共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-terminal RNA-binding domain (RBD1) of the human U1A protein is evolutionarily designed to bind its RNA targets with great affinity and specificity. The physical mechanisms that modulate the coupling (local cooperativity) among amino acid residues on the extensive binding surface of RBD1 are investigated here, using mutants that replace a highly conserved glycine residue. This glycine residue, at the strand/loop junction of beta3/loop3, is found in U1A RBD1, and in most RBD domains, suggesting it has a specific role in modulation of RNA binding. Here, two RBD1 proteins are constructed in which that residue (Gly53) is replaced by either alanine or valine. These new proteins are shown by NMR methods and molecular dynamics simulations to be very similar to the wild-type RBD1, both in structure and in their backbone dynamics. However, RNA-binding assays show that affinity for the U1 snRNA stem-loop II RNA target is reduced by nearly 200-fold for the RBD1-G53A protein, and by 1.6 x 10(4)-fold for RBD1-G53V. The mode of RNA binding by RBD1-G53A is similar to that of RBD1-WT, displaying its characteristic non-additive free energies of base recognition and its salt-dependence. The binding mode of RBD1-G53V is altered, having lost its salt-dependence and displaying site-independence of base recognition. The molecular basis for this alteration in RNA-binding properties is proposed to result from the inability of the RNA to induce a change in the structure of the free protein to produce a high-affinity complex. 相似文献
2.
The amino terminal dimerization/docking domain and the two-tandem, carboxy-terminal cAMP-binding domains (A and B) of cAMP-dependent protein kinase regulatory (R) subunits are connected by a variable linker region. In addition to providing a docking site for the catalytic subunit, the linker region is a major source of sequence diversity between the R-subunit isoforms. The RIIbeta isoform uniquely contains two endogenous tryptophan residues, one at position 58 in the linker region and the other at position 243 in cAMP-binding domain A, which can act as intrinsic reporter groups of their dynamics and microenvironment. Two single-point mutations, W58F and W243F, allowed the local environment of each Trp to be probed using steady-state and time-resolved fluorescence techniques. We report that: (a) the tryptophan fluorescence of the wild-type protein largely reflects Trp243 emission; (2) cAMP selectively quenches Trp243 and thus acts as a cAMP sensor; (3) Trp58 resides in a highly solvated, unstructured, and mobile region of the protein; and (4) Trp243 resides in a stable, folded domain and is relatively buried and rigid within the domain. The use of endogenous Trp residues presents a non-perturbing method for studying R-subunit subdomain characteristics in addition to providing the first biophysical data on the RIIbeta linker region. 相似文献
3.
The U1A (or nRNP A) protein is known to play a critical role in eukaryotic pre-mRNA splicing and polyadenylation. Previous studies revealed that several mouse monoclonal antibodies (MAbs) recognized U1A as part of the U1snRNP, while MAb 12E12 was unique in that it recognized an epitope that is masked when U1A is bound to U1 RNA. In order to further characterize and understand the antigenic targets of these MAbs, we undertook fine specificity epitope mapping studies. Anti-U1A MAbs 12E12 and 10E3 each recognize unique peptides from the U1A protein. Interestingly, these MAbs recognize epitopes which have been shown to be antigenic in human autoimmune diseases. When superimposed on structures of U1A derived from crystal and NMR data, the major epitope recognized by 12E12 (amino acids 103-108) localizes to the surface of the U1A molecule. The 12E12 epitope is immediately adjacent to a helix which probably reacts to U1 RNA binding by undergoing a conformational change. This modification of structure effectively masks the 12E12 epitope, thus preventing binding of the monoclonal to U1A/U1 RNA complexes. These findings suggest that the structure of the U1A protein may be different when not part of the U1snRNP. 相似文献
4.
对一种新的核糖体失活蛋白──克木毒蛋白的研究表明,该分子中仅含一个色氨酸.此色氨酸与克木毒蛋白具有的三种酶活性有明显不同的关系. 相似文献
5.
In order to correlate between spectroscopic and structural changes in a protein, the environment of Trp 135 in T4 lysozyme was deliberately perturbed by the replacement of Gln 105 with alanine (Q105A), glycine (Q105G), and glutamic acid (Q105E). In wild-type lysozyme, Trp 135 is buried, but the indole nitrogen is hydrogen-bonded to the side-chain of Gln 105. In the Q105G and Q105A mutant structures, the indole nitrogen becomes accessible to solvent. Crystallographic analysis shows that the structures of all of the mutants are similar to wild-type. There are, however, distinct rearrangements of the local solvent structure in response to the new side-chains. There are also small but significant changes in the relative orientations of the two domains of the protein that appear to result from a series of small, concerted movements of side-chains adjacent to residue 105. Evaluation of the fluorescence and phosphorescence of the mutant proteins in terms of their observed three-dimensional structures shows that large spectral changes do not necessarily imply large changes in structure or in static solvent accessibility. Increases in polar relaxation about the excited state of tryptophan may be the result of only small increases in local dynamics or solvent exposure. 1H-NMR was also used to monitor the effects of the substitutions on Trp 138. In Q105E, but not in Q105G, Q105A and WT, the Hε1 chemical shift of Trp 138 is very pH-dependent, apparently reflecting the titration of Glu 105 which has a spectroscopically determined pKa of 6.0. The elevation of the pKa of Glu 105 in Q105E is also reflected in the pH dependence of the stability of this mutant. © 1993 Wiley-Liss, Inc. 相似文献
6.
U1A protein negatively autoregulates itself by polyadenylation inhibition of its own pre-mRNA by binding as two molecules to a 3'UTR-located Polyadenylation Inhibitory Element (PIE). The (U1A)2-PIE complex specifically blocks U1A mRNA biosynthesis by inhibiting polyA tail addition, leading to lower mRNA levels. U1 snRNP bound to a 5'ss-like sequence, which we call a U1 site, in the 3'UTRs of certain papillomaviruses leads to inhibition of viral late gene expression via a similar mechanism. Although such U1 sites can also be artificially used to potently silence reporter and endogenous genes, no naturally occurring U1 sites have been found in eukaryotic genes. Here we identify a conserved U1 site in the human U1A gene that is, unexpectedly, within a bipartite element where the other part represses the U1 site via a base-pairing mechanism. The bipartite element inhibits U1A expression via a synergistic action with the nearby PIE. Unexpectedly, synergy is not based on stabilizing binding of the inhibitory factors to the 3'UTR, but rather is a property of the larger ternary complex. Inhibition targets the biosynthetic step of polyA tail addition rather than altering mRNA stability. This is the first example of a functional U1 site in a cellular gene and of a single gene containing two dissimilar elements that inhibit nuclear polyadenylation. Parallels with other examples where U1 snRNP inhibits expression are discussed. We expect that other cellular genes will harbor functional U1 sites. 相似文献
7.
Photodesorption of mitochondria absorbed on a quartz plate was discovered. The rate of photodesorption of mitochondria from the plate into solution depends on the wavelength, intensity, and irradiation period. The maximum rate of photodesorption was detected upon irradiation with UV light at the mitochondrial protein tryptophan absorption band. UV photodesorption is presumably caused by a local photothermal effecth—eating of photoexcited proteins at the membrane surface that attach mitochondria to the plate. Preliminary fixation of a smear with isopropanol or acetone drastically decreased photodesorption and spontaneous desorption. No photodesorption of either mitochondria or formazan was observed upon illumination with green light of formazan granules formed in mitochondria as a product of reductase reaction. These data are important for elaborating a technique of immobilizing mitochondria for enzyme assays and biosensors. 相似文献
8.
Vikeramjeet Singh Tadwal Malathy Sony Subramanian Manimekalai Gerhard Grüber 《Acta Crystallographica. Section F, Structural Biology Communications》2011,67(12):1485-1491
A reporter tryptophan residue was individually introduced by site‐directed mutagenesis into the adenine‐binding pocket of the catalytic subunit A (F427W and F508W mutants) of the motor protein A1AO ATP synthase from Pyrococcus horikoshii OT3. The crystal structures of the F427W and F508W mutant proteins were determined to 2.5 and 2.6 Å resolution, respectively. The tryptophan substitution caused the fluorescence signal to increase by 28% (F427W) and 33% (F508W), with a shift from 333 nm in the wild‐type protein to 339 nm in the mutant proteins. Tryptophan emission spectra showed binding of Mg‐ATP to the F427W mutant with a Kd of 8.5 µM. In contrast, no significant binding of nucleotide could be observed for the F508W mutant. A closer inspection of the crystal structure of the F427W mutant showed that the adenine‐binding pocket had widened by 0.7 Å (to 8.70 Å) in comparison to the wild‐type subunit A (8.07 Å) owing to tryptophan substitution, as a result of which it was able to bind ATP. In contrast, the adenine‐binding pocket had narrowed in the F508W mutant. The two mutants presented demonstrate that the exact volume of the adenine ribose binding pocket is essential for nucleotide binding and even minor narrowing makes it unfit for nucleotide binding. In addition, structural and fluorescence data confirmed the viability of the fluorescently active mutant F427W, which had ideal tryptophan spectra for future structure‐based time‐resolved dynamic measurements of the catalytic subunit A of the ATP‐synthesizing enzyme A‐ATP synthase. 相似文献
9.
The yeast scaffold protein Pan1 contains two EH domains at its N‐terminus, a predicted coiled‐coil central region, and a C‐terminal proline‐rich domain. Pan1 is also predicted to contain regions of intrinsic disorder, characteristic of proteins that have many binding partners. In vitro biochemical data suggest that Pan1 exists as a dimer, and we have identified amino acids 705 to 848 as critical for this homotypic interaction. Tryptophan fluorescence was used to further characterize Pan1 conformational states. Pan1 contains four endogenous tryptophans, each in a distinct region of the protein: Trp312 and Trp642 are each in an EH domain, Trp957 is in the central region, and Trp1280 is a critical residue in the Arp2/3 activation domain. To examine the local environment of each of these tryptophans, three of the four tryptophans were mutagenized to phenylalanine to create four proteins, each with only one tryptophan residue. When quenched with acrylamide, these single tryptophan mutants appeared to undergo collisional quenching exclusively and were moderately accessible to the acrylamide molecule. Quenching with iodide or cesium, however, revealed different Stern‐Volmer constants due to unique electrostatic environments of the tryptophan residues. Time‐resolved fluorescence anisotropy data confirmed structural and disorder predictions of Pan1. Further experimentation to fully develop a model of Pan1 conformational dynamics will assist in a deeper understanding of the mechanisms of endocytosis. Proteins 2013; 81:1944–1963. © 2013 Wiley Periodicals, Inc. 相似文献
10.
《Acta Crystallographica. Section F, Structural Biology Communications》2018,74(5):307-314
The identification of initial lead conditions for successful protein crystallization is crucial for structural studies using X‐ray crystallography. In order to reduce the number of false‐negative conditions, an emerging number of fluorescence‐based methods have been developed which allow more efficient identification of protein crystals and help to distinguish them from salt crystals. Detection of the native tryptophan fluorescence of protein crystals is one of the most widely used methods. However, this method can fail owing to the properties of the crystallized protein or the chemical composition of the crystallization trials. Here, a simple, fast and cost‐efficient method employing 2,2,2‐trichloroethanol (TCE) has been developed. It can be performed with a standard UV‐light microscope and can be applied to cases in which detection of native tryptophan fluorescence fails. In four test cases this method had no effect on the diffraction properties of the crystals and no structural changes were observed. Further evidence is provided that TCE can be added to crystallization trials during their preparation, making this method compatible with high‐throughput approaches. 相似文献
11.
A recombinant 19-kDa human fibroblast collagenase catalytic fragment modeled on a naturally occurring proteolytic product was purified from E. coli inclusion bodies. Following renaturation in the presence of zinc and calcium, the fragment demonstrated catalytic activity with the same primary sequence specificity against small synthetic substrates as the full-length collagenase. Unlike the parent enzyme, it rapidly cleaved casein and gelatin but not native type I collagen. Intrinsic fluorescence of the three tryptophan residues was used to monitor the conformational state of the enzyme, which underwent a 24-nm red shift in emission upon denaturation accompanied by quenching of the fluorescence and loss of catalytic activity. Low concentrations of denaturant unfolded the fragment while the full-length enzyme displayed a shallow extended denaturation curve. Calcium remarkably stabilized the 19-kDa fragment, zinc less so, while together they were synergistically stabilizing. Among divalent cations, calcium was the most effective stabilizer, EC50 approximately 60 microM, and similar amounts were required for substrate hydrolysis. Catalytic activity was more sensitive to denaturation than was tryptophan fluorescence. Least sensitive was the polypeptide backbone secondary structure assessed by CD. These observations suggest that the folding of the 19-kDa collagenase fragment is a multistep process stabilized by calcium. 相似文献
12.
Erik Sedlák 《Protein science : a publication of the Protein Society》2017,26(6):1236-1239
Monitoring the fluorescence of proteins, particularly the fluorescence of intrinsic tryptophan residues, is a popular method often used in the analysis of unfolding transitions (induced by temperature, chemical denaturant, and pH) in proteins. The tryptophan fluorescence provides several suitable parameters, such as steady‐state fluorescence intensity, apparent quantum yield, mean fluorescence lifetime, position of emission maximum that are often utilized for the observation of the conformational/unfolding transitions of proteins. In addition, the fluorescence intensities ratio at different wavelengths (usually at 330 nm and 350 nm) is becoming an increasingly popular parameter for the evaluation of thermal transitions. We show that, under certain conditions, the use of this parameter for the analysis of unfolding transitions leads to the incorrect determination of thermodynamic parameters characterizing unfolding transitions in proteins (e.g., melting temperature) and, hence, can compromise the hit identification during high‐throughput drug screening campaigns. 相似文献
13.
Patrizia Formichi Carla Battisti Maria M. De Santi Raffaella Guazzo Sergio A. Tripodi Elena Radi Benedetta Rossi Ermelinda Tarquini Antonio Federico 《Journal of cellular physiology》2018,233(1):663-672
Niemann‐Pick type C disease (NPC) is a disorder characterized by abnormal intracellular accumulation of unesterified cholesterol and glycolipids. Two distinct disease‐causing genes have been isolated, NPC1 and NPC2. The NPC1 protein is involved in the sorting and recycling of cholesterol and glycosphingolipids in the late endosomal/lysosomal system. It has extensive homology with the Patched1 (Ptc1) receptor, a transmembrane protein localized in the primary cilium, and involved in the Hedgehog signaling (Shh) pathway. We assessed the presence of NPC1 and Ptc1 proteins and evaluated the relative distribution and morphology of primary cilia in fibroblasts from five NPC1 patients and controls, and in normal fibroblasts treated with 3‐ß‐[2‐(diethylamino)ethoxy]androst‐5‐en‐17‐one (U18666A), a cholesterol transport‐inhibiting drug that is widely used to mimic NPC. Immunofluorescence and western blot analyses showed a significant decrease in expression of NPC1 and Ptc1 in NPC1 fibroblasts, while they were normally expressed in U18666A‐treated fibroblasts. Moreover, fibroblasts from NPC1 patients and U18666A‐treated cells showed a lower percentage distribution of primary cilia and a significant reduction in median cilia length with respect to controls. These are the first results demonstrating altered cytoplasmic expression of Ptc1 and reduced number and length of primary cilia, where Ptc1 is located, in fibroblasts from NPC1 patients. We suggest that the alterations in Ptc1 expression in cells from NPC1 patients are closely related to NPC1 expression deficit, while the primary cilia alterations observed in NPC1 and U18666A‐treated fibroblasts may represent a secondary event derived from a defective metabolic pathway. 相似文献
14.
Dmitri Kazmin Robert A Edwards Raymond J Turner Eric Larson Jean Starkey 《Analytical biochemistry》2002,301(1):91-96
Proteins in polyacrylamide gels can be rapidly visualized by soaking in trichloroacetic acid or chloroform followed by illumination with UV light. The UV-light-driven reaction of tryptophan in the presence of trichlorocompounds yields products that emit sufficiently in the visible region to identify the location of the protein bands on the gel. This method can be used to rapidly identify protein bands on a gel in less than 20 min. On thin polyacrylamide gels, 1.0 microg of protein can easily be detected for proteins with typical tryptophan percentages. 相似文献
15.
The pressure‐induced unfolding of the mutant C112S azurin from Pseudomonas aeruginosa was monitored both under steady state and dynamic conditions. The unfolding profiles were obtained by recording the spectral shift of the fluorescence emission as well as by phosphorescence intensity measurements. We evaluated the difference in free energy, ΔG, as a function of pressure and temperature. The dependence of ΔG on temperature showed concave profile at all pressures studied. A positive heat capacity change of about 4.3 kJ mol?1 deg?1 fitted all the curves. The volume change of the reaction showed a moderate dependence on temperature when compared with other proteins previously studied. The kinetic activation parameters (ΔV*, ΔH*, ΔS*) were obtained from upward and downward pressure‐jump experiments and used to characterize the volumetric and energetic properties of the transition state between native and unfolded protein. Our findings suggest that the folding and unfolding reaction paths passed through different transition states. The change in the phosphorescence lifetime with pressure pointed out that pressure‐induced unfolding occurred within two steps: the first leading to an increased protein flexibility, presumably caused by water penetration into the protein. Major structural changes of the tryptophan environment occurred in a second step at higher pressures. Proteins 2014; 82:1787–1798. © 2014 Wiley Periodicals, Inc. 相似文献
16.
Martha P. Brown Dimitri Toptygin K. B. Lee Theresa Animashaun R. C. Hughes Y. C. Lee Ludwig Brand 《Journal of Protein Chemistry》1998,17(2):149-159
The plant lectin Tetracarbidium conophorum agglutinin II binds to glycoproteins and glycopeptides in a structurally specific manner [Animashaun et al., (1994) Glycoconjugate J.
11, 299–303]. We have characterized the steady-state and time-resolved fluorescence of the tryptophan residues of this lectin. The fluorescence (ex = 295 nm, em = 350 nm) decay is complex and can be described by four decay times with the following values: 1 = 7.4nsec, 1 = 0.22; 2 = 2.9 nsec, 2 = 0.25; 3 = l.0 nsec, 3 = 0.34; 4 = 0.2 nsec, 4 = 0.18. The addition of a biantennary glycopeptide
to the lectin results in a quench and an 8 nm blue shift of the emission spectrum. The effect is saturable, and is described by an association constant of 1.8×105 M–1. The tryptophan fluorescence of Tetracarbidium conophorum agglutinin II may therefore be utilized to characterize thermodynamically the binding interactions between this lectin and complex glycoprotein. 相似文献
17.
Verheyden G Matrai J Volckaert G Engelborghs Y 《Protein science : a publication of the Protein Society》2004,13(9):2533-2540
The kinetic activation parameters (activation free energy, activation free enthalpy, and activation free entropy change) of the conformational change of alpha-chymotrypsin from an inactive to the active conformation were determined after a pH jump from pH 11.0 to pH 6.8 by the fluorescence stopped-flow method. The conformational change was followed by measuring changes in the protein fluorescence. For the bovine wild-type protein, the same kinetic parameters are obtained as in the study of proflavin binding. Several mutants were made with the goal to accelerate or decelerate this conformational transition. The inspiration for the choice of the mutants came from a previous modelling study done on the bovine wild-type chymotrypsin. The results of the fluorescence stopped flow experiments show that several mutants behaved as was expected based on the information provided by the modeling study on the wild-type variant. For some mutants our assumptions were not correct, and therefore additional modeling studies of the activation pathways of these mutant proteins are necessary to be able to explain the observed kinetic behavior. 相似文献
18.
William R. Laws Gerald P. Schwartz Elena Rusinova G. Thompson Burke Ying-Chi Chu Panayotis G. Katsoyannis J. B. Alexander Ross 《Journal of Protein Chemistry》1995,14(4):225-232
Use of insulin's intrinsic tyrosine absorption and fluorescence to monitor its interaction with the insulin receptor is limited because the spectral properties of the receptor tryptophan residues mask the spectral properties of the hormone tyrosine residues. We describe the synthesis of an insulin analog where A14 tyrosine is replaced by a tryptophan analog, 5-hydroxytryptophan. This insulin is spectrally enhanced since 5-hydroxytryptophan has an absorption band above 300 nm which is at lower energies than the absorption of tryptophan. Steady-state and time-resolved fluorescence parameters indicate that 5-hydroxytryptophan reports the same information about the environment of the A14 side chain as does the corresponding tryptophan-containing insulin. The synthetic hormone is a full agonist compared to porcine insulin, but has slightly reduced specific activity. Consequently, this spectrally enhanced insulin analog will be useful for hormone-receptor interaction studies since it can be observed by both absorption and fluorescence even in the presence of the tryptophan-containing receptor. 相似文献
19.
Tryptophan replacements in the trp aporepressor from Escherichia coli: probing the equilibrium and kinetic folding models.
下载免费PDF全文

C. J. Mann C. A. Royer C. R. Matthews 《Protein science : a publication of the Protein Society》1993,2(11):1853-1861
Mutants of the dimeric Escherichia coli trp aporepressor are constructed by replacement of the two tryptophan residues in each subunit in order to assess the effects on equilibrium and kinetic fluorescence properties of the folding reaction. The three kinetic phases detected by intrinsic tryptophan fluorescence in refolding of the wild-type aporepressor are also observed in folding of both Trp 19 to Phe and Trp 99 to Phe single mutants, demonstrating that these phases correspond to global rather than local conformational changes. Comparison of equilibrium fluorescence (Royer, C.A., Mann, C.J., & Matthews, C.R., 1993, Protein Sci. 2, 1844-1852) and circular dichroism transition curves induced by urea shows that replacement of either Trp 19 or Trp 99 results in noncoincident behavior. Unlike the wild-type protein (Gittelman, M.S. & Matthews, C.R., 1990, Biochemistry 29, 7011-7020), tertiary and/or quaternary structures are disrupted at lower denaturant concentration than is secondary structure. The equilibrium results can be interpreted in terms of enhancement in the population of a monomeric folding intermediate in which the lone tryptophan residue is highly exposed to solvent, but in which substantial secondary structure is retained. The location of both mutations at the interface between the two subunits (Zhang, R.G., et al., 1987, Nature 327, 591-597) provides a simple explanation for this phenomenon. 相似文献
20.
目的:应用一种新的高通量SNP检测方法-双色荧光杂交芯片技术检测CYPIA1 MspI基因多态性。方法:收集江苏汉族人群原发性肺癌患者75例和相应对照77例,应用双色荧光杂交芯片技术检测了152例样本的CYPIAI基因MspI基因多态性,并应用PCR-RFLP技术验证双色荧光杂交芯片的特异性。结果:152例样本的CYPIAI基因双色荧光杂交芯片技术分型结果与PCR-RFLP结果完全相符,两种方法的基因型分型结果具有很好的一致性。结论:双色荧光杂交芯片技术是一个高通量SNP检测的良好工具,特异性高,在大规模人群SNP筛检中具有良好的发展前案。 相似文献