首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clerte C  Hall KB 《Biochemistry》2000,39(24):7320-7329
The human U1A protein contains three distinct domains: the N-terminal RBD1 (amino acids 1-101), the C-terminal RBD2 (amino acids 195-282), and the linker region (amino acids 102-194). The RBD1 domains of two U1A proteins bind specifically to two internal loops in the 3' untranslated region (3' UTR) of its own pre-mRNA. Tryptophan fluorescence and fluorescence resonance energy transfer data show that the two RBD2 domains do not interact with any regions of the UTR complex and display an overall tumbling that is uncorrelated from the core of the complex (formed by RBD1-UTR), indicating that the linker regions of the two U1A proteins remain flexible. The two RBD2 domains are separated by an apparent distance greater than 74 A in the UTR complex. The linker region adjacent to the RBD1 domain (103-ERDRKREKRKPKSQETP-119) is supposedly involved in protein-protein interactions (12). A single cysteine, introduced at position 101 or 121 of the U1A protein, was used as a specific attachment site for the fluorophore pair IAEDANS [N'-iodoacetyl-N'-(1-sulfo-5-n-naphthyl)ethylenediamine]/DABMI [4-(dimethylamino)-phenylazophenyl-4'-maleimide]. In the U1A-UTR complex (2:1), the dyes at the 101 position are separated by = approximately 51 A, while the dyes at the 121 position are at an apparent distance = approximately 58 A. The 101-121 crossed distance on adjacent U1A proteins averages to = 55 A. These results suggest that the amino acid sequence 101-121 of the two U1A proteins in the complex are held in proximity to each other in a compact conformation.  相似文献   

2.
Human lens crystallins were studied by absorption, circular dichroism and fluorescence spectroscopy. The absorption spectra in the near-ultraviolet region show some differences in intensity, but spectral features are similar, except for the alpha-crystallin, which gives a fine structure due to phenylalanine between 250 and 270 nm. Tryptophan fluorescence and near-ultraviolet circular dichroism indicate that tryptophan residues are more exposed in alpha-crystallin than in either beta- or gamma-crystallin, and that the degree of exposure decreases in the order of alpha less than beta 1 greater than beta 2 greater than beta 3 greater than gamma. The far ultraviolet CD suggests that these proteins exist mainly in a beta-sheet conformation and that the amount does not vary much among them. The greater exposure of the tryptophan residues in the high-molecular-weight crystallins may reflect greater unfolding in their protein domains. Spectroscopic measurements are thus useful in predicting protein tertiary structure in the absence of the complete sequence and X-ray data. The fact that the high-molecular-weight proteins exist in a more unfolded state may render them more vulnerable to exogeneous insults, and these effects may be studied by spectroscopic measurements.  相似文献   

3.
Nucleolin is an abundant 70 kDa nucleolar protein involved in many aspects of ribosomal RNA biogenesis. The central region of nucleolin contains four tandem consensus RNA-binding domains (RBD). The two most N-terminal domains (RBD12) bind with nanomolar affinity to an RNA stem-loop containing the consensus sequence UCCCGA in the loop. We have determined the solution structure of nucleolin RBD12 in its free form and have studied its interaction with a 22 nt RNA stem-loop using multidimensional NMR spectroscopy. The two RBDs adopt the expected beta alpha beta beta alpha beta fold, but the position of the beta 2 strand in both domains differs from what was predicted from sequence alignments. RBD1 and RBD2 are significantly different from each others and this is likely important in their sequence specific recognition of the RNA. RBD1 has a longer alpha-helix 1 and a shorter beta 2-beta 3 loop than RBD2, and differs from most other RBDs in these respects. The two RBDs are separated by a 12 amino acid flexible linker and do not interact with one another in the free protein. This linker becomes ordered when RBD12 binds to the RNA. Analysis of the observed NOEs between the protein and the RNA indicates that both RBDs interact with the RNA loop via their beta-sheet. Each domain binds residues on one side of the loop; specifically, RBD2 contacts the 5' side and RBD1 contacts the 3'.  相似文献   

4.
Musashi1 is an RNA-binding protein abundantly expressed in the developing mouse central nervous system. Its restricted expression in neural precursor cells suggests that it is involved in the regulation of asymmetric cell division. Musashi1 contains two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2. Our previous studies showed that RBD1 alone binds to RNA, while the binding of RBD2 is not detected under the same conditions. Joining of RBD2 to RBD1, however, increases the affinity to greater than that of RBD1 alone, indicating that RBD2 contributes to RNA-binding. We have determined the three-dimensional solution structure of the C-terminal RBD (RBD2) of Musashi1 by NMR. It folds into a compact alpha beta structure comprising a four-stranded antiparallel beta-sheet packed against two alpha-helices, which is characteristic of RNP-type RBDs. Special structural features of RBD2 include a beta-bulge in beta2 and a shallow twist of the beta-sheet. The smaller 1H-15N nuclear Overhauser enhancement values for the residues of loop 3 between beta2 and beta3 suggest that this loop is flexible in the time-scale of nano- to picosecond order. The smaller 15N T2 values for the residues around the border between alpha2 and the following loop (loop 5) suggest this region undergoes conformational exchange in the milli- to microsecond time-scale. Chemical shift perturbation analysis indicated that RBD2 binds to an RNA oligomer obtained by in vitro selection under the conditions for NMR measurements, and thus the nature of the weak RNA-binding of RBD2 was successfully characterized by NMR, which is otherwise difficult to assess. Mainly the residues of the surface composed of the four-stranded beta-sheet, loops and C-terminal region are involved in the interaction. The appearance of side-chain NH proton resonances of arginine residues of loop 3 and imino proton resonances of RNA bases upon complex formation suggests the formation of intermolecular hydrogen bonds. The structural arrangement of the rings of the conserved aromatic residues of beta2 and beta3 is suitable for stacking interaction with RNA bases, known to be one of the major protein-RNA interactions, but a survey of the perturbation data suggested that the stacking interaction is not ideally achieved in the complex, which may be related to the weaker RNA-binding of RBD2.  相似文献   

5.
The intrinsic fluorescence characteristics of tyrosine and tryptophan residues in the proteins of isolated central-nervous-system myelin were investigated to gain information concerning the location of these residues within the intact membrane system. Tryptophan fluorescence from isolated myelin has an emission maximum at 325 nm that appears to arise from at least two different populations of tryptophan residues. Further evidence for heterogeneity of tryptophan location in the membrane is obtained from quenching studies with chloroform and acrylamide. It is speculated that one tryptophan population is hydrophobically situated and may be derived from the proteolipid protein of myelin, whereas the other tryptophan population is located at the membrane surface and may arise from the extrinsic basic protein. A significant tyrosine fluorescence is detected from isolated myelin, indicating that some of these residues are not quenched by structural interactions within the lipid--protein membrane system. Studies with freeze-dried resuspended myelin suggest that the structural arrangement of protein components in the dried rehydrated membrane system differs significantly from that of the freshly isolated myelin membrane.  相似文献   

6.
The amino terminal dimerization/docking domain and the two-tandem, carboxy-terminal cAMP-binding domains (A and B) of cAMP-dependent protein kinase regulatory (R) subunits are connected by a variable linker region. In addition to providing a docking site for the catalytic subunit, the linker region is a major source of sequence diversity between the R-subunit isoforms. The RIIbeta isoform uniquely contains two endogenous tryptophan residues, one at position 58 in the linker region and the other at position 243 in cAMP-binding domain A, which can act as intrinsic reporter groups of their dynamics and microenvironment. Two single-point mutations, W58F and W243F, allowed the local environment of each Trp to be probed using steady-state and time-resolved fluorescence techniques. We report that: (a) the tryptophan fluorescence of the wild-type protein largely reflects Trp243 emission; (2) cAMP selectively quenches Trp243 and thus acts as a cAMP sensor; (3) Trp58 resides in a highly solvated, unstructured, and mobile region of the protein; and (4) Trp243 resides in a stable, folded domain and is relatively buried and rigid within the domain. The use of endogenous Trp residues presents a non-perturbing method for studying R-subunit subdomain characteristics in addition to providing the first biophysical data on the RIIbeta linker region.  相似文献   

7.
Dystrophin is assumed to act via the central rod domain as a flexible linker between the amino-terminal actin binding domain and carboxyl-terminal proteins associated with the membrane. The rod domain is made up of 24 spectrin-like repeats and has been shown to modify the physical properties of lipid membranes. The nature of this association still remains unclear. Tryptophan residues tend to cluster at or near to the water-lipid interface of the membrane. To assess dystrophin rod domain-membrane interactions, tryptophan residues properties of two recombinant proteins of the rod domain were examined by (1)H NMR and fluorescence techniques in the presence of membrane lipids. F114 (residues 439-553) is a partly folded protein as inferred from (1)H NMR, tryptophan fluorescence emission intensity, and the excited state lifetime. By contrast, F125 (residues 439-564) is a folded compact protein. Tryptophan fluorescence quenching shows that both proteins are characterized by structural fluctuations with their tryptophan residues only slightly buried from the surface. In the presence of negatively charged small vesicles, the fluorescence characteristics of F125 change dramatically, indicating that tryptophan residues are in a more hydrophobic environment. Interestingly, these modifications are not observed with F114. Fluorescence quenching experiments confirm that tryptophan residues are shielded from the solvent in the complex F125 lipids by a close contact with lipids. The use of membrane-bound quenchers allowed us to conclude that dystrophin rod domain lies along the membrane surface and may be involved in a structural array comprising membrane and cytoskeletal proteins as well as membrane lipids.  相似文献   

8.
Heterogeneous nuclear ribonucleoprotein (hnRNP) D0 has two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), each of which can bind solely to the UUAG sequence specifically. The structure of the N-terminal RBD (RBD1) determined by NMR is presented here. It folds into a compact alphabeta structure comprising a four-stranded antiparallel beta-sheet packed against two alpha-helices, which is characteristic of the RNP-type RBDs. Special structural features of RBD1 include N-capping boxes for both alpha-helices, a beta-bulge in the second beta-strand, and an additional short antiparallel beta-sheet coupled with a beta-turn-like structure in a loop. Two hydrogen bonds which restrict the positions of loops were identified. Backbone resonance assignments for RBD1 complexed with r(UUAGGG) revealed that the overall folding is maintained in the complex. The candidate residues involved in the interactions with RNA were identified by chemical shift perturbation analysis. They are located in the central and peripheral regions of the RNA-binding surface composed of the four-stranded beta-sheet, loops, and the C-terminal region. It is suggested that non-specific interactions with RNA are performed by the residues in the central region of the RNA-binding surface, while specific interactions are performed by those in the peripheral regions. It was also found that RBD1 has the ability to inhibit the formation of the quadruplex structure.  相似文献   

9.
Nucleolin is a multidomain phosphoprotein involved in ribosome biogenesis. In vitro selection and binding studies with pre-rRNA fragments have shown that the first two RNA-binding domains (RBDs) in nucleolin (RBD12) recognize the consensus sequence (U/G)CCCG(A/G) in the context of a stem-loop structure (nucleolin-recognition element = NRE). Structural studies of nucleolin RBD12 in complex with an in vitro selected NRE (sNRE) and a natural pre-rRNA NRE (b2NRE) have revealed that sequence-specific binding of the consensus NRE is achieved in a similar manner in both complexes using residues in both RBDs as well as the linker connecting them. Using fluorescence anisotropy (FA) and nuclear magnetic resonance (NMR), we demonstrate the importance of the linker for NRE affinity by showing that only the individual RBDs with the linker attached retain the ability to specifically bind, albeit weakly, to sNRE and b2NRE. Binding of RBD1 and RBD2 to the NREs in trans is not detected even when one of the RBDs has the linker attached, which suggests that the linker also contributes to the affinity by tethering the two RBDs. To determine if binding of nucleolin RBD12 to natural NREs is dependent on a specific RNA stem-loop structure, as was the case for the sNRE, we conducted FA and NMR binding assays with nucleolin RBD12 and a single-stranded NRE. The results show that nucleolin RBD12 sequence-specifically binds a single-stranded NRE with an affinity similar to that for b2NRE, indicating that a stem-loop structure is not required for the nucleolin RBD12/pre-rRNA NRE interaction.  相似文献   

10.
Nucleolin is a 70 kDa multidomain protein involved in several steps of eukaryotic ribosome biogenesis. In vitro selection in combination with mutagenesis and structural analysis identified binding sites in pre-rRNA with the consensus (U/G)CCCG(A/G) in the context of a hairpin structure, the nucleolin recognition element (NRE). The central region of the protein contains four tandem RNA-binding domains (RBDs), of which the first two are responsible for the RNA-binding specificity and affinity for NREs. Here, we present the solution structure of the 28 kDa complex formed by the two N-terminal RNA-binding domains of nucleolin (RBD12) and a natural pre-rRNA target, b2NRE. The structure demonstrates that the sequence-specific recognition of the pre-rRNA NRE is achieved by intermolecular hydrogen bonds and stacking interactions involving mainly the beta-sheet surfaces of the two RBDs and the linker residues. A comparison with our previously determined NMR structure of RBD12 in complex with an in vitro selected RNA target, sNRE, shows that although the sequence-specific recognition of the loop consensus nucleotides is the same in the two complexes, they differ in several aspects. While the protein makes numerous specific contacts to the non-consensus nucleotides in the loop E motif (S-turn) in the upper part of the sNRE stem, nucleolin RBD12 contacts only consensus nucleotides in b2NRE. The absence of these upper stem contacts from the RBD12/b2NRE complex results in a much less stable complex, as demonstrated by kinetic analyses. The role of the loop E motif in high-affinity binding is supported by gel-shift analyses with a series of sNRE mutants. The less stable interaction of RBD12 with the natural RNA target is consistent with the proposed role of nucleolin as a chaperone that interacts transiently with pre-rRNA to prevent misfolding.  相似文献   

11.
A K Ohlin  I Bj?rk  J Stenflo 《Biochemistry》1990,29(3):644-651
The function of the epidermal growth factor (EGF) like domains in the vitamin K dependent plasma proteins is largely unknown. In order to elucidate the function of these domains in protein C, we have devised a method to isolate the EGF-like region from the light chain connected to the NH2-terminal region, containing the gamma-carboxyglutamic acid (Gla) residues. This was accomplished by tryptic cleavage of protein C that had been reversibly modified with citraconic anhydride to prevent cleavage at the lysine residue (in position 43) that is located between the two regions. The isolated fragment consists of residues 1-143 from the light chain of protein C connected by a disulfide bond to residues 108-131 from the heavy chain. Upon Ca2+ binding to the isolated Gla-EGF fragment from bovine protein C, the tryptophan fluorescence emission was quenched in a manner indicating binding to at least two classes of binding sites. These were presumably the Gla-independent Ca2(+)-binding site located in the EGF-like region and the lower affinity sites in the Gla region. A comparison with the tryptophan fluorescence quenching that occurred upon Ca2+ binding to the separately isolated EGF-like and Gla regions suggested that the EGF-like region influenced the structure and Ca2+ binding of the Gla region. The isolated Gla-EGF fragment functioned as an inhibitor of the anticoagulant effect of activated protein C in a clotting assay, whereas no inhibition was observed with either the Gla region or the EGF-like region.  相似文献   

12.
The yeast U1A protein is a U1 snRNP-specific protein. Like its human counterpart (hU1A), it has two conserved RNA binding domains (RBDs). The N-terminal RBD is quite different from the human protein, and a binding site on yeast U1 snRNA is not readily apparent. The C-terminal RBD is of unknown function. Using in vivo dimethyl sulfate (DMS) protection of mutant strains, we defined a region in yeast U1 snRNA as the likely U1A N-terminal RBD binding site. This was confirmed by direct in vitro binding assays. The site is very different from its vertebrate counterpart, but its location within yeast U1 snRNA suggests a conserved structural relationship to other U1 snRNP components. Genetic studies and sensitive in vivo splicing measurements indicate that the yeast U1A C-terminal RBD also functions in pre-mRNA splicing. We propose that the N-terminal RBD serves to tether the splicing-relevant C-terminal RBD to the snRNP.  相似文献   

13.
The hnRNP C proteins are among the most abundant and avid pre-mRNA-binding proteins and they contain a consensus sequence RNA-binding domain (RBD) that is found in a large number of RNA-binding proteins. The interaction of the RBD of the hnRNP C proteins with an RNA oligonucleotide [r(U)8] was monitored by nuclear magnetic resonance (NMR). 15N and 13C/15N-labelled hnRNP C protein RBD was mixed with r(U)8 and one- and two-dimensional (1D and 2D) NMR spectra were recorded in a titration experiment. NMR studies of the uncomplexed 93 amino acid hnRNP C RBD (Wittekind et al., 1992) have shown that it has a compact folded structure (beta alpha beta beta alpha beta), which is typical for the RBD of this family of proteins and which is comprised of a four-stranded antiparallel beta-sheet, two alpha-helices and relatively unstructured amino- and carboxy-terminal regions. Sequential assignments of the polypeptide main-chain atoms of the hnRNP C RBD-r(U)8 complex revealed that these typical structural features are maintained in the complex, but significant perturbations of the chemical shifts of amide group atoms occur in a large number of residues. Most of these residues are in the beta-sheet region and especially in the terminal regions of the RBD. In contrast; chemical shifts of the residues of the well conserved alpha-helices, with the exception of Lys30, are not significantly perturbed. These observations localize the candidate residues of the RBD that are involved in the interaction with the RNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Modification of tryptophan residues in castor bean hemagglutinin (CBH) with N-bromosuccinimide (NBS) was investigated in detail. Tryptophan residues accessible to NBS increased with lowering pH and six tryptophan residues/mol were oxidized at pH 3.0, while two tryptophan residues/mol were oxidized at pH 5.0. From the pH-dependence curve for tryptophan oxidation, we suggest that the extent of modification of tryptophan in CBH is influenced by an ionizable group with pKa = 3.6. The saccharide-binding activity was decreased greatly by modification of tryptophan concomitantly with a loss of fluorescence. A loss of the saccharide-binding activity was found to be principally due to the modification of two tryptophan residues/mol located on the surface of the protein molecule. In the presence of raffinose, two tryptophan residues/mol remained unmodified with retention of fairly high saccharide-binding activity. The results suggest that one tryptophan residue is involved in each saccharide-binding site on each B-chain of CBH.  相似文献   

15.
Hepatitis C virus (HCV) NS5B protein is the viral RNA-dependent RNA polymerase capable of directing RNA synthesis. In this study, an electrophoretic mobility shift assay demonstrated the interaction between a partially purified recombinant NS5B protein and a 3' viral genomic RNA with or without the conserved 98-nucleotide tail. The NS5B-RNA complexes were specifically competed away by the unlabeled homologous RNA but not by the viral 5' noncoding region and very poorly by the 3' conserved 98-nucleotide tail. A 3' coding region with conserved stem-loop structures rather than the 3' noncoding region of the HCV genome is critical for the specific binding of NS5B. Nevertheless, no direct interaction between the 3' coding region and the HCV NS5A protein was detected. Furthermore, two independent RNA-binding domains (RBDs) of NS5B were identified, RBD1, from amino acid residues 83 to 194, and RBD2, from residues 196 to 298. Interestingly, the conserved motifs of RNA-dependent RNA polymerase for putative RNA binding (220-DxxxxD-225) and template/primer position (282-S/TGxxxTxxxNS/T-292) are present in the RBD2. Nevertheless, the RNA-binding activity of RBD2 was abolished when it was linked to the carboxy-terminal half of the NS5B. These results provide some clues to understanding the initiation of HCV replication.  相似文献   

16.
Heterogeneous nuclear ribonucleoprotein (hnRNP) D0 has two ribonucleoprotein (RNP) -type RNA-binding domains (RBDs), each of which can specifically bind to the UUAG-sequence. hnRNP D0 also binds specifically to single-stranded d(TTAGGG)(n), the human telomeric DNA repeat. We have already reported the structure and interactions with RNA of the N-terminal RBD (RBD1). Here, the structure of the C-terminal RBD (RBD2) determined by NMR is presented. It folds into a compact alpha beta structure comprising an antiparallel beta-sheet packed against two alpha-helices, which is characteristic of RNP-type RBDs. In addition to the four beta-strands commonly found in RNP-type RBDs, an extra beta-strand, termed beta 4(-), was found just before the fourth beta-strand, yielding a five-stranded beta-sheet. Candidate residues of RBD2 involved in the interactions with RNA were identified by chemical shift perturbation analysis. Perturbation was detected on the beta-sheet side, not on the opposite alpha-helix side, as observed for RBD1. It is notable that the beta 4(-) to beta 4 region of RBD2 is involved in the interactions in contrast to the case of RBD1. The chemical shift perturbation analysis also showed that RBD2 interacts with DNA in essentially the same way as with RNA. Changes in the backbone dynamics upon complex formation with DNA were examined by means of model free analysis of relaxation data. In free RBD2, the beta 4(-) to beta 4 region exhibits slow conformational exchange on the milli- to microsecond time scale. The exchange is quenched upon complex formation. The flexibility of free RBD2 may be utilized in the recognition process by allowing different conformational states to be accessed and facilitating induced fit. Additionally, faster flexibility on the nano- to picosecond time scale was observed for loop 3 located between beta 2 and beta 3 in free RBD2, which is retained by the complex as well.  相似文献   

17.
Musashi1 is an RNA-binding protein abundantly expressed in the developing mouse central nervous system. Its restricted expression in neural precursor cells suggests that it is involved in maintenance of the character of progenitor cells. Musashi1 contains two ribonucleoprotein-type RNA-binding domains (RBDs), RBD1 and RBD2, the affinity to RNA of RBD1 being much higher than that of RBD2. We previously reported the structure and mode of interaction with RNA of RBD2. Here, we have determined the structure and mode of interaction with RNA of RBD1. We have also analyzed the surface electrostatic potential and backbone dynamics of both RBDs. The two RBDs exhibit the same ribo-nucleoprotein-type fold and commonly make contact with RNA on the beta-sheet side. On the other hand, there is a remarkable difference in surface electrostatic potential, the beta-sheet of RBD1 being positively charged, which is favorable for binding negatively charged RNA, but that of RBD2 being almost neutral. There is also a difference in backbone dynamics, the central portion of the beta-sheet of RBD1 being flexible, but that of RBD2 not being flexible. The flexibility of RBD1 may be utilized in the recognition process to facilitate an induced fit. Thus, comparative studies have revealed the origin of the higher affinity of RBD1 than that of RBD2 and indicated that the affinity of an RBD to RNA is not governed by its fold alone but is also determined by its surface electrostatic potential and/or backbone dynamics. The biological role of RBD2 with lower affinity is also discussed.  相似文献   

18.
We isolated srp2, a gene encoding a protein composed of two RNA binding domains (RBDs) at the N-terminus followed by an arginine-rich region that is flanked by two short SR (serine/arginine) elements. The RBDs contain the signatures RDADDA and SWQDLKD found in RBD1 and RBD2 of all typical metazoan SR proteins. srp2 is essential for growth. We have analyzed in vivo the role of the modular domains of Srp2 by testing specific mutations in a conditional strain for complementation. We found that RBD2 is essential for function and determines the specificity of RBD1 in Srp2. Replacement of the first RBD with RBD1 of Srp1 of fission yeast does not change this specificity. The two SR elements in the C-terminus of Srp2 are also essential for function in vivo. Cellular distribution analysis with green fluorescence protein fused to portions of Srp2 revealed that the SR elements are necessary to target Srp2 to the nucleus. Furthermore, overexpression of modular domains of Srp2 and Srp1 show different effects on pre-mRNA splicing activity of the tfIId gene. Taken together, these findings are consistent with the notion that the RBDs of these proteins may be involved in pre-mRNA recognition.  相似文献   

19.
The N-terminal RNA-binding domain (RBD1) of the human U1A protein is evolutionarily designed to bind its RNA targets with great affinity and specificity. The physical mechanisms that modulate the coupling (local cooperativity) among amino acid residues on the extensive binding surface of RBD1 are investigated here, using mutants that replace a highly conserved glycine residue. This glycine residue, at the strand/loop junction of beta3/loop3, is found in U1A RBD1, and in most RBD domains, suggesting it has a specific role in modulation of RNA binding. Here, two RBD1 proteins are constructed in which that residue (Gly53) is replaced by either alanine or valine. These new proteins are shown by NMR methods and molecular dynamics simulations to be very similar to the wild-type RBD1, both in structure and in their backbone dynamics. However, RNA-binding assays show that affinity for the U1 snRNA stem-loop II RNA target is reduced by nearly 200-fold for the RBD1-G53A protein, and by 1.6 x 10(4)-fold for RBD1-G53V. The mode of RNA binding by RBD1-G53A is similar to that of RBD1-WT, displaying its characteristic non-additive free energies of base recognition and its salt-dependence. The binding mode of RBD1-G53V is altered, having lost its salt-dependence and displaying site-independence of base recognition. The molecular basis for this alteration in RNA-binding properties is proposed to result from the inability of the RNA to induce a change in the structure of the free protein to produce a high-affinity complex.  相似文献   

20.
Clerte C  Hall KB 《Biochemistry》2004,43(42):13404-13415
The structure and dynamics of the polyadenylation inhibition element (PIE) RNA, free and bound to the U1A protein, have been examined using time-resolved FRET and 2-aminopurine (2AP) fluorescence. This regulatory RNA, located at the 3' end of the U1A pre-mRNA, adopts a U-shaped structure, with binding sites for a single U1A protein at each bend (box 1 and box 2). The distance between the termini of the arms of the RNA is sensitive to its three-dimensional structure. Using Cy3/Cy5 FRET efficiency to monitor binding of Mg(2+), we show that the PIE RNA binds two Mg(2+) ions, which results in a restriction of its distance distribution of conformations. Local RNA structure probing using 2AP fluorescence shows that the structure of box 2 changes in response to Mg(2+) binding, thus tentatively locating the ion binding sites. Steady-state FRET data show that the distance R between the termini of the PIE RNA stems decreases from 66 A in the free RNA, to 58 A when N-terminal RNA binding domains (RBD1) of U1A are bound, and to 53 A when U1A proteins bind. However, anisotropy measurements indicate that both Cy3 and Cy5 stack on the ends of the RNA. To examine the consequences of the restricted motion of the fluorophores, FRET data are analyzed using two different models of motion and then compared to analogous data from the Cy3/fluorescein FRET pair. We conclude that the error introduced into distance calculations by stacking of the dyes is within the error of our measurements. Distance distributions of the RNA structures show that the intramolecular distance between the arms of the PIE RNA varies on the time scale of the fluorescence measurements; the mean distance is dependent on protein binding, but the breadth of the distributions indicates that the RNA retains structural heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号