首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative model of ion binding and molecular interactions in the lipid bilayer membrane is proposed and found to be useful in examining the factors underlying such membrane characteristics as shape, sidedness, stability and vesicle size at various cation concentrations. The lipid membrane behaves as a bilayer couple whose preferential radius of curvature depends on the expansion or contraction of one monolayer relative to the other. It is proposed that molecular packing may be altered by electrostatic repulsion of adjacent like-charged phospholipid headgroups, or by bringing two headgroups closer together by divalent cation crossbridging. The surface concentrations of each type of cation-phospholipid complex can be described by simple binding equilibria and the Gouy-Chapman-Stern formulation for the surface potential in a diffuse double layer. The asymmetric distribution of acidic phospholipids in most biological membranes can account for the differential effects of identical ionic environments on either side of the bilayer. The fraction of vesicle material which tends to have a right-side-out orientation may be approximated by a normal distribution about the mean curvature. The theory generates vesicle sidedness distributions that, when fitted to experimental results from human erythrocyte membranes, provide an alternative method of estimating intrinsic cationphospholipid dissociation constants and other molecular parameters of the bilayer. The results also corroborate earlier suggestions that the Gouy-Chapman theory tends to overestimate free counter-ion concentrations at the surface under large surface potentials.  相似文献   

2.
The GM2 activator protein (GM2AP) is an accessory protein that is an essential component in the catabolism of the ganglioside GM2. A function of GM2AP is to bind and extract GM2 from intralysosomal vesicles, forming a soluble protein-lipid complex, which interacts with the hydrolase Hexosaminidase A, the enzyme that cleaves the terminal sugar group of GM2. Here, we used site-directed spin labeling with power saturation electron paramagnetic resonance to determine the surface-bound orientation of GM2AP upon phosphatidylcholine vesicles. Because GM2AP extracts lipid ligands from the vesicle and is undergoing exchange on and off the vesicle surface, we utilized a nickel-chelating lipid to localize the paramagnetic metal collider to the lipid bilayer-aqueous interface. Spin-labeled sites that collide with the lipid-bound metal relaxing agent provide a means for mapping sites of the protein that interact with the lipid bilayer interface. Results show that GM2AP binds to lipid bilayers such that the residues lining the lipid-binding cavity lie on the vesicle surface. This orientation creates a favorable microenvironment that can allow for the lipid tails to flip out of the bilayer directly into the hydrophobic pocket of GM2AP.  相似文献   

3.
Small unilamellar lipid bilayer vesicles were prepared from brain phosphatidylserine, egg phosphatidylcholine, and synthetic dipalmitoylphosphatidylcholine, and were fused into larger structures by freezing and thawing, addition of calcium chloride, and passage through the lipid phase transition temperature. Fusion reactions were studied by electron microscopy, light scattering, and use of fluorescent probes. Fusion was accompanied by leakage of lipid vesicle constituents and of water-soluble solutes in the inner vesicle compartments, and by uptake of these types of components from the external solution. Such leakage was greater during fusion by freezing than by Ca2+. Passage through the transition temperature produced a moderate degree of fusion, without loss of membrane components. It is concluded that each fusion method gives rise to a characteristic size or narrow range of sizes of fusion products. The fraction of small vesicles fused into larger structure depends on the method of vesicle preparation, composition of the lipid bilayer, and composition of the external solution. Fusion is induced by creation of a discontinuity in the bilayer or by removal of water associated with the bilayer. The amount of water removed controls the extent of fusion. This is maximized in bilayers when in the liquid-crystal phase, as against the gel phase, in vesicles made by ethanol injection, as against sonication, and in charged bilayers, as against neutral ones.  相似文献   

4.
Abstract

Lipid vesicles composed of phosphatidylcholine and suitable polyoxyethylene-derivat-ives of phosphatidylethanolamine (cryptosomes) remain in circulation 8–10 times longer than standard liposomes after an i.v. administration in mice. In contrast to previous belief, this longevity is not destroyed by the net charges on the lipid vesicle surface and is not a direct consequence of the high surface hydrophilicity; also bilayer fluidity is not an obstacle for the attainment of long circulation times. All these three factors, however, can affect the effectiveness of the drug encapsulation into lipid vesicles and the stability of the resulting carrier suspensions. Terminal head-group modifications, moreover, can affect the final carrier and drug distribution after vesicle applications in vivo and lead to accumulation in certain body subsites, such as the gut.  相似文献   

5.
Amyloid-β peptide (Aβ) is considered a triggering agent of Alzheimer's disease. In relation to a therapeutic treatment of the disease, the interaction of Aβ with the cell membrane has to be elucidated at the molecular level to understand its mechanism of action. In previous works, we had ascertained by neutron diffraction on stacked lipid multilayers that a toxic fragment of Aβ is able to penetrate and perturb the lipid bilayer. Here, the influence of Aβ(1-42), the most abundant Aβ form in senile plaques, on unilamellar lipid vesicles of phospholipids is investigated by small-angle neutron scattering. We have used the recently proposed separated form factor method to fit the data and to obtain information about the vesicle diameter and structure of the lipid bilayer and its change upon peptide administration. The lipid membrane parameters were obtained with different models of the bilayer profile. As a result, we obtained an increase in the vesicle radii, indicating vesicle fusion. This effect was particularly enhanced at pH 7.0 and at a high peptide/lipid ratio. At the same time, a thinning of the lipid bilayer occurred. A fusogenic activity of the peptide may have very important consequences and may contribute to cytotoxicity by destabilizing the cell membrane. The perturbation of the bilayer structure suggests a strong interaction and/or insertion of the peptide into the membrane, although its localization remains beyond the limit of the experimental resolution.  相似文献   

6.
Johnson JM  Ha T  Chu S  Boxer SG 《Biophysical journal》2002,83(6):3371-3379
We have developed a single vesicle assay to study the mechanisms of supported bilayer formation. Fluorescently labeled, unilamellar vesicles (30-100 nm diameter) were first adsorbed to a quartz surface at low enough surface concentrations to visualize single vesicles. Fusion and rupture events during the bilayer formation, induced by the subsequent addition of unlabeled vesicles, were detected by measuring two-color fluorescence signals simultaneously. Lipid-conjugated dyes monitored the membrane fusion while encapsulated dyes reported on the vesicle rupture. Four dominant pathways were observed, each exhibiting characteristic two-color fluorescence signatures: 1) primary fusion, in which an unlabeled vesicle fuses with a labeled vesicle on the surface, is signified by the dequenching of the lipid-conjugated dyes followed by rupture and final merging into the bilayer; 2) simultaneous fusion and rupture, in which a labeled vesicle on the surface ruptures simultaneously upon fusion with an unlabeled vesicle; 3) no dequenching, in which loss of fluorescence signal from both dyes occur simultaneously with the final merger into the bilayer; and 4) isolated rupture (pre-ruptured vesicles), in which a labeled vesicle on the surface spontaneously undergoes content loss, a process that occurs with high efficiency in the presence of a high concentration of Texas Red-labeled lipids. Vesicles that have undergone content loss appear to be more fusogenic than intact vesicles.  相似文献   

7.
Kyoung M  Sheets ED 《Biophysical journal》2008,95(12):5789-5797
The protein machinery controlling membrane fusion (or fission) has been well studied; however, the role of vesicle diffusion near membranes in these critical processes remains unclear. We experimentally and theoretically investigated the dynamics of small vesicles (∼50 nm in diameter) that are diffusing near supported planar bilayers acting as “target” membranes. Using total internal reflection-fluorescence correlation spectroscopy, we examined the validity of theoretical analyses of vesicle-membrane interactions. Vesicles were hindered by hydrodynamic drag as a function of their proximity to the planar bilayer. The population distributions and diffusion kinetics of the vesicles were further affected by changing the ionic strength and pH of the buffer, as well as the lipid composition of the planar membrane. Effective surface charges on neutral bilayers were also analyzed by comparing experimental and theoretical data, and we show the possibility that vesicle dynamics can be modified by surface charge redistribution of the planar bilayer. Based on these results, we hypothesize that the dynamics of small vesicles, diffusing close to biomembranes, may be spatially restricted by altering local physiological conditions (e.g., salt concentration, lipid composition, and pH), which may represent an additional mechanism for controlling fusion (or fission) dynamics.  相似文献   

8.
We have developed a strategy for preparing tethered lipid bilayer membrane patches on solid surfaces by DNA hybridization. In this way, the tethered membrane patch is held at a controllable distance from the surface by varying the length of the DNA used. Two basic strategies are described. In the first, single-stranded DNA strands are immobilized by click chemistry to a silica surface, whose remaining surface is passivated to prevent direct assembly of a solid supported bilayer. Then giant unilamellar vesicles (GUVs) displaying the antisense strand, using a DNA–lipid conjugate developed in earlier work [Chan, Y.-H.M., van Lengerich, B., et al., 2008. Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3 (2), FA17–FA21], are allowed to tether, spread and rupture to form tethered bilayer patches. In the second, a supported lipid bilayer displaying DNA using the DNA–lipid conjugate is first assembled on the surface. Then GUVs displaying the antisense strand are allowed to tether, spread and rupture to form tethered bilayer patches. The essential difference between these methods is that the tethering hybrid DNA is immobile in the first, while it is mobile in the second. Both strategies are successful; however, with mobile DNA hybrids as tethers, the patches are unstable, while in the first strategy stable patches can be formed. In the case of mobile tethers, if different length DNA hybrids are present, lateral segregation by length occurs and can be visualized by fluorescence interference contrast microscopy making this an interesting model for interactions that occur in cell junctions. In both cases, lipid mobility is high and there is a negligible immobile fraction. Thus, these architectures offer a flexible platform for the assembly of lipid bilayers at a well-defined distance from a solid support.  相似文献   

9.
The absorption and spreading behavior of lipid vesicles composed of either palmitoyloleoylphosphatidylcholine (POPC) or Escherichia coli lipid upon contact with a glass surface was examined by fluorescence measurements. Fluorescently labeled lipids were used to determine 1) the amount of lipid adsorbed at the surface, 2) the extent of fusion of the vesicles upon contact with the surface, 3) the ability of the adsorbed lipids to undergo lateral diffusion, and 4) the accessibility of the adsorbed lipids by external water soluble molecules. The results of these measurements indicate that POPC vesicles spread on the surface and form a supported planar bilayer, whereas E. coli lipid vesicles adsorb to the surface and form a supported vesicle layer. Supported planar bilayers were found to be permeable for small molecules, whereas supported vesicles were impermeable and thus represented immobilized, topologically separate compartments.  相似文献   

10.
A variety of proteins have been studied for their ability to interact and alter the thermotropic properties of phospholipid bilayer membranes as detected by differential scanning calorimeter. The proteins studied included: basic myelin protein (A1 protein), cytochrome c, major apoprotein of myelin proteolipid (N-2 apoprotein), gramicidin A, polylysine, ribonuclease and hemoglobin. The lipids used for the interactions were dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol. The interactions were grouped in three catagories each having very different effects on the phospholipid phase transition from solid to liquid crystalline. The calorimetric studies were also correlated with data from vesicle permeability and monolayer expansion. Ribonuclease and polylysine which exemplify group 1 interactions, show strong dependence on electrostatic binding. Their effects on lipid bilayers include an increase in the enthalpy of transition (deltaH) accompanied by either an increase or no change in the temperature of transition (Tc). In addition, they show minimal effects on vesicle permeability and monolayer expansion. It was concluded that these interactions represent simple surface binding of the protein on the lipid bilayer without penetration into the hydrocarbon region. Cytochrome c and A1 protein, which exemplify group 2 interactions, also show a strong dependence on the presence of net negative charges on the lipid bilayers for their binding. In contrast to the first group, however, they induce a drastic decrease in both Tc and deltaH of the lipid phase transition. Furthermore, they induce a large increase in the permeability of vesicles and a substantial expansion in area of closely packed monolayers at the air-water interface. It was concluded that group 2 interactions represent surface binding followed by partial penetration and/or deformation of the bilayer. Group 3 interactions, shown by proteolipid apoprotein and gramicidin A, were primarily non-polar in character, not requiring electrostatic charges and not inhibited by salt and pH changes. They had no appreciable effect on the Tc but did induce a linear decrease in the magnitude of the deltaH, proportional to the percentage of protein by weight. Membranes containing 50% proteolipid protein still exhibited a thermotropic transition with a deltaH one half that of the pure lipid, and only a small diminution of the size of the cooperative unit. It was concluded that in this case the protein was embedded within the bilayer, associating with a limited number of molecules via non-polar interactions, while the rest of the bilayer was largely unperturbed.  相似文献   

11.
Q Yang  Y Guo  L Li    S W Hui 《Biophysical journal》1997,73(1):277-282
The effect of lipid headgroup and curvature-related acyl packing stress on PEG-induced phospholipid vesicle aggregation and fusion were studied by measuring vesicle and aggregate sizes using the quasi-elastic light scattering and fluorescence energy transfer techniques. The effect of the lipid headgroup was monitored by varying the relative phosphatidylcholine (PC) and phosphatidylethanolamine (PE) contents in the vesicles, and the influence of hydrocarbon chain packing stress was controlled either by the relative amount of PE and PC content in the vesicles, or by the degree of unsaturation of the acyl chains of a series of PEs, e.g., dilinoleoylphosphatidylethanolamine (dilin-PE), lysophosphatidylethanolamine (lyso-PE), and transacylated egg phosphatidylethanolamine (TPE). The PEG threshold for aggregation depends only weakly on the headgroup composition of vesicles. However, in addition to the lipid headgroup, the curvature stress of the monolayer that forms the vesicle walls plays a very important role in fusion. Highly stressed vesicles, i.e., vesicles containing PE with highly unsaturated chains, need less PEG to induce fusion. This finding applies to the fusion of both small unilamellar vesicles and large unilamellar vesicles. The effect of electrostatic charge on vesicle aggregation and fusion were studied by changing the pH of the vesicle suspension media. At pH 9, when PE headgroups are weakly charged, increasing electrostatic repulsion between headgroups on the same bilayer surface reduces curvature stress, whereas increasing electrostatic repulsion between apposing bilayer headgroups hinders intervesicle approach, both of which inhibit aggregation and fusion, as expected.  相似文献   

12.
Synaptotagmin I (syt), an integral protein of the synaptic vesicle membrane, is believed to act as a Ca2+ sensor for neuronal exocytosis. Syt's cytoplasmic domain consists largely of two C2 domains, C2A and C2B. In response to Ca2+ binding, the C2 domains interact with membranes, becoming partially embedded in the lipid bilayer. We have imaged syt C2AB in association with lipid bilayers under fluid, using AFM. As expected, binding of C2AB to bilayers required both an anionic phospholipid [phosphatidylserine (PS)] and Ca2+. C2AB associated with bilayers in the form of aggregates of varying stoichiometries, and aggregate size increased with an increase in PS content. Repeated scanning of bilayers revealed that as C2AB dissociated it left behind residual indentations in the bilayer. The mean depth of these identations was 1.81 nm, indicating that they did not span the bilayer. Individual C2 domains (C2A and C2B) also formed aggregates and produced bilayer indentations. Binding of C2AB to bilayers and the formation of indentations were significantly compromised by mutations that interfere with binding of Ca2+ to syt or reduce the positive charge on the surface of C2B. We propose that bilayer perturbation by syt might be significant with respect to its ability to promote membrane fusion.  相似文献   

13.
The interaction of botulinum neurotoxins serotypes A, B and E (from Clostridium botulinum) and of tetanus neurotoxin (from Clostridium tetani) with the surface of liposomes made of different lipid compositions was studied by photolabelling with a radioiodinated photoactive phosphatidylethanolamine analogue [125I-dipalmitoyl (3,4-azidosalicylamido)phosphatidylethanolamine]. When the vesicles were made of negatively charged lipids (asolectin), each of these neurotoxic proteins was radioiodinated, thus providing evidence for their attachment to the membrane surface. The presence of gangliosides on liposome membranes enhanced fixation of the neurotoxic proteins to the lipid vesicle surface. Both the heavy and light chains of the clostridial neurotoxins were involved in the attachment to the lipid bilayer surface. Each of the toxins tested here attached poorly to liposomes made of zwitterionic lipids (egg phosphatidylcholine), even when polysialogangliosides were present. The data suggest that the binding of botulinum and tetanus neurotoxins to their target neuronal cells involves negatively charged lipids and polysialogangliosides on the cell membrane.  相似文献   

14.
J Wilschut  S Nir  J Scholma  D Hoekstra 《Biochemistry》1985,24(17):4630-4636
We have investigated the kinetics of Ca2+-induced aggregation and fusion of large unilamellar vesicles composed of an equimolar mixture of bovine heart cardiolipin and dioleoylphosphatidylcholine. Mixing of bilayer lipids was monitored with an assay based on resonance energy transfer (RET) and mixing of aqueous vesicle contents with the Tb/dipicolinate assay. The results obtained with either assay were analyzed in terms of a mass action kinetic model, providing separate rate constants for vesicle aggregation and for the fusion reaction proper. At different Ca2+ concentrations, either at 25 degrees C or at 37 degrees C, aggregation rate constants derived from the data obtained with the RET assay were the same as those derived from the Tb/dipicolinate data, indicating that mixing of bilayer lipids occurred only during vesicle aggregation events that resulted in mixing of aqueous contents as well. At 25 degrees C, identical fusion rate constants were obtained with either assay, indicating that at this temperature the probability of lipid mixing and that of aqueous contents mixing, occurring after vesicle aggregation, were the same. The fusion rate constants for the RET assay increased more steeply with increasing temperature than the fusion rate constants derived from the Tb/dipicolinate data. As a result, at 37 degrees C the tendency of the vesicles, after aggregation, to mix lipids was slightly higher than their tendency to mix aqueous contents. The aggregation rate constants increased steeply with Ca2+ concentrations increasing in a narrow range (9.5-11 mM), indicating that, in addition to a Ca2+-dependent charge neutralization on the vesicle surface, structural changes in the lipid bilayer are involved in the aggregation process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Cryoelectron microscopy has been used to study the reorganization of unilamellar cationic lipid vesicles upon the addition of DNA. Unilamellar DNA-coated vesicles, as well as multilamellar DNA lipid complexes, could be observed. Also, DNA induced fusion of unilamellar vesicles was found. DNA appears to adsorb to the oppositely charged lipid bilayer in a monolayer of parallel helices and can act as a molecular "glue" enforcing close apposition of neighboring vesicle membranes. In samples with relatively high DNA content, there is evidence for DNA-induced aggregation and flattening of unilamellar vesicles. In these samples, multilamellar complexes are rare and contain only a small number of lamellae. At lower DNA contents, large multilamellar CL-DNA complexes, often with >10 bilayers, are formed. The multilamellar complexes in both types of sample frequently exhibit partially open bilayer segments on their outside surfaces. DNA seems to accumulate or coil near the edges of such unusually terminated membranes. Multilamellar lipid-DNA complexes appear to form by a mechanism that involves the rupture of an approaching vesicle and subsequent adsorption of its membrane to a "template" vesicle or a lipid-DNA complex.  相似文献   

16.
We studied aggregate transport through semipermeable, nano-porous barriers experimentally and theoretically. By measuring and modeling the effect of hydration gradient across such barriers, spontaneous transbarrier transport of suitable lipid aggregates in vesicular form was proven to be driven by partial aggregate dehydration at the application site. By generalizing the Onsager transport model we derived a set of equations that rationalize all pertinent observations. Dehydration-induced vesicle motion starts with a lag time. This corresponds to the time needed to reach the limiting vesicle hydration; both are proportional to the starting excess water volume and decrease with increasing relative humidity at application site. The rate of transbarrier transport is insensitive to these parameters but increases with vesicle deformability and volume exchange capability. Both these properties depend on membrane composition. Reversible demixing of bilayer components is the cause of nonlinear bilayer characteristics and also potentially affects the effective membrane hydrophilicity. High hydrophilicity of vesicle surface and extreme aggregate shape adaptability together are necessary for successful material transport across the skin. This demonstrates the significance of basic biophysical investigations for better understanding of biological systems and for the practical use of artificial, nature-inspired carriers in drug delivery.  相似文献   

17.
J Bramhall 《Biochemistry》1986,25(13):3958-3962
The amphiphilic fluorescent dye N-[(5-dimethylamino)naphth-1-ylsulfonyl]glycine (dansylglycine) can be used to monitor the magnitude and stability of transmembrane proton gradients. Although freely soluble in aqueous media, the dye readily adsorbs to the surfaces of lipid vesicles. Because membrane-bound dye fluoresces at a higher frequency, and with greater efficiency, than dye in aqueous solution, it is easy to isolate the fluorescence emission from those dye molecules adsorbed to the lipid surface. When dansylglycine is mixed with phospholipid vesicles, the dye molecules attain a partition equilibrium between buffer and the outer, proximal surface of the vesicles. This is a rapid, diffusion-limited process that is indicated by a fast phase of fluorescence intensity increase monitored at 510 nm. In a second step, the inner, distal surface of each vesicle becomes populated with dye, a process that involves permeation through the lipid bilayer and that is generally much slower than the original adsorption step. Dansylglycine is a weak acid that permeates as an electrically neutral species; the flux of dye across the bilayer is thus strongly dependent on the degree of protonation of the dye's carboxylate moiety. When the external pH is lower than that of the vesicle lumen, the inward flux of dye is greater than that in the opposite direction, and dye accumulates in the lumen. This leads to a local elevation of dansylglycine concentration in the inner membrane monolayer, which in turn results in an elevated fluorescence intensity proportional to the membrane pH gradient.  相似文献   

18.
A variety of proteins have been studied for their ability to interact and alter the thermotropic properties of phospholipid bilayer membranes as detected by differential scanning calorimeter. The proteins studied included: basic myelin protein (A1 protein), cytochrome c, major apoprotein of myelin proteolipid (N-2 apoprotein), gramicidin A, polylysine, ribonuclease and hemoglobin. The lipids used for the interactions were dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol. The interactions were grouped in three categories each having very different effects on the phospholipid phase transition from solid to liquid crystalline. The calorimetric studies were also correlated with data from vesicle permeability and monolayer expansion.Ribonuclease and polylysine which exemplify group 1 interactions, show strong dependence on electrostatic binding. Their effects on lipid bilayers include an increase in the enthalpy of transition (ΔH) accompanied by either an increase or no change in the temperature of transition (Tc). In addition, they show minimal effects on vesicle permeability and monolayer expansion. It was concluded that these interactions represent simple surface binding of the protein on the lipid bilayer without penetration into the hydrocarbon region.Cytochrome c and Al protein, which exemplify group 2 interactions, also show a strong dependence on the presence of net negative charges on the lipid bilayers for their binding. In contrast to the first group, however, they induce a drastic decrease in both Tc and ΔH of the lipid phase transition. Furthermore, they induce a large increase in the permeability of vesicles and a substantial expansion in area of closely packed monolayers at the air-water interface. It was concluded that group 2 interactions represent surface binding followed by partial penetration and/or deformation of the bilayer.Group 3 interactions, shown by proteolipid apoprotein and gramicidin A, were primarily non-polar in character, not requiring electrostatic charges and not inhibited by salt and pH changes. They had no appreciable effect on the Tc but did induce a linear decrease in the magnitude of the ΔH, proportional to the percentage of protein by weight. Membranes containing 50% proteolipid protein still exhibited a thermotropic transition with a ΔH one half that of the pure lipid, and only a small diminution of the size of the cooperative unit. It was concluded that in this case the protein was embedded within the bilayer, associating with a limited number of molecules via non-polar interactions, while the rest of the bilayer was largely unperturbed.  相似文献   

19.
Galactosylceramide (GalCer), a glycosphingolipid, is believed to exist in the extracellular leaflet of cell membranes in nanometer-sized domains or rafts. The local clustering of GalCer within rafts is thought to facilitate the initial adhesion of certain viruses, including HIV-1, and bacteria to cells through multivalent interactions between receptor proteins (gp120 for HIV-1) and GalCer. Here we use atomic force microscopy (AFM) to study the effects of cholesterol on solid-phase GalCer domain microstructure and miscibility with a fluid lipid 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) in supported lipid bilayers. Using "slow-cooled vesicle fusion" to prepare the supported lipid bilayers, we were able to overcome the nonequilibrium effects of the substrate (verified by comparison to results for giant unilamellar vesicles) and accurately quantify the dramatic effect of cholesterol on the GalCer domain surface area/perimeter ratio (A(D)/P) and DLPC-GalCer miscibility. We compare these results to a supported lipid bilayer system in which the bilayer is rapidly cooled (nonequilibrium conditions), "quenched vesicle fusion", and find that the microstructures are remarkably similar above a cholesterol mol fraction of approximately 0.06. We determined that GalCer domains were contained in one leaflet distal to the mica substrate through qualitative binding experiments with Trichosanthes kirilowii agglutinin (TKA), a galactose-specific lectin, and AFM of Langmuir-Blodgett deposited GalCer/DLPC supported lipid bilayers. In addition, GalCer domains in bilayers containing cholesterol rearranged upon tip-sample contact. Our results further serve to clarify why discrepancies exist between different model membrane systems and between model membranes and cell membranes. In addition, these results offer new insight into the effect of cholesterol and surrounding lipid on domain microstructure and behavior. Finally, our observations may be pertinent to cell membrane structure, dynamics, and HIV infection.  相似文献   

20.
Four amino acid dicarboxylic amphiphiles which contain cysteine or homocysteine were synthesized. Each forms synthetic bilayer membranes upon hydration. Extensive sonication above the lipid phase transition temperature, 61 to 82 degrees C, produced 1000 A diameter vesicles. Treatment of the vesicles with water-soluble carbodiimides during and after sonication induced oligopeptide formation at the vesicle surface with retention of vesicle size and shape. Size exclusion chromatography indicates the products are predominantly di- to decapeptides. The permeability characteristics of the amino acid and peptide vesicles to [3H]glucose and 6-carboxyfluorescein are reported. The amino acid vesicles are among the least permeable nonpolymerized bilayer vesicles described in the literature to date. Formation of the peptide vesicles increases the membrane permeability, whereas in other polymerizable lipid vesicles the permeability decreases upon polymerization. The amino acid vesicles can be immobilized on Sephadex beads by reaction with carbodiimide. The impermeability, biodegradability, and ease of immobilization make this class of vesicles attractive materials for the encapsulation of reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号