首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A I Lamond  B Sproat  U Ryder  J Hamm 《Cell》1989,58(2):383-390
We have used oligonucleotides made of 2'-OMe RNA to analyze the role of separate domains of U2 snRNA in the splicing process. We show that antisense 2'-OMe RNA oligonucleotides bind efficiently and specifically to U2 snRNP and demonstrate that masking of two separate regions of U2 snRNA can inhibit splicing by affecting different steps in the spliceosome assembly pathway. Masking the 5' terminus of U2 snRNA does not prevent U2 snRNP binding to pre-mRNA but blocks subsequent assembly of a functional spliceosome. By contrast, masking of U2 sequences complementary to the pre-mRNA branch site completely inhibits binding of pre-mRNA. Hybrid formation at the branch site complementary region also triggers a specific change which affects the 5' terminus of U2 snRNA.  相似文献   

2.
We have used antisense 2'-OMe RNA oligonucleotides carrying four 5'-terminal biotin residues to probe the structure and function of the human U4/U6 snRNP. Nine oligonucleotides, complementary to multiple regions of U4 and U6 snRNAs, bound stably and specifically to U4/U6 snRNP. This allowed for efficient and selective removal of U4/U6 from HeLa cell nuclear extracts. Binding of oligonucleotides to certain snRNA domains inhibited splicing and affected the U4-U6 interaction. Pre-mRNA and splicing products could also be affinity-selected through binding of the oligonucleotides to U4/U6 snRNPs in splicing complexes. The results suggest that U4 snRNP is not released during spliceosome assembly.  相似文献   

3.
The thermal stability of nucleic acid structures is perturbed under the conditions that mimic the intracellular environment, typically rich in inert components and under osmotic stress. We now describe the thermodynamic stability of DNA oligonucleotide structures in the presence of high background concentrations of neutral cosolutes. Small cosolutes destabilize the basepair structures, and the DNA structures consisting of the same nearest-neighbor composition show similar thermodynamic parameters in the presence of various types of cosolutes. The osmotic stress experiments reveal that water binding to flexible loops, unstable mismatches, and an abasic site upon DNA folding are almost negligible, whereas the binding to stable mismatch pairs is significant. The studies using the basepair-mimic nucleosides and the peptide nucleic acid suggest that the sugar-phosphate backbone and the integrity of the basepair conformation make important contributions to the binding of water molecules to the DNA bases and helical grooves. The study of the DNA hydration provides the basis for understanding and predicting nucleic acid structures in nonaqueous solvent systems.  相似文献   

4.
Hydration of the RNA duplex r(CGCAAAUUUGCG)2 determined by NMR.   总被引:2,自引:1,他引:2       下载免费PDF全文
M R Conte  G L Conn  T Brown    A N Lane 《Nucleic acids research》1996,24(19):3693-3699
The so-called spine of hydration in the minor groove of AnTn tracts in DNA is thought to stabilise the structure, and kinetically bound water detected in the minor groove of such DNA species by NMR has been attributed to a narrow minor groove [Liepinsh, E., Leupin, W. and Otting, G. (1994) Nucleic Acids Res. 22, 2249-2254]. We report here an NMR study of hydration of an RNA dodecamer which has a wide, shallow minor groove. Complete assignments of exchangeable protons, and a large number of non-exchangeable protons in r(CGCAAAUUUGCG)2 have been obtained. In addition, ribose C2'-OH resonances have been detected, which are probably involved in hydrogen bonds. Hydration at different sites in the dodecamer has been measured using ROESY and NOESY experiments at 11.75 and 14.1 T. Base protons in both the major and minor grooves are in contact with water, with effective correlation times for the interaction of approximately 0.5 ns, indicating weak hydration, in contrast to the hydration of adenine C2H in the homologous DNA sequence. NOEs to H1' in the minor groove are consistent with hydration water present that is not observed in the analogous DNA sequence. Hydration kinetics in nucleic acids may be determined by chemical factors such as hydrogen-bonding more than by simple conformational factors such as groove width.  相似文献   

5.
Unrestricted accessibility of short oligonucleotides to RNA   总被引:3,自引:0,他引:3  
  相似文献   

6.
Synthesis of a novel ribo-MMI dimer with 2'-OH and 2'-OMe in 5'- and 3'-nucleosides, respectively is presented. The synthesis was accomplished by reductive coupling of 3'-deoxy-3'-C-formyluridine and 2'-O-methyl-5'-O-methylaminouridine via a thioacetal as the key intermediate for the top part of the dimer. Incorporation of ribo-MMI dimers into oligonucleotides increased binding affinity for target RNA.  相似文献   

7.
8.
In this paper, hydrogen bonding interaction and hydration in crystal structures of both DNA and RNA oligonucleotides are discussed. Their roles in the formation and stabilization of oligonucleotides have been covered. Details of the Watson-Crick base pairs G.C and A.U in DNA and RNA are illustrated. The geometry of the wobble (mismatched) G.U base pairs and the cis and almost trans conformations of the mismatched U.U base pairs in RNA is described. The difference in hydration of the Watson-Crick base pairs G.C, A.U and the wobble G.U in different sequences of codon-anticodon interaction in double helical molecules are indicative of the effect of hydration. The hydration patterns of the phosphate, the 2'-hydroxyl groups, the water bridges linking the phosphate group, N7 (purine) and N4 of Cs or O4 of Us in the major groove, the water bridges between the 2'-hydroxyl group and N3 (purine) and O2 (pyrimidine) in the minor groove are discussed.  相似文献   

9.
Hybridization and strand displacement kinetics determine the evolution of the base paired configurations of mixtures of oligonucleotides over time. Although much attention has been focused on the thermodynamics of DNA and RNA base pairing in the scientific literature, much less work has been done on the time dependence of interactions involving multiple strands, especially in RNA. Here we provide a study of oligoribonucleotide interaction kinetics and show that it is possible to calculate the association, dissociation and strand displacement rates displayed by short oligonucleotides (5nt–12nt) that exhibit no expected secondary structure as simple functions of oligonucleotide length, CG content, ΔG of hybridization and ΔG of toehold binding. We then show that the resultant calculated kinetic parameters are consistent with the experimentally observed time dependent changes in concentrations of the different species present in mixtures of multiple competing RNA strands. We show that by changing the mixture composition, it is possible to create and tune kinetic traps that extend by orders of magnitude the typical sub-second hybridization timescale of two complementary oligonucleotides. We suggest that the slow equilibration of complex oligonucleotide mixtures may have facilitated the nonenzymatic replication of RNA during the origin of life.  相似文献   

10.
Oligonucleotide-directed mutagenesis is a widely used method for studying enzymes and improving their properties. The number of mutants that can be obtained with this method is limited by the number of synthetic 25-30mer oligonucleotides containing the mutation mismatch, becoming impracticably large with increasing size of a mutant library. To make this approach more practical, shorter mismatching oligonucleotides (7-12mer) might be employed. However, the introduction of these oligonucleotides in dsDNA poses the problem of sealing a DNA nick containing 5'-terminal base pair mismatches. In the present work we studied the ability of T4 DNA ligase to catalyze this reaction. It was found that T4 DNA ligase effectively joins short oligonucleotides, yielding dsDNA containing up to five adjacent mismatches. The end-joining rate of mismatching oligonucleotides is limited by the formation of the phosphodiester bond, decreasing with an increase in the number of mismatching base pairs at the 5'-end of the oligonucleotide substrate. However, in the case of a 3 bp mismatch, the rate is higher than that obtained with a 2 bp mismatch. Increasing the matching length with the number of mismatching base pairs fixed, or moving the mismatching motif downstream with respect to the joining site increases the rate of ligation. The ligation rate increases with the molar ratio [oligonucleotide:dsDNA]; however, at high excess of the oligonucleotide, inhibition of joining was observed. In conclusion, 9mer oligonucleotides containing a 3 bp mismatch are found optimal substrates to introduce mutations in dsDNA, opening perspectives for the application of T4 DNA ligase in mutagenesis protocols.  相似文献   

11.
The thermodynamics of ethidium ion binding to the double strands formed by the ribooligonucleotides rCA5G + rCU5G and the analogous deoxyribo-oligonucleotides dCA5G + dCT5G were determined by monitoring the absorbance versus temperature at 260 and 283 nm at several concentrations of oligonucleotides and ethidium bromide. A maximum of three ethidium ions bind to the oligonucleotides, which is consistent with intercalation and nearest-neighbor exclusion. For the ribo-oligonucleotide the binding mechanism is complex. Either two sites (assumed to be the intercalation sites at the two ends of the oligonucleotide) bind more strongly by a factor of 140 than the third site, or all sites are identical, but there is strong anticooperativity on binding (cooperativity parameter, 0.1). In sharp contrast, the binding to the same sequence (with thymine substituted for uracil) in the deoxyribo-oligonucleotide showed all sites equivalent and no cooperativity. For the ribo-oligonucleotides the enthalpy for ethidium binding is ?14 kcal/mol. The equilibrium constants at 25°C depend on the model; either K = 6 × 105M?1 for the two strong sites (4 × 103M?1 for the weak site) or K = 2.5 × 105M?1 for the intrinsic constant of the anticooperative model. For the equivalent deoxyribo-oligonucleotide the enthalpy of binding is -9 kcal/mol and the equilibrium constant at 25°C is a factor of 10 smaller (K = 2.5 × 104M?1).  相似文献   

12.
13.
A novel nucleoside analogue, 2'-naphthylmethyl-2'-deoxytubercidine, is synthesized and incorporated in oligonucleotides that stabilize bulges in partially complementary RNA.  相似文献   

14.
Using a 12 base pair RNA.DNA hybrid, substituted with bromouracil on either the RNA or DNA strand, we have detected by photoaffinity radiolabeling a limited set of proteins able to bind to RNA.DNA hybrids in both Xenopus oocyte extracts and human macrophage extracts. Resulting patterns of crosslinked proteins were highly dependent on the strand (DNA or RNA) that was substituted. With one exception, none of the proteins investigated in competition experiments was found to be absolutely specific for RNA.DNA hybrids, as at least one other nucleic acid, either single-stranded DNA or single-stranded RNA, was found to compete efficiently. None of the proteins detected in this assay correspond to the size expected for RNases H. Using the same methodology, we have detected proteins that bind to short oligodeoxyribonucleotides. Although we have essentially detected in Xenopus oocytes one prominent protein of approximately 75 kDa, corresponding to replication protein A (RPA) whatever the oligonucleotide used, the patterns obtained with extracts of human macrophages were more complex and dependent on the oligonucleotide used. If a protein corresponding to RPA was observed most of the time, other crosslinks of similar or sometimes higher intensity were also detected. Interestingly, among these, one protein of 35 kDa appears paradoxically to bind and crosslink to a dodecamer but not to an octadecamer containing the same sequence placed either at its 3'-end or 5'-end.  相似文献   

15.
We have studied by gravimetric measurements and FTIR spectroscopy the hydration of duplexes and triplexes formed by combinations of dA(n), dT(n), rA(n), and rU(n) strands. Results obtained on hydrated films show important differences in their hydration and in the structural transitions which can be induced by varying the water content of the samples. The number of water molecules per nucleotide (w/n) measured at high relative humidity (98% R.H.) is found to be 21 for dA(n).dT(n) and 15 for rA(n).rU(n). Addition of a third rU(n) strand does not change the number of water molecules per nucleotide: w/n=21 for rU(n)*dA(n).dT(n) and w/n=15 for rU(n)*rA(n).rU(n). On the contrary, the addition of a third dT(n) strand changes the water content but in a different way, depending whether the duplex is DNA or RNA. Thus, a loss of four water molecules per nucleotide is measured for dT(n)*dA(n).dT(n) while an increase of two water molecules per nucleotide is observed for dT(n)*rA(n).rU(n). The final hydration is the same for both triplexes (w/n=17). The desorption profiles obtained by gravimetry and FTIR spectroscopy are similar for the rA(n).rU(n) duplex and the rU(n)*rA(n).rU(n) triplex. On the contrary, the desorption profiles of the dA(n).dT(n) duplex and the triplexes formed with it (rU(n)*dA(n).dT(n) and dT(n)*dA(n).dT(n)) are different from each other. This is correlated with conformational transitions induced by varying the hydration content of the different structures, as shown by FTIR spectroscopy. Modifications of the phosphate group hydration and of the sugar conformation (S to N type repuckering) induced by decrease of the water content are observed in the case of triplexes formed on the dA(n).dT(n) duplex.  相似文献   

16.
Liu L  Rice MC  Kmiec EB 《Nucleic acids research》2001,29(20):4238-4250
Synthetic oligonucleotides have been used to direct base exchange and gene repair in a variety of organisms. Among the most promising vectors is chimeric oligonucleotide (CO), a double-stranded, RNA–DNA hybrid molecule folded into a double hairpin conformation: by using the cell’s DNA repair machinery, the CO directs nucleotide exchange as episomal and chromosomal DNA. Systematic dissection of the CO revealed that the region of contiguous DNA bases was the active component in the repair process, especially when the single-stranded ends were protected against nuclease attack. Here, the utility of this vector is expanded into Saccharomyces cerevisiae. An episome containing a mutated fusion gene encoding hygromycin resistance and eGFP expression was used as the target for repair. Substitution, deletion and insertion mutations were corrected with different frequencies by the same modified single-stranded vector as judged by growth in the presence of hygromycin and eGFP expression. A substitution mutation was repaired the most efficiently followed by insertion and finally deletion mutants. A strand bias for gene repair was also observed; vectors designed to direct the repair of nucleotide on the non-transcribed (non-template) strand displayed a 5–10-fold higher level of activity. Expanding the length of the oligo-vector from 25 to 100 nucleotides increases targeting frequency up to a maximal level and then it decreases. These results, obtained in a genetically tractable organism, contribute to the elucidation of the mechanism of targeted gene repair.  相似文献   

17.
Targeting splicing by antisense oligonucleotides allows RNA modifications that are not possible with RNA interference or other antisense techniques that destine the RNA for destruction. By changing the ratio of naturally occurring splice variants the expression of mRNA is modulated. By preventing the use of an aberrant splice site created by a mutation and enforcing re-selection of correct splice sites the RNA is repaired. Antisense induced skipping of the exon that carries a nonsense mutation remodels the mRNA and restores the reading frame of the defective protein. All of the above approaches have clinical applications. Modulation of splice variants is particularly important since close to 60% of all genes code for alternatively spliced pre-mRNA.  相似文献   

18.
We have designed a new class of oligonucleotides, "dumbbell RNA/DNA chimeric phosphodiesters", containing two alkyl loop structures with RNA/DNA base pairs (sense (RNA) and antisense (DNA) in the double helical stem. The reaction of nicked (NDRDON) and circular (CDRDON) dumbbell RNA/DNA chimeric oligonucleotides with RNaseH gave the corresponding antisense phosphodiester oligonucleotide together with the sense RNA cleavage products. The liberated antisense phosphodiester oligodeoxynucleotide was bound to the target 35mer RNA, which gave 35mer RNA cleavage products by treatment with RNaseH. The circular dumbbell RNA/DNA chimeric oligonucleotide showed more nuclease resistance than the linear antisense phosphodiester oligodeoxynucleotide(anti-ODN) and the nicked dumbbell RNA/DNA chimeric oligonucleotide.  相似文献   

19.

Background

Gene correction is an alternative approach to replacement gene therapy. By correcting mutations within the genome, some of the barriers to effective gene therapy are avoided. Homologous nucleic acid sequences can correct mutations by inducing recombination or mismatch repair. Recently, encouraging data have been presented using both short DNAfragments (SDFs) and RNA–DNA oligonucleotides (RDOs) in experimental strategies to realize clinical gene correction.

Methods

The delivery of labelled SDFs and RDOs to a variety of cell lines was tested using both FACS analysis and confocal microscopy. A GFP‐based reporter system was constructed, containing a nonsense mutation, to allow quantitation of gene correction in living cells. This reporter was used to compare efficiencies of functional gene correction using SDFs and RDOs in arange of mammalian cell lines.

Results

The delivery experiments highlight the inefficient delivery of SDFs and RDOs to the nucleus using polyethylenimine (PEI) transfection. This study compared the episomal correction efficiency of the reporter plasmid mediated by SDFs and RDOs within different cell types; low levels of functional correction were detected in cell culture.

Conclusions

Whilst delivery of PEI‐complexed SDFs or RDOs to the cell is highly effective, nuclear entry appears to be a limiting factor. SDFs elicited episomal GFP correction across a range of cell lines, whereas RDOs only corrected the reporter in a cell line that overexpresses RAD51. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

20.
Triplex forming oligonucleotides (TFOs) are potentially useful in targeting RNA for antisense therapeutic applications. To determine the feasibility of targeting polypurine RNA with nuclease-resistant oligonucleotides, TFOs containing 2'-deoxy or 2'-O-methyl (2'-OMe) backbones, designed to form pyrimidine motif triplexes with RNA, were synthesized. TFOs were made which can form trimolecular triplexes, or bimolecular, 'clamp' triplexes with polypurine RNA and DNA. It was found that the relative stabilities of the triplexes formed followed the order: M.DM(clamp)>D.DD approximately M.DD>M. RM>D.DM>M.RD approximately M.DM, where M is a 2'-OMe, D is a DNA and R is an RNA backbone. The third strand is listed first, separated by a dot from the purine strand of the Watson-Crick duplex, followed by the pyrimidine strand of the duplex. The results described here provide insight into the feasibility of using TFOs containing a 2'-OMe backbone as antisense agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号