共查询到8条相似文献,搜索用时 0 毫秒
1.
Bennoun P 《Biochimica et biophysica acta》2001,1506(2):133-142
The plastoquinone pool during dark adaptation is reduced by endogenous reductants and oxidized at the expense of molecular oxygen. We report here on the redox state of plastoquinone in darkness, using as an indicator the chlorophyll fluorescence kinetics of whole cells of a Chlamydomonas reinhardtii mutant strain lacking the cytochrome b(6)f complex. When algae were equilibrated with a mixture of air and argon at 1.45% air, plastoquinol oxidation was inhibited whereas mitochondrial respiration was not. Consequently, mitochondrial oxidases cannot be responsible for the oxygen consumption linked to plastoquinol oxidation. Plastoquinol oxidation in darkness turned out to be sensitive to n-propyl gallate (PG) and insensitive to salicylhydroxamic acid (SHAM), whereas mitochondrial respiration was sensitive to SHAM and PG. Thus, both PG treatment and partial anaerobiosis allow to draw a distinction between an inhibition of plastoquinol oxidation and an inhibition of mitochondrial respiration, indicating the presence of a plastoquinol:oxygen oxidoreductase. The possible identification of this oxidase with an oxidase involved in carotenoid biosynthesis is discussed in view of various experimental data. 相似文献
2.
Photosynthetic organisms enduring extreme temperatures, low water availability, or high light require photoprotective mechanisms to prevent sustained damage to photosynthetic machinery. Green microalgae living in desert crust communities of the south‐western US experience all these environmental stresses, yet photophysiological studies of green algae in the literature have focused on only a handful of common aquatic and marine species. We are examining the variation in green algal photoprotective mechanisms that is the result of natural selection acting independently in multiple lineages of highly diverse desert green algae (Chlorophyta) within the classes Chlorophyceae and Trebouxiophyceae. We have found that unusually extensive dark reduction of the plastoquinone pool is a prominent photophysiological feature among these desert algae; this reduction may be linked with enhanced chlororespiration. Recently, chlororespiration in higher plants has been linked through mutant analysis to control of the carotenoid synthetic pathway, heat stress, and starch metabolism among other pathways, though the function of chlororespiration remains controversial. Given that green algae and higher plants are monophyletic, analysis of potential chlororespiration in desert green algae may help decipher the evolution of the chlororespiratory process as well as its potential role in photoprotection in desert habitats. 相似文献
3.
4.
A tenfold increase in chlororespiration during dark incubation of Chlorella perynoidosa Chick CALU-175 at high temperature doubled the initial chlorophyll fluorescence yield (F0). The presence of iodacetamide or unmetabolizable glucose analog 2-deoxy-D-glucose prevented increase in both chlororespiration and F0 yield. The rates of chlororespiration and F0 yield growth demonstrated a similar pattern of temperature dependence. Inhibition of electron transport between QA and plastoquinone with diuron prevented increase in F0 during dark incubation of the cells at high temperature. Apparently, a pool of plastoquinone was restored in the chlororespiratory chain during the dark incubation at 37.5–41°C, and plastoquinone exchanged electrons with QA. This is the cause of QA reduction and subsequent increase in F0 yield. 相似文献
5.
Two species of Brassica were used to study their acclimation to heat and high illumination during the first stages of development. One, Brassica fruticulosa, is a wild species from south-east Spain and is adapted to both heat and high light intensity in its natural habitat, while the other, Brassica oleracea, is an agricultural species that is widely cultivated throughout the world. Growing Brassica plants under high irradiance and moderate heat was seen to affect the growth parameters and the functioning of the photosynthetic apparatus. The photosystem II (PSII) quantum yields and the capacity of photosynthetic electron transport, which were lower in B. fruticulosa than in B. oleracea, decreased in B. oleracea plants when grown under stress conditions, indicating inhibition of PSII. However, in B. fruticulosa, the values of these parameters were similar to the values of control plants. Photosystem I (PSI) activity was higher in B. fruticulosa than in B. oleracea, and in both species this activity increased in plants exposed to heat and high illumination. Immunoblot analysis of thylakoid membranes using specific antibodies raised against the NDH-K subunit of the thylakoidal NADH dehydrogenase complex (NADH DH) and against plastid terminal oxidase (PTOX) revealed a higher amount of both proteins in B. fruticulosa than in B. oleracea. In addition, PTOX activity in plastoquinone oxidation, and NADH DH activity in thylakoid membranes were higher in the wild species (B. fruticulosa) than in the agricultural species (B. oleracea). The results indicate that tolerance to high illumination and heat of the photosynthetic activity was higher in the wild species than in the agricultural species, suggesting that plant adaptation to these stresses in natural conditions favours subsequent acclimation, and that the chlororespiration process is involved in adaptation to heat and high illumination in Brassica. 相似文献
6.
Polypeptides encoded by plastid ndh genes form a complex (Ndh) which could reduce plastoquinone with NADH. Through a terminal oxidase, reduced plastoquinone would be oxidized in chlororespiration. However, isolated Ndh complex has low activity with plastoquinone and no terminal oxidase has been found in chloroplasts, thus the function of Ndh complex is unknown. Alternatively, thylakoid hydroquinone peroxidase could oxidize reduced plastoquinone with H(2)O(2). By immunoaffinity chromatography, we have purified the plastid Ndh complex of barley (Hordeum vulgare L.) to investigate the electron donor and acceptor specificity. A detergent-containing system was reconstructed with thylakoid Ndh complex and peroxidase which oxidized NADH with H(2)O(2) in a plastoquinone-dependent process. This system and the increases of thylakoid Ndh complex and peroxidase activities under photooxidative stress suggest that the chlororespiratory process consists of the sequence of reactions catalyzed by Ndh complex, peroxidase (acting on reduced plastoquinone), superoxide dismutase, and the non-enzymic one-electron transfer from reduced iron-sulfur protein (FeSP) to O(2). When FeSP is a component of cytochrome b(6).f complex or of the same Ndh complex, O(2) may be reduced with NADH, without requirement of light. Chlororespiration consumes reactive species of oxygen and, eventually, may decrease their production by lowering O(2) concentration in chloroplasts. The common plastoquinone pool with photosynthetic electron transport suggests that chlororespiratory reactions may poise reduced and oxidized forms of the intermediates of cyclic electron transport under highly fluctuating light intensities. 相似文献
7.
Chlororespiration and grana hyperstacking: how an Arabidopsis double mutant can survive despite defects in starch biosynthesis and daily carbon export from chloroplasts
下载免费PDF全文

Häusler RE Geimer S Kunz HH Schmitz J Dörmann P Bell K Hetfeld S Guballa A Flügge UI 《Plant physiology》2009,149(1):515-533
8.
除了经过光系统II和光系统I的非循环电子传递以外,围绕光系统I的循环电子传递对维持高效率的光合作用也是不可缺少的,其中叶绿体还原型二(三)磷酸吡啶核苷酸[NAD(P)H]脱氢酶复合体(NDH复合体)介导的循环电子传递是目前研究的热点。随着质体末端氧化酶(PTOX)的发现,NDH参与的循环电子传递与叶绿体呼吸在补充光合作用所需能量以及抵御光氧化胁迫过程中的作用正日渐引起研究者的重视。文章根据近年的研究进展就叶绿体NDH复合体及其介导的循环电子传递与叶绿体呼吸的生理功能做了综述。 相似文献