首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Previous studies have demonstrated that neutralization of macrophage migration inhibitory factor (MIF) by anti-MIF antibody decreases joint destruction in the collagen-induced arthritis model. The present study was undertaken to investigate whether selective deletion of MIF inhibits inflammation and joint destruction of the anti-type II collagen antibody (anti-CII Ab)/lipopolysaccharide (LPS)-induced arthritis in mice, in order to determine the role of this cytokine in inflammatory arthritis. DESIGN: Anti-CII Ab/LPS-induced arthritis was induced in MIF-deficient and wild-type mice. The effects of anti-MIF polyclonal antibody administration on anti-CII Ab-induced arthritis were also evaluated. RESULTS: The expression of MIF protein and mRNA was induced in anti-CII Ab/LPS-induced arthritis joint tissues. Histopathological arthritis scores for synovial inflammation induced by anti-CII Ab/LPS -induced arthritis were significantly decreased in anti-MIF Ab-treated mice and in MIF-deficient mice compared to wild-type mice. In addition, mRNA levels of MMP-13 and MIP-2 in anti-CII Ab/LPS-induced arthritis joint tissues were significantly reduced in MIF-deficient mice compared to wild-type control mice. CONCLUSIONS: These results indicate that MIF plays a critical role in inflammation and joint destruction in the anti-CII Ab/LPS-induced arthritis model in mice, in part via induction of MMP-13 and neutrophil infiltration through the induction of MIP-2.  相似文献   

2.
Matrix metalloproteinases (MMPs) are a large group of enzymes responsible for matrix degradation. Among them, the family of gelatinases (MMP-2/gelatinase A and MMP-9/gelatinase B) is overproduced in the joints of patients with rheumatoid arthritis. Because of their degradative effects on the extracellular matrix, gelatinases have been believed to play an important role in progression and cartilage degradation in this disease, although their precise roles are yet to be defined. To clarify these roles, we investigated the development of Ab-induced arthritis, one of the murine models of rheumatoid arthritis, in MMP-2 or MMP-9 knockout (KO) mice. Surprisingly, the MMP-2 KO mice exhibited severe clinical and histologic arthritis than wild-type mice. The MMP-9 KO mice displayed milder arthritis. Recovery from exacerbated arthritis in the MMP-2 KO mice was possible by injection of wild-type fibroblasts. These results indicated a suppressive role of MMP-2 and a pivotal role of MMP-9 in the development of inflammatory joint disease.  相似文献   

3.
Arthritis is a common autoimmune disease that is associated with progressive disability, systemic complications and early death. However, the underling mechanisms of arthritis are still unclear. Sirtuins are a NAD+-dependent class III deacetylase family, and regulate cellular stress, inflammation, genomic stability, carcinogenesis, and energy metabolism. Among the sirtuin family members, Sirt1 and Sirt6 are critically involved in the development of arthritis. It remains unknown whether other sirtuin family members participate in arthritis. Here in this study, we demonstrate that Sirt2 inhibits collagen-induced arthritis (CIA) using in vivo and in vitro evidence. The protein and mRNA levels of Sirt2 significantly decreased in joint tissues of mice with CIA. When immunized with collagen, Sirt2-KO mice showed aggravated severity of arthritis based on clinical scores, hind paw thickness, and radiological and molecular findings. Mechanically, Sirt2 deacetylated p65 subunit of nuclear factor-kappa B (NF-κB) at lysine 310, resulting in reduced expression of NF-κB-dependent genes, including interleukin 1β (IL-1β), IL-6, monocyte chemoattractant protein 1(MCP-1), RANTES, matrix metalloproteinase 9 (MMP-9) and MMP-13. Importantly, our rescue experiment showed that Sirt2 re-expression abated the severity of arthritis in Sirt2-KO mice. Those findings strongly indicate Sirt2 as a considerably inhibitor of the development of arthritis.  相似文献   

4.
5.

Introduction

Matrix metalloproteinases (MMPs) are important in tissue remodelling. Here we investigate the role of collagenase-3 (MMP-13) in antibody-induced arthritis.

Methods

For this study we employed the K/BxN serum-induced arthritis model. Arthritis was induced in C57BL/6 wild type (WT) and MMP-13-deficient (MMP-13–/–) mice by intraperitoneal injection of 200 μl of K/BxN serum. Arthritis was assessed by measuring the ankle swelling. During the course of the experiments, mice were sacrificed every second day for histological examination of the ankle joints. Ankle sections were evaluated histologically for infiltration of inflammatory cells, pannus tissue formation and bone/cartilage destruction. Semi-quantitative PCR was used to determine MMP-13 expression levels in ankle joints of untreated and K/BxN serum-injected mice.

Results

This study shows that MMP-13 is a regulator of inflammation. We observed increased expression of MMP-13 in ankle joints of WT mice during K/BxN serum-induced arthritis and both K/BxN serum-treated WT and MMP-13–/– mice developed progressive arthritis with a similar onset. However, MMP-13–/– mice showed significantly reduced disease over the whole arthritic period. Ankle joints of WT mice showed severe joint destruction with extensive inflammation and erosion of cartilage and bone. In contrast, MMP-13–/– mice displayed significantly decreased severity of arthritis (50% to 60%) as analyzed by clinical and histological scoring methods.

Conclusions

MMP-13 deficiency acts to suppress the local inflammatory responses. Therefore, MMP-13 has a role in the pathogenesis of arthritis, suggesting MMP-13 is a potential therapeutic target.  相似文献   

6.
Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.  相似文献   

7.
The exoproteases of Staphylococcus aureus have been proposed as virulence factors during S. aureus infections. To investigate this, we used the wild-type S. aureus strain 8325-4 and its mutants devoid of aureolysin, serine protease, and cysteine protease, respectively, in a well-established model of septic arthritis in mice. The inactivation of the exoprotease genes did not affect the frequency or the severity of joint disease. We conclude that in the model of haematogenously spread staphylococcal arthritis, the bacterial proteases studied do not act as virulence factors.  相似文献   

8.
In rheumatoid arthritis, a significant proportion of cytokine and chemokine synthesis is attributed to innate immune mechanisms. TLR4 is a prominent innate receptor since several endogenous ligands known to activate the innate immune system bind to it and may thereby promote joint inflammation. We generated TLR4 deficient DBA1J mice by backcrossing the TLR4 mutation present in C3H/HeJ strain onto the DBA1J strain and investigated the course of collagen-induced arthritis in TLR4 deficient mice in comparison to wild type littermates. The incidence of collagen- induced arthritis was significantly lower in TLR4 deficient compared to wild type mice (59 percent vs. 100 percent). The severity of arthritis was reduced in the TLR4 deficient mice compared to wild type littermates (mean maximum score 2,54 vs. 6,25). Mice deficient for TLR4 were virtually protected from cartilage destruction, and infiltration of inflammatory cells was reduced compared to wt mice. In parallel to the decreased clinical severity, lower anti-CCP antibody concentrations and lower IL-17 concentrations were found in the TLR4 deficient mice. The study further supports the role of TLR4 in the propagation of joint inflammation and destruction. Moreover, since deficiency in TLR4 led to decreased IL-17 and anti-CCP antibody production, the results indicate a link between TLR4 stimulation and the adaptive autoimmune response. This mechanism might be relevant in human rheumatoid arthritis, possibly in response to activating endogenous ligands in the affected joints.  相似文献   

9.
IL-27 is the newest member of the cytokine family comprised of IL-12 and IL-23. IL-27 was originally described as a cytokine that along with IL-12 induces the differentiation of naive precursor T cells into Th1 effector cells. This activity has been called into question based on evidence in infectious disease and autoimmune models in which IL-27 is not absolutely required for the generation of IFN-gamma, and IL-27 plays a regulatory role in controlling inflammation. We have previously reported in proteoglycan-induced arthritis (PGIA), a model of rheumatoid arthritis, that severe arthritis is dependent on the production of IFN-gamma. In this study, we report that IL-27 was expressed in spleen and joint tissues of arthritic mice. We determined the involvement of IL-27 in PGIA by assessing the progression of arthritis in IL-27R-/- mice. Development of arthritis in IL-27R-/- mice was delayed and severity reduced in comparison with IL-27R+/+ littermate controls. Histology confirmed a reduction in joint cellularity, cartilage destruction, and bone erosion. Diminished arthritis was associated with fewer T cells producing IFN-gamma and decreased IFN-gamma secretion overtime. Moreover, the frequency of IL-4- and IL-17-expressing T cells and the production of IL-4 and IL-17 were similar in IL-27R-/- mice and controls. Our results indicate that IL-27 is critically involved in the induction of inflammation in PGIA. IL-27 functions by inducing the differentiation of IFN-gamma-producing T cells in vivo that are essential for the development of arthritis.  相似文献   

10.
11.
Interleukin-10 (IL-10) exerts a wide spectrum of regulatory activities in the immune and inflammatory response. The aim of this study was to investigate the role of endogenous IL-10 in the modulation of the inflammatory response in mice subjected to collagen-induced arthritis. Collagen-induced arthritis (CIA) was induced in mice lacking the gene for IL-10 (IL-10 "knock-out", IL-10KO) and in wild-type control (IL-10WT) mice by an intradermal injection of 100 mul of the emulsion (containing 100 mug of bovine type II collagen) (CII) and complete Freund's adjuvant (CFA) at the base of the tail. On day 21, a second injection of CII in CFA was administered. IL-10 wild type (WT) mice developed an erosive, hind paw arthritis when immunised with CII in CFA. Macroscopic clinical evidence of CIA first appeared as peri-articular erythema and oedema in the hind paws. The incidence of CIA was 100% by day 27 in the CII-challenged IL-10WT. The severity of CIA progressed over a 35-day period, with radiographic evaluation revealing focal resorption of bone. The histopathology of CIA included erosion of the cartilage at the joint margins. IL-10KO mice experienced higher rates of clinical signs and more severe knee and paw injury as compared to IL-10WT. The degree of oxidative and nitrosative damage was significantly higher in IL-10KO mice than in wild-type littermates, as indicated by elevated malondialdehyde levels and formation of nitrotyrosine and poly (ADP-ribose) synthetase (PARS). Plasma levels of the proinflammatory cytokines, tumour necrosis factor, interleukin-1beta and interleukin-6 were also greatly enhanced in comparison to wild-type mice. These data demonstrate that endogenous IL-10 exerts an anti-inflammatory role during chronic inflammation and tissue damage associated with collagen-induced arthritis, possibly by regulating neutrophil recruitment, and the subsequent cytokine and oxidant generation.  相似文献   

12.
To investigate the relevance of gelatinase-B (matrix metalloproteinase 9, MMP-9) in gouty arthritis (GA), we tested the occurrence of MMP-9 in GA patients and cell culture system. Gelatinolytic activity in the synovial fluid (SF) of patients with different kinds of arthritis was assessed by gelatin zymography. A predominant 92-kDa MMP-9 gelatinolytic activity was evident in rheumatoid arthritis (RA) and GA samples, but no activity was observed in osteoarthritis (OA) samples. Among the 53 SF samples (9 RA, 24 GA, and 20 OA) analyzed for MMP-9 and tissue inhibitor of metalloproteinase (TIMP-1) antigen levels by ELISA, MMP-9 antigen levels were elevated tenfold in GA SF compared with OA SF. In addition, GA synovial tissue extracts revealed elevated levels of MMP-9 expression as compared to OA tissue extracts by Western blot and RT-PCR analysis. Immunohistochemical studies demonstrated that MMP-9 immunoreactivity was more intense in GA than in OA synovial tissues. Furthermore, macrophages activation by gouty crystals in vitro was examined. Crystals stimulated MMP-9 gene expression in macrophage cell line and such stimulation was suppressed by PD98059. These findings suggest that the abnormal production of MMP-9 by macrophages is a reflection of the pathological conditions in joints of patients with GA, and that the activation of MMP-9 in the joint is known to play an important role in joint disease.  相似文献   

13.
It has previously been shown that matrix metalloproteinase-9 (MMP-9) levels, originating from macrophages, are considerably increased in human Helicobacter pylori-associated gastritis. Here, the early kinetics of the MMP-9 response resulting from Helicobacter infection in C57BL/6 and MMP-9 knock-out mice using the murine Helicobacter felis model were examined. H. felis infection induced severe gastritis in the murine stomach at just 2 weeks after infection. Before gastritis, an increase was observed in MMP-9-positive cells detected by immunohistochemistry in the basal lamina propria. This finding was corroborated by gelatin zymography of stomach samples. As the gastritis increased so did the concentration of MMP-9 and the incidence of gastric MMP-9-positive cells, their location corresponding to that of macrophages. In contrast, systemic levels of MMP-9 remained unchanged. When MMP-9-deficient mice were infected with H. felis, no significant difference in gastritis development was detected compared with disease development in wild-type animals. We conclude that MMP-9 production is an early event in the response to gastric Helicobacter infection, a feature that may favor the recruitment of immune cells early during infection. At later stages, however, the increased levels of MMP-9 may damage the integrity of the stomach mucosa.  相似文献   

14.
《Life sciences》1994,55(12):PL233-PL237
Subcutaneous injection of Staphylococcal enterotoxine B (SEB) produced by Staphylococcus aureus, caused severe arthritis in DBA/1J mice which had been previously immunizated with bovine type II collagen. The severity of this arthritis was dose dependent and prolonged joint inflammation with erosion of bone was observed. Anti-type II collagen antibodies were detected in the serum of arthritic mice. Effector T cells against type II collagen were also detected by means of delayed type hypersensitivity in the skin. Moreover, a significant decrease in the ratio between T cells and B cells and an increase in the ratio between CD4+ cells and CD8+ cells was observed in spleen cells from arthritic mice. Prednisolone supresses the induction and development of clinical signs of arthritis in mice. This evidence suggests that this experimental arthritis model may provide a means to examine the role of superantigens and the efficacy of pharmacological agents for the treatment of rheumatoid arthritis.  相似文献   

15.
Several lines of evidence speak for an important role of matrix metalloproteinases (MMPs) in the development of progressive joint destruction. To better understand the role of MMPs and their tissue inhibitors (TIMPs) in this process, we have used the antigen-induced arthritis model to study the temporospatial expression of several MMPs and TIMPs during the progression of arthritis. Arthritis was induced by a single intra-articular injection of methylated bovine serum albumin (mBSA) into one or both knee joints of adult mice previously immunised against mBSA. Samples were collected at 3, 7, 21 and 42 days after induction of arthritis for histology and RNA extraction, and analysed by Northern hybridisation, histochemistry and immunohistochemistry for production of several MMPs and TIMPs −1, −2 and −3. A systematic analysis of MMP and TIMP mRNA levels in mouse knee joints demonstrated a general upregulation of both MMPs and TIMPs during progression of arthritis. Upregulation of MMP-9, −13 and −14 coincided with the advancement of cartilage degeneration, but the expression patterns of MMP-9 and −13 also followed the course of synovial inflammation. TIMPs were steadily upregulated throughout the examination period. Immunohistochemical localisation of MMPs and TIMPs suggested the synovium to be the major source of MMP and TIMP production in arthritis, although articular cartilage chondrocytes also showed an increased production of both MMPs and TIMPs.  相似文献   

16.
We have earlier shown that clumping factor A (ClfA), a fibrinogen binding surface protein of Staphylococcus aureus, is an important virulence factor in septic arthritis. When two amino acids in the ClfA molecule, P(336) and Y(338), were changed to serine and alanine, respectively, the fibrinogen binding property was lost. ClfAP(336)Y(338) mutants have been constructed in two virulent S. aureus strains Newman and LS-1. The aim of this study was to analyze if these two amino acids which are vital for the fibrinogen binding of ClfA are of importance for the ability of S. aureus to generate disease. Septic arthritis or sepsis were induced in mice by intravenous inoculation of bacteria. The clfAP(336)Y(338) mutant induced significantly less arthritis than the wild type strain, both with respect to severity and frequency. The mutant infected mice developed also a much milder systemic inflammation, measured as lower mortality, weight loss, bacterial growth in kidneys and lower IL-6 levels. The data were verified with a second mutant where clfAP(336) and Y(338) were changed to alanine and serine respectively. When sepsis was induced by a larger bacterial inoculum, the clfAP(336)Y(338) mutants induced significantly less septic death. Importantly, immunization with the recombinant A domain of ClfAP(336)SY(338)A mutant but not with recombinant ClfA, protected against septic death. Our data strongly suggest that the fibrinogen binding activity of ClfA is crucial for the ability of S. aureus to provoke disease manifestations, and that the vaccine potential of recombinant ClfA is improved by removing its ability to bind fibrinogen.  相似文献   

17.
Murine Mycoplasma pulmonis infection induces chronic lung and airway inflammation accompanied by profound and persistent microvascular remodeling in tracheobronchial mucosa. Because matrix metalloproteinase (MMP)-2 and -9 are important for angiogenesis associated with placental and long bone development and skin cancer, we hypothesized that they contribute to microvascular remodeling in airways infected with M. pulmonis. To test this hypothesis, we compared microvascular changes in airways after M. pulmonis infection of wild-type FVB/N mice with those of MMP-9(-/-) and MMP-2(-/-)/MMP-9(-/-) double-null mice and mice treated with the broad-spectrum MMP inhibitor AG3340 (Prinomastat). Using zymography and immunohistochemistry, we find that MMP-2 and MMP-9 rise strikingly in lungs and airways of infected wild-type FVB/N and C57BL/6 mice, with no zymographic activity or immunoreactivity in MMP-2(-/-)/MMP-9(-/-) animals. However, microvascular remodeling as assessed by Lycopersicon esculentum lectin staining of whole-mounted tracheae is as severe in infected MMP-9(-/-), MMP-2(-/-)/MMP-9(-/-) and AG3340-treated mice as in wild-type mice. Furthermore, all groups of infected mice develop similar inflammatory infiltrates and exhibit similar overall disease severity as indicated by decrease in body weight and increase in lung weight. Uninfected wild-type tracheae show negligible MMP-2 immunoreactivity, with scant MMP-9 immunoreactivity in and around growing cartilage. By contrast, MMP-2 appears in epithelial cells of infected, wild-type tracheae, and MMP-9 localizes to a large population of infiltrating leukocytes. We conclude that despite major increases in expression, MMP-2 and MMP-9 are not essential for microvascular remodeling in M. pulmonis-induced chronic airway inflammation.  相似文献   

18.
Matrix metalloproteinases (MMPs) are a large family of endopeptidases that proteolytically degrade extracellular matrix. Many different cells produce MMP-9, and levels have been shown to be up-regulated in patients with allergic asthma. The aim of this study was to investigate the in vivo role of MMP-9 during allergen-induced airway inflammation. Acute allergic pulmonary eosinophilia was established in MMP-9 knockout (KO) and wild-type (WT) control mice by sensitization and challenge with OVA. Cell recruitment was significantly increased in both bronchoalveolar lavage (BAL) and lung tissue compartments in MMP-9 KO mice compared with WT mice. This heightened cell recruitment was primarily due to increased eosinophils and Th2 cells in the BAL and lung tissue of MMP-9 KO mice in comparison with WT controls. Moreover, levels of the Th2 cytokines, IL-4 and IL-13, and the chemokines eotaxin/CCL11 and macrophage-derived chemokine/CCL22 were substantially increased in MMP-9 KO mice compared with WT after OVA challenge. Resolution of eosinophilia was similar between MMP-9 KO and WT mice, but Th2 cells persisted in BAL and lungs of MMP-9 KO mice for longer than in WT mice. Our results indicate that MMP-9 is critically involved in the recruitment of eosinophils and Th2 cells to the lung following allergen challenge, and suggest that MMP-9 plays a role in the development of Th2 responses to allergen.  相似文献   

19.

Introduction

Interleukin (IL)-33 is a cytokine of the IL-1 family, which signals through the ST2 receptor. Previous work suggested implication of the IL-33/ST2 axis in the pathogenesis of human and mouse arthritis. Here, we directly investigated the role of endogenous IL-33 in K/BxN serum transfer-induced arthritis by using IL-33 knockout (KO) mice.

Methods

Arthritis was induced by injection of complete K/BxN serum or purified IgG. Disease severity was monitored by clinical and histological scoring.

Results

K/BxN serum transfer induced pronounced arthritis with similar incidence and severity in IL-33 KO and wild-type (WT) mice. In contrast, disease development was significantly reduced in ST2 KO mice. IL-33 expression in synovial tissue was comparable in arthritic WT and ST2 KO mice, and absent in IL-33 KO mice. Transfer of purified arthritogenic IgG instead of complete K/BxN serum also resulted in similar arthritis severity in IL-33 KO and WT mice, excluding a contribution of IL-33 contained in the serum of donor mice to explain this result. We investigated additional potential confounding factors, including purity of genetic background, but the mechanisms underlying reduced arthritis in ST2 KO mice remained unclear.

Conclusions

The data obtained with IL-33 KO mice indicate that endogenous IL-33 is not required for the development of joint inflammation in K/BxN serum transfer-induced arthritis. On the contrary, arthritis severity was reduced in ST2 KO mice. This observation might relate to IL-33 independent effects of ST2, and/or reveal the existence of confounding variables affecting the severity of joint inflammation in these KO strains.  相似文献   

20.
P-selectin plays an important role in leukocyte adherence to microvascular endothelium and is expressed in synovial tissue from patients with rheumatoid arthritis (RA). However, the contribution of P-selectin to the initiation and chronicity of joint inflammation is not well understood. In these studies, collagen-induced arthritis (CIA) was induced in P-selectin mutant (-/-) mice to explore the role of P-selectin in the development of joint inflammation. Surprisingly, CIA onset was accelerated and severity was increased in P-selectin mutant mice, compared with wild-type mice (+/+). Increased levels of anti-type II collagen IgG were detected in both nonarthritic and arthritic P-selectin mutant mice from days 14-91. In addition, splenocytes isolated from immunized and nonimmunized P-selectin mutant mice produced significantly less IL-2 and IL-4, but significantly higher levels of IL-10 and IL-5 than splenocytes from wild-type mice. These observations show that P-selectin-mediated leukocyte rolling is not required for the development of murine CIA and that P-selectin expression exerts a controlling effect on the development of Ag-driven inflammatory joint disease, possibly by mediating the recruitment and/or trafficking of specific leukocyte subtypes into lymphoid tissue or inflammatory foci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号