首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endogeneous fatty acid biosynthesis in the two yeast species, Saccharomyces cerevisiae and Candida lipolytica is completely repressed by the addition of long-chain fatty acids to the growth medium. In Candida lipolytica, this repression is accompanied by a corresponding loss of fatty acid synthetase activity in the cell homogenate, when the cells were grown on fatty acids as the sole carbon source. The activity of the Saccharomyces cerevisiae fatty acid synthetase, however, remains unaffected by the addition of fatty acids to a glucose-containing growth medium. From fatty-acid-grown Candida lipolytica cells no fatty acid synthetase complex can be isolated, nor is there any immunologically cross-reacting fatty acid synthetase protein detectable in the crude cell extract. From this it is concluded that Candida lipolytica, but not Saccharomyces cerevisiae, is able to adapt to the growth on fatty acids either by repression of fatty acid synthetase biosynthesis or by a fatty-acid-induced proteolytic degradation of the multienzyme complex. Similarly, the fatty acid synthetase complex disappears rapidly from stationary phase Candida lipolytica cells even after growth in fatty-acid-free medium. Finally, it was found that the fatty acid synthetase complexes from Saccharomyces cerevisiae and Candida lipolytica, though very similar in size and subunit composition, were immunologically different and had no common antigenic determinants.  相似文献   

2.
A polysaccharide-fatty acid complex was isolated from the cell surface of Candida tropicalis growing on alkanes. This complex was solubilized by Pronase treatment of whole cells. A decrease in alkane-binding affinity was observed after Pronase treatment, resulting in 10 to 12% of the yeast dry cell weight being released as polysaccharide. The isolated polysaccharide contained 2.5% fatty acids. C. tropicalis and Saccharomyces cerevisiae grown with glucose contained only traces of fatty acids in the corresponding polysaccharide fraction. The fatty acids were not removed from the polysaccharide moiety by gel filtration. Extraction of the polysaccharide with chloroform-methanol showed that fatty acids were covalently bound to the polysaccharide. The amphipathic nature of the isolated polysaccharide and the hydrocarbon-induced formation suggest a possible role in alkane metabolism.  相似文献   

3.
Candida lipolytica, grown onn-hexadecane as the sole source of carbon and energy, contained 17.1% lipids in the logarithmic phase of growth, and 7.3% lipids in the stationary phase of growth. When the yeast was grown on glucose, it contained 6.2% lipids in the logarithmic phase of growth, and 3.6% lipids in the stationary phase of growth. Fatty acids, that could be extracted by petroleum ether after saponification, constituted the major part of the fatty acids ofC. lipolytica in its logarithmic phase of growth on glucose. They constituted only a minor amount of the fatty acids in the stationary phase of growth on glucose. The reverse was true when the yeast was grown onn-hexadecane. The broth contained more free, petroleum ether-soluble fatty acids when the cellular lipid content was high than when it was low. Overnight starvation ofC. lipolytica grown onn-hexadecane in a carbon-free nutrient medium, removed the residual cell-bound hydrocarbon, increased the cell population by one half and decreased the cellular lipid content (as % of dry yeast) by one third. Various methods for the determination of lipids, described as appropriate for yeasts were compared. The highest yields were obtained by extraction of the freeze-dried paste, at room temperature, with a 1:1 chloroform-methanol mixture.  相似文献   

4.
Isolated plasma membranes from the yeast Candida tropicalis grown on two different carbon sources (glucose or hexadecane), had similar contents of protein (60% of total dry weight), lipid (21-24%) and carbohydrates (16-21%). Sodium dodecyl sulphate gel electrophoresis of the membrane proteins revealed 17 and 19 protein bands, respectively, for glucose and hexadecane grown cells. There were marked differences in RF values and relative peak heights between the two gels. Sterols and free fatty acids were the major components of the plasma membrane lipids. Phospholipid content was less than 2% of total plasma membrane lipids. Membrane microviscosity, as determined by fluorescence polarization, was very high (16.6 P). Fatty acid determination of membrane lipids by gas chromatography showed a significant increase of C16 fatty acids in plasma membranes of cells grown on hexadecane. Reduced-oxidized difference spectra demonstrated the presence of a b-type cytochrome in both Saccharomyces cerevisiae and C. tropicalis plasma membranes. Its concentration in C. tropicalis plasma membranes was three-fold greater in cells grown on hexadecane than in glucose grown cells.  相似文献   

5.
Candida lipolytica yeast was grown batchwise on glucose medium. Cerebrosides were isolated from the sphingolipid fraction of total lipids using column chromatography and separated into two compounds by high-performance thin-layer chromatography. Glucose was detected as the sole sugar constituent in cerebrosides. The fatty acid composition of cerebrosides was characterised by a predominance of saturated fatty acids and by a high proportion of fatty acids with 16 carbon atoms. The dominant fatty acid was h16:0. The principal long-chain base components of both cerebroside species were trihydroxy bases, 18- and 20-phytosphinosine. The unique characteristic of cerebrosides was the presence of a high proportion of sphingosine (one-fourth of the total long-chain bases), which is a common characteristic of mammalian sphingolipids and rarely occurs in yeast cerebrosides. The ceramide moiety profile of cerebrosides is similar to that of epidermal ceramides, which implies a possibility for their application in care cosmetics.  相似文献   

6.
K Kobayashi  H Suginaka  I Yano 《Microbios》1987,51(206):37-42
The fatty acid composition of representative Candida species was examined by gas-liquid chromatography (GLC) using a polar column. The major fatty acids were C14:0, C16:0, C18:0 saturated, C16:1 and C18:1 monoenoic series, with or without C18 polyunsaturated acids (C18:2 and C18:3). In Torulopsis glabrata and Saccharomyces cerevisiae the C18:2 and C18:3 acids were not found, but the C10:0 and C12:0 acids were detected in S. cerevisiae. These results indicated that the Candida genus could be distinguished from Torulopsis and Saccharomyces genera by GLC analysis of fatty acids. Quantitative differences in the fatty acid composition between cells grown at high temperature (37 degrees C) and low temperature (25 degrees C) were found generally in Candida species, and the amounts of C18 polyunsaturated acids (C18:2 and C18:3) increased in the cells grown at 25 degrees C. Each Candida species showed a characteristic profile in fatty acid composition. Determination of the cellular fatty acid composition in Candida species is likely to be useful for the grouping or chemotaxonomy of newer isolates of Candida species.  相似文献   

7.
Elevated levels of glucose and lipids can result in cellular dysfunction in eukaryotic cells ranging from Saccharomyces cerevisiae yeasts to human cells. Moreover, glucotoxicity and lipotoxicity can cause cell death, although the mechanism(s) for lethality is unclear. In the present study, we utilized Candida parapsilosis fatty acid desaturase (OLE1) and fatty acid synthase (FAS2) gene deletion mutants and wild-type (WT) yeast cells to unravel the relationship to glucose and lipid induced cell death in eukaryotic cells. Incubation of WT yeast cells with glucose led to the rapid accumulation of lipid droplets, whereas lipid droplet formation was severely impaired in yeast cells with deletion of OLE1 (ole1Δ/Δ) or FAS2 (fas2Δ/Δ). Interestingly, ole1Δ/Δ yeast cells died within hours in a 1% glucose medium without fatty acid supplementation, whereas the WT or fas2Δ/Δ yeast cells did not. In glucose medium, ole1Δ/Δ yeast cells accumulated saturated fatty acids, while fas2Δ/Δ did not. Addition of saturated fatty acids (e.g., palmitic acid) enhanced ole1Δ/Δ yeast cell death, whereas the addition of unsaturated fatty acids (e.g., oleic or palmitoleic acid) rescued cell death. Furthermore, palmitic acid and glucose medium induced apopotic cell death in ole1Δ/Δ yeast cells, which was dependent on mitochondrial function. Thus, our results show that glucotoxicity is directly linked to lipotoxicity, which we demonstrate is mediated by mitochondrial function.  相似文献   

8.
Candida lipolytica yeast was grown batchwise on two different carbon sources, glucose and n-hexadecane. Free ceramides were quantitatively isolated from sphingolipid fractions of total lipids by a combination of column chromatography and preparative thin-layer chromatography. Their composition, after acid methanolysis, was analysed by gas-liquid chromatography. The ceramide content accounted for 2.6% of the total cell lipids in hexadecane-grown cells, which was 1.5 times higher than in glucose-grown cells. The fatty acid composition of ceramides was characterized by the predominance of fatty acids shorter than 20 carbon atoms and by high concentrations of fatty acids with 16 carbon atoms after growth on both carbon sources. The dominant fatty acid was hydroxylated 16:0 in the glucose-grown cells and 16:0 in the hexadecane-grown cells. The striking finding was the low degree of fatty acid hydroxylation and relatively high proportion of odd-numbered fatty acids in ceramide of the n-hexadecane-grown cells. The ceramides contained an unusual long-chain base composition. In hexadecane-grown cells more than 60% of the long-chain bases were C19 phytosphingosine. In glucose-grown cells more than one-half of the total long-chain bases were tetrahydroxy bases, 4,5-dihydroxysphinganine and 4,5-dihydroxyeicosasphinganine. Received: 20 April 1998 / Received revision: 10 July 1998 / Accepted: 29 July 1998  相似文献   

9.
When grown and induced to form germ tubes in liquid defined media, yeast cells of Candida albicans must reach stationary phase before acquiring ability to carry out the yeast-mycelial transition. This study examined the effect of the carbon source utilized for yeast growth on the inducibility of stationary phase yeast. When grown to the same stationary phase cell density as glucose cultures, cultures grown on citrate were fully inducible while cultures grown on galactose and mannose showed a small reduction. Cultures grown on ethanol were reduced 80% in morphological conversion. When glucose grown cells were induced in the presence of these carbon sources, hexoses supported full induction while ethanol reduced induction 80%. Induction in the presence of carboxylic acids was similar to induction in the absence of added carbon source. When induced on the same source used in yeast growth, germ tube formation was reduced for all carbon sources except hexoses. When induced in the absence of added carbon source, yeasts grown on citrate and ethanol were inhibited 80-100%. Cultures starved for glucose were more inhibited than cultures starved for NH4Cl when induced without added carbon source. These observations suggest that the metabolic state of the stationary phase cell is an important factor in the ability to respond to conditions inducing germ tube formation.  相似文献   

10.
Summary The effects of cerulenin, an anti-lipogenic antibiotic, on the growth and cellular fatty acid composition ofCandida lipolytica were investigated by changing the chain length of n-alkane, the growth substrate. The antibiotic inhibited almost completely the growth of the yeast on glucose, n-undecane and n-dodecane, but partly that on n-tridecane. The yeast growth on longer alkanes, e.g., from n-tetradecane to n-octadecane, was not affected by this antibiotic, indicating that a chain elongation system and/or intact incorporation system predominantly operate in the formation of cellular fatty acids from such longer chain n-alkanes. Comparison of the fatty acid profiles between the cells grown on n-alkanes of different chain lengths, especially on n-pentadecane, in the presence and absence of cerulenin, supported the supposition that only the de novo synthesis system of the yeast would be affected by the antibiotic, whereas the chain elongation system would not.  相似文献   

11.
The effect of a sub-inhibitory concentration of chlorhexidine on lipid and sterol composition of Candida albicans was investigated. The total lipid content of this yeast grown in the presence of chlorhexidine was reduced whilst the total sterol content was increased compared with control-grown cells. Lipids and sterol analyses of this yeast grown in the presence and absence of chlorhexidine are presented. Chlorhexidine-grown yeast had a higher level of phosphatidylethanolamine, phosphatidylcholine and monogalactosyldiacylglycerol. Lower proportions of phosphatidylinositol plus phosphatidylserine, phosphatidic acid and cardiolipin were found in C. albicans grown in the presence of the drug when compared with control-grown yeast. The major fatty acids in control-grown cells were C16 and C18. Drug grown-cells had higher proportions of palmitic acid (16 : 0) and stearic acid (18 : 0), but lower proportions of palmitoleic acid (16 : 1) and oleic acid (18 : 1). Chlorhexidine also decreased the unsaturated-to-saturated fatty acid ratio, while the C16/C18 ratios increased compared to control-grown cells. Differences in the fatty acid composition of major phospholipids and neutral lipids between drug and control-grown yeast were also detected. Sterol analysis of control-grown cells showed that the major sterol present was ergosterol (55.4% wt). A significant increase in ergosterol and obtusifoliol was observed in chlorhexidine-treated cells and a significant decrease in squalene and lanosterol. Our results suggested that chlorhexidine affected the lipid and sterol composition of C. albicans. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
T Kurihara  M Ueda  A Tanaka 《FEBS letters》1988,229(1):215-218
Two kinds of 3-ketoacyl-CoA thiolases were found in the peroxisomes of Candida tropicalis cells grown on n-alkanes (C10-C13). One was a typical acetoacetyl-CoA thiolase specific only to acetoacetyl-CoA, while another was 3-ketoacyl-CoA thiolase showing high activities on the longer chain substrates. A high level of the latter thiolase activity in alkane-grown cells was similar to that of other enzymes constituting the fatty acid beta-oxidation system in yeast peroxisomes. These facts suggest that the complete degradation of fatty acids to acetyl-CoA is carried out in yeast peroxisomes by the cooperative contribution of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase.  相似文献   

13.
The level of acetyl-coenzyme-A carboxylase activity in Candida lipolytica undergoes large variations depending upon the carbon source on which the yeast is grown. Cells grown on n-alkanes or fatty acids exhibit a lower activity level than do cells grown on glucose. Among the n-alkanes and fatty acids tested, n-heptadecane, n-octadecane, oleic acid and linoleic acid reduce the enzyme activity to the lowest levels, which are 16-18% of the activity level in glucose-grown cells. Immunochemical titrations and Ouchterlony double-diffusion analysis with specific antibody as well as kinetic studies have indicated that the observed decrease in the level of acetyl-CoA carboxylase activity is due to a reduction in the cellular content of the enzyme. Furthermore, isotopic leucine incorporation studies with the use of the immunoprecipitation technique have demonstrated that the relative rate of synthesis of the enzyme in oleic-acid-grown cells is diminished to 12% of that in glucose-grown cells. Evidence has also been obtained to support the view that the enzyme in this yeast is not degraded at a rate high enough to contribute to the marked decrease in the cellular content of the enzyme. Thus, it is concluded that the reduction in acetyl-CoA carboxylase content in fatty-acid-grown cells is due to diminished synthesis of the enzyme.  相似文献   

14.
As a part of extensive program on microbial utilization of hydrocarbons, lipid components of Candida petrophillum SD-14 grown on n-alkanes and glucose as carbon sources were studied. In any carbon source, cellular fatty acids of the yeast contained palmitic, palmitoleic, stearic, oleic and linoleic acids as major components.

When n-tridecane was fed to the yeast, fatty acids with odd- and even-number of carbon atoms were produced in almost identical quantity. Another yeast, Torulopsis petrophillum SD-77, also gave a very similar fatty acid pattern by n-tridecane substrate. These phenomena indicate the existence of C2 addition and β-oxidation of the fatty acid formed in the yeasts.

In the cases of n-tridecane, n-hexadecane and glucose as substrate, about a half of SD-14’s lipid was phospholipid, which consisted of phosphatidyl ethanolamine and phosphatidyl choline principally. Free alcohol and wax were not detected in any case.  相似文献   

15.
The incorporation of exogenously supplied fatty acids, palmitic acid, palmitoleic acid, oleic acid and linoleic acid, was examined in the yeast Schizosaccharomyces pombe at two growth temperatures, 20 °C and 30 °C. Fatty acids supplied to S. pombe in the growth medium were found to be preferentially incorporated into the cells, becoming a dominant species. The relative increase in exogenous fatty acids in cells came at the expense of endogenous oleic acid as a proportion of total fatty acids. Lowering the temperature at which the yeast were grown resulted in decreased levels of incorporation of the fatty acids palmitic acid, palmitoleic acid and linoleic acid compared to cells supplemented at 30 °C. In addition, the relative amount of the endogenously produced unsaturated fatty acid oleic acid, while greatly reduced compared to unsupplemented cells, was increased in cells supplemented with fatty acids at 20 °C compared to supplemented cells at 30 °C. The differential production of oleic acid in S. pombe cells indicates that regulation of unsaturated fatty acid levels, possibly by control of the stearoyl-CoA desaturase, is an important control point in membrane composition in response to temperature and diet in this species.  相似文献   

16.
17.
The yeasts Saccharomyces cerevisiae, Candida utilis, and Candida lipolytica were used to investigate the action of different concentrations of fatty acids (from acetic to myristic acid) on cell growth, division, uptake of inorganic phosphate, and substrate oxidation. The former two yeasts were found to undergo an inhibition of growth, cell division, and phosphate uptake at lower acid concentrations and to experience the inhibition of substrate oxidation at higher acid concentrations. The concentration dependence of the action of fatty acids can be classified into four categories: 1) subthreshold concentrations which do not inhibit growth and have either no effect on, or stimulate, oxygen consumption; 2) threshold concentrations which lower the rate of growth, cell division, and phosphate uptake but do not inhibit the oxidation of carbon substrate; 3) above-threshold concentrations which inhibit partially even substrate oxidation, and 4) microbicide concentrations. Candida lipolytica displays the same sensitivity toward the action of fatty acids as the above yeast species; however, the threshold concentrations are higher and can be quickly lowered owing to oxidation by the yeast. The concentrations of fatty acids found in the medium after cultivations of yeast with n-alkanes are of the same order as limiting concentrations; the formation of acids with twelve and less carbons in the molecule can thus be assumed to be one of the basic reasons for lowering of biomass yields during cultivations on these hydrocarbons.  相似文献   

18.
Cell surface hydrophobicity may be an important factor contributing to the virulence of Candida yeast cells. Surface hydrophobic and surface polar groups would be required for a yeast cell to act as a surface-active agent. In this report, the surface activities of whole yeast cells were measured. Yeast cells added at 10(8)/ml reduced the surface tension (gamma s) of saline by 20% as determined by the du Nouy method. A 1% suspension of yeast cell wall fragments reduced gamma s of saline by 36%. Whole yeast cells caused a reduction in interfacial tension (gamma I) between hexadecane and saline. The reduction of gamma I was proportional to the surface hydrophobicity of the yeasts. Yeast cells grown in glucose as the sole carbon source (thus possessing a relatively more hydrophilic cell surface) reduced gamma I by 30%, whereas yeast cells grown in hexadecane (thus possessing a more hydrophobic cell surface) reduced gamma I by 41%. The reduction of gamma I was reversed upon the addition of a strong surfactant. It was also demonstrated that yeast cells blended with nonionic surfactants during growth in a glucose broth in order to change their cell surface hydrophobicity adhered to solid surfaces in direct proportion to their cell surface hydrophobicity. Thus, the surface-active properties of Candida yeast cells may significantly contribute to the accumulation of yeast cells at various biological interfaces such as liquid-solid, liquid-liquid, and liquid-air, leading to their eventual adhesion to solid or tissue surfaces.  相似文献   

19.
Surface-active properties of Candida albicans.   总被引:1,自引:0,他引:1       下载免费PDF全文
Cell surface hydrophobicity may be an important factor contributing to the virulence of Candida yeast cells. Surface hydrophobic and surface polar groups would be required for a yeast cell to act as a surface-active agent. In this report, the surface activities of whole yeast cells were measured. Yeast cells added at 10(8)/ml reduced the surface tension (gamma s) of saline by 20% as determined by the du Nouy method. A 1% suspension of yeast cell wall fragments reduced gamma s of saline by 36%. Whole yeast cells caused a reduction in interfacial tension (gamma I) between hexadecane and saline. The reduction of gamma I was proportional to the surface hydrophobicity of the yeasts. Yeast cells grown in glucose as the sole carbon source (thus possessing a relatively more hydrophilic cell surface) reduced gamma I by 30%, whereas yeast cells grown in hexadecane (thus possessing a more hydrophobic cell surface) reduced gamma I by 41%. The reduction of gamma I was reversed upon the addition of a strong surfactant. It was also demonstrated that yeast cells blended with nonionic surfactants during growth in a glucose broth in order to change their cell surface hydrophobicity adhered to solid surfaces in direct proportion to their cell surface hydrophobicity. Thus, the surface-active properties of Candida yeast cells may significantly contribute to the accumulation of yeast cells at various biological interfaces such as liquid-solid, liquid-liquid, and liquid-air, leading to their eventual adhesion to solid or tissue surfaces.  相似文献   

20.
The present study deals with the composition of superior fatty acids of total lipids, polar lipids, and neutral lipids from dried biomass of Candida lipolytica grown by industrial process ("Toprina") on n-alkanes (C10-C20) extracted from petroleum. The data related to our knowledge about yeast and Candida lipolytica, lead to the conclusion that fatty acids feature of "Toprina" are similar to the Candida lipolytica ones grown in batch culture at the same conditions. In addition, a possible physiologic role of 17:1 and 17:2 is considered, in the perspective of the utilization of "Toprina" in animal food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号