removed cell contents, most cells were devoid of inclusions and galls collapsed and were invaded by soil bacteria. This ordered development and exploitation of galls suggests that L. elongatus may have two phases in its feeding.  相似文献   

14.
Microphoretic purine-pyrimidine analyses of the ribonucleic acid (RNA) in nucleoli, nucleoplasm, cytoplasm, and yolk nuclei of spider oocytes have been carried out. The material necessary for the analyses was isolated by micromanipulation. Determinations of the amounts of RNA in the different parts of the cell were also performed. No differences between the composition of RNA in the nucleolus and the cytoplasm could be disclosed. Nucleoplasmic RNA was, on the other hand, distinctly different from that in the nucleolus and in the cytoplasm. The difference lies in the content of adenine, which is highest in nucleoplasmic RNA. The few analyses carried out on yolk nuclei showed their RNA to be variable in composition with a tendency to high purine values. The cytoplasm contains about 99 per cent of the total RNA in these cells, the nucleoplasm about 1 per cent, and the nucleolus not more than 0.3 per cent, although the highest concentrations are found in these latter structures. When considered in the light of other recent findings the results are compatible with the view that nucleolar RNA is the precursor of cytoplasmic RNA.  相似文献   

15.
The eggs of Bombyx mori, both in diapause and nondiapause, were subjected to cytological examination of nucleoli and measurement of RNA precursor incorporation (2 hours) into ribosomal RNA. In diapause eggs, the nucleoli were very small and the rate of ribosomal RNA synthesis was the lowest of the samples tested. Most cells in diapause possessed nuclei with one nucleolus. In contrast, the eggs activated from diapause by long chilling attained the largest size of nucleoli and the highest rate of ribosomal RNA synthesis. A significant proportion of the cell nuclei still had only one nucleolus at this stage. Three days after activation, the eggs exhibited intermediate levels in both the size of nucleoli and the rate of ribosomal RNA synthesis. At this stage, about half of the egg cell nuclei had two nucleoli.This paper is dedicated with respect and admiration to Professor D.F. Poulson, who has made many significant contributions on the genetics, embryology and cytology of Drosophila as well as other Insecta, in commemoration of his retirement  相似文献   

16.
17.
The synthesis and assembly of ribosomal subunits take place in the nucleolus. The nucleolus forms in the nucleus around the repeated ribosomal gene clusters and undergoes cyclic changes during the cell cycle. Although the nucleolus is easily visualized by light microscopy of cells in vitro, the nucleolus has not been imaged in cells in vivo. We report here development of a mouse model to visualize the nucleolus cycle of cancer cells in live mice. HT-1080 human fibrosarcoma cells were labeled in the nucleus with histone H2B-GFP and with retroviral RFP in the cytoplasm. The nucleolus was visualized by contrast to the fluorescence of GFP expressed in the nucleus. HT-1080 dual-color cells were seeded on the surface of a skin-flap of nude mice. The inside surface of the skin-flap was directly imaged with a laser scanning microscope 24 hours after seeding. The nucleoli of the cancer cells were clearly imaged in real-time. The appearance of the nucleoli changed dramatically during the cell cycle. During mitosis, the nucleolus disappeared. After mitosis, the nucleoli decreased in number and increased in size. The nucleolus appears to have a major role in cell cycle regulation effected at least in part by sequestering proteins which affect cell cycle progression. Nucleolar imaging could be used for more precise determination of cancer-cell position in the cell cycle in vivo.  相似文献   

18.
The optical density indexes of nucleoli and cytoplasm of male generative cells during microsporogenesis have been determined for wheat, rye, and F1 of wheat-rye hybrids using RNA staining. The positive correlation between the RNA content in nucleoli and cytoplasm of the cells of all plants has been found. The dynamics of correlation links between the nucleolus volume and RNA content in the nucleolus/cytoplasm of the wheat and wheat-rye hybrids in microsporogenesis and early gametogenesis have been shown. The essential species and sort differences based on quantitative cytochemical and karyometrical characteristics in parental forms and the dependence of their appearance in interspecies F1 hybrids on wheat’s maternal form have been identified.  相似文献   

19.
20.
The development of giant cells induced by the nematode Meloidogyne in tomato roots has been followed under controlled growth conditions and the ultrastructure and histochemistry of these structures have been examined. Entry of the nematode larvae into the roots took place within 24 hours; giant cell formation started on the 4th day and involved breakdown of the cell walls accompanied by thickening of a surrounding giant cell wall and an increase in density and area of the cytoplasm. The nuclei increased in number by simultaneous mitosis throughout a single giant cell. The peak of cytoplasmic density was reached after moulting and during egg production. The rate of protein synthesis in the giant cell is correlated with the rate of growth of the nematode. The giant cell wall is a thick, irregularly surfaced structure which contains all the normal polysaccharide components of a cell wall. The cytoplasm is rich in protein and RNA and contains mitochondria, proplastids, Golgi bodies, and a dense endoplasmic reticulum. The nuclei are large and irregular in shape and contain large nucleoli and a number of Feulgen-positive bodies scattered irregularly along the nuclear envelope. The nucleolus contains RNA and fat as well as Feulgen-positive granules which are revealed after treatment with ribonuclease. It consists of a dense outer cortex surrounding a much lighter central core and is connected at times with the Feulgen-positive bodies in the nucleus. Speculation is provided on the role of these bodies in cytoplasmic protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号