首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When glucose is the carbon source, the white rot fungus Pycnoporus cinnabarinus produces a characteristic red pigment, cinnabarinic acid, which is formed by laccase-catalyzed oxidation of the precursor 3-hydroxyanthranilic acid. When P. cinnabarinus was grown on media containing cellobiose or cellulose as the carbon source, the amount of cinnabarinic acid that accumulated was reduced or, in the case of cellulose, no cinnabarinic acid accumulated. Cellobiose-dependent quinone reducing enzymes, the cellobiose dehydrogenases (CDHs), inhibited the redox interaction between laccase and 3-hydroxyanthranilic acid. Two distinct proteins were purified from cellulose-grown cultures of P. cinnabarinus; these proteins were designated CDH I and CDH II. CDH I and CDH II were both monomeric proteins and had apparent molecular weights of about 81,000 and 101,000, respectively, as determined by both gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The pI values were approximately 5.9 for CDH I and 3.8 for CDH II. Both CDHs used several known CDH substrates as electron acceptors and specifically adsorbed to cellulose. Only CDH II could reduce cytochrome c. The optimum pH values for CDH I and CDH II were 5.5 and 4.5, respectively. In in vitro experiments, both enzymes inhibited laccase-mediated formation of cinnabarinic acid. Oxidation intermediates of 3-hydroxyanthranilic acid served as endogenous electron acceptors for the two CDHs from P. cinnabarinus. These results demonstrated that in the presence of a suitable cellulose-derived electron donor, CDHs can regenerate fungal metabolites oxidized by laccase, and they also supported the hypothesis that CDHs act as links between cellulolytic and ligninolytic pathways.  相似文献   

2.
To isolate genes encoding coenzyme B12-dependent glycerol and diol dehydratases, metagenomic libraries from three different environmental samples were constructed after allowing growth of the dehydratase-containing microorganisms present for 48 h with glycerol under anaerobic conditions. The libraries were searched for the targeted genes by an activity screen, which was based on complementation of a constructed dehydratase-negative Escherichia coli strain. In this way, two positive E. coli clones out of 560,000 tested clones were obtained. In addition, screening was performed by colony hybridization with dehydratase-specific DNA fragments as probes. The screening of 158,000 E. coli clones by this method yielded five positive clones. Two of the plasmids (pAK6 and pAK8) recovered from the seven positive clones contained genes identical to those encoding the glycerol dehydratase of Citrobacter freundii and were not studied further. The remaining five plasmids (pAK2 to -5 and pAK7) contained two complete and three incomplete dehydratase-encoding gene regions, which were similar to the corresponding regions of enteric bacteria. Three (pAK2, -3, and -7) coded for glycerol dehydratases and two (pAK4 and -5) coded for diol dehydratases. We were able to perform high-level production and purification of three of these dehydratases. The glycerol dehydratases purified from E. coli Bl21/pAK2.1 and E. coli Bl21/pAK7.1 and the complemented hybrid diol dehydratase purified from E. coli Bl21/pAK5.1 were subject to suicide inactivation by glycerol and were cross-reactivated by the reactivation factor (DhaFG) for the glycerol dehydratase of C. freundii. The activities of the three environmentally derived dehydratases and that of glycerol dehydratase of C. freundii with glycerol or 1,2-propanediol as the substrate were inhibited in the presence of the glycerol fermentation product 1,3-propanediol. Taking the catalytic efficiency, stability against inactivation by glycerol, and inhibition by 1,3-propanediol into account, the hybrid diol dehydratase produced by E. coli Bl21/pAK5.1 exhibited the best properties of all tested enzymes for application in the biotechnological production of 1,3-propanediol.  相似文献   

3.
Mitochondria isolated from the taproot of beet (Beta vulgaris) were used in an effort to identify and partially purify the proteins constituting the exogenous NADH dehydrogenase. Three NAD(P)H dehydrogenases are released from these mitochondria by sonication, and these enzymes were partially purified using fast protein liquid chromatography. One of the enzymes, designated peak I, is capable of oxidizing NADPH and the β form of NADH. The other two activities, peaks II and III, oxidize only β-NADH. All three peaks are insensitive to divalent cation chelators and a complex I inhibitor, rotenone. The major component to peak I is a polypeptide with an apparent molecular mass of approximately 42 kilodaltons. Peak I activity was insensitive to platanetin, a specific inhibitor of the exogenous dehydrogenase, and insensitive to added Ca2+ or Mg2+. Peak I displayed a broad pH activity profile with an optimum between 7.5 and 8.0 for both NADPH and NADH. Purified peak II gave a single polypeptide of about 32 kilodaltons, had a pH optimum between 7.0 and 7.5, and was slightly stimulated by Ca2+ and Mg2+. As with peak I, platanetin had no effect on peak II activity. Peak III was not purified completely, but contained two major polypeptides with apparent molecular masses of 55 and 40 kilodaltons. This enzyme was not affected by Ca2+ and Mg2+, but was inhibited by platanetin. The peak III enzyme had a rather sharp pH optimum of approximately 6.5 to 6.6. The above data indicate that peak III activity is likely the exogenous NADH dehydrogenase.  相似文献   

4.
Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.  相似文献   

5.
Modulation of metamorphosis in barnacles in response to cues of biological origin is established. The bacteria associated with the barnacles also have a role in such modulations. We isolated the bacteria, Pseudomonas aeruginosa, Bacillus pumilus and Citrobacter freundii from the shell surface of Balanus amphitrite and assayed against its cypris larvae. The former species was promotory while the latter two inhibited cyprid metamorphosis. P. aeruginosa however, when tagged with lectins specific to glucose and its derivatives, mannose and fructofuranose negated the promotory effect. Whereas, tagging of galactose derivatives translated the inhibitory effect of B. pumilus and C. freundii into a promotory one showing that lectins can alter the signals in either direction. Galactose-binding lectins have been identified in the haemolymph of barnacles, which could find their way through the excretory system to the surface. The presence of such lectins could probably provide this organism with an ability to alter the signals or cues. Microscale patchiness of bacteria is also evident on surfaces in the sea. The availability of conflicting cues in patches may help pilot the larvae to their settlement destination. Understanding these controlling mechanisms and interfering with the pathways that are involved in lectin synthesis would be a step forward in antifouling technology.  相似文献   

6.
Marine Micrococcus luteus K-3 constitutively produced two salt-tolerant glutaminases, designated glutaminase I and II. Glutaminase I was homogeneously purified about approximately, 1620-fold with a 4% yield, and was a dimer with a molecular weight of about 86,000. Glutaminase II was partially purified about 190-fold with a 0.04% yield. The molecular weight of glutaminase II was also 86,000. Maximum activity of glutaminase I was observed at pH 8.0, 50°C and 8–16% NaCl. The optimal pH and temperature of glutaminase II were 8.5 and 50°C. The activity of glutaminase II was not affected by the presence of 8 to 16% NaCl. The presence of 10% NaCl enhanced thermal stability of glutaminase I. Both enzymes catalyzed the hydrolysis of l-glutamine, but not its hydroxylaminolysis. The Km values for l-glutamine were 4.4 (glutaminase I) and 6.5 mM (glutaminase II). Neither of the glutaminases were activated by the addition of 2 mM phosphate or 2 mM sulfate. p-Chloromercuribenzoate (0.01 mM) significantly inhibited glutaminase I, but not glutaminase II. The conserved sequences LA**V and V**GGT*A were observed in the N-terminal amino acid sequences of glutaminase I, similar to that for other glutaminases.  相似文献   

7.
Spermidine dehydrogenase found in the membrane fraction of Citrohacter freundii IFO 12681 was solubilized with Triton X-100 and further purified to homogeneity. The properties of the membrane enzyme were almost identical to those obtained from the soluble fraction of the organism with respect to molecular and catalytic properties. Thus, binding properties of the enzyme to the bacterial membrane were checked. The ratio of enzyme activity found in the soluble fraction to the membrane fraction was dependent on salt concentration during cell disruption. A hydrophobic interaction was largely involved in anchoring the enzyme to the membrane fraction. Purified spermidine dehydrogenase from the soluble fraction was readily adsorbed into the membrane fraction in the presence of salt. Spermidine dehydrogenase appeared to be a membrane-bound enzyme localized in the cytoplasmic membranes in a manner that makes a partial release of the enzyme possible during mechanical cell disruption. When spermidine oxidation was done with the resting cells of C. freundii, a stoichiometric formation of two reaction products, 1,3-diaminopropane and γ-aminobutyraldeyde, was observed without any lag time. These facts indicate that the enzyme is localized on the outer surface of the cytoplasmic membranes or in the periplasmic space of the organism.  相似文献   

8.
l-Hydroxyproline (4-hydroxyproline) mainly exists in collagen, and most bacteria cannot metabolize this hydroxyamino acid. Pseudomonas putida and Pseudomonas aeruginosa convert l-hydroxyproline to α-ketoglutarate via four hypothetical enzymatic steps different from known mammalian pathways, but the molecular background is rather unclear. Here, we identified and characterized for the first time two novel enzymes, d-hydroxyproline dehydrogenase and Δ1-pyrroline-4-hydroxy-2-carboxylate (Pyr4H2C) deaminase, involved in this hypothetical pathway. These genes were clustered together with genes encoding other catalytic enzymes on the bacterial genomes. d-Hydroxyproline dehydrogenases from P. putida and P. aeruginosa were completely different from known bacterial proline dehydrogenases and showed similar high specificity for substrate (d-hydroxyproline) and some artificial electron acceptor(s). On the other hand, the former is a homomeric enzyme only containing FAD as a prosthetic group, whereas the latter is a novel heterododecameric structure consisting of three different subunits (α4β4γ4), and two FADs, FMN, and [2Fe-2S] iron-sulfur cluster were contained in αβγ of the heterotrimeric unit. These results suggested that the l-hydroxyproline pathway clearly evolved convergently in P. putida and P. aeruginosa. Pyr4H2C deaminase is a unique member of the dihydrodipicolinate synthase/N-acetylneuraminate lyase protein family, and its activity was competitively inhibited by pyruvate, a common substrate for other dihydrodipicolinate synthase/N-acetylneuraminate lyase proteins. Furthermore, disruption of Pyr4H2C deaminase genes led to loss of growth on l-hydroxyproline (as well as d-hydroxyproline) but not l- and d-proline, indicating that this pathway is related only to l-hydroxyproline degradation, which is not linked to proline metabolism.  相似文献   

9.
The interaction with the cytoplasmic membrane of the inducible, membrane-bound, cytochrome-linked dehydrogenases specific for the oxidation of d-alanine, allohydroxy-d-proline, choline and sarcosine in Pseudomonas aeruginosa was investigated. The susceptibility of d-alanine dehydrogenase to solubilisation by cation depletion or by washing with high ionic strength buffers indicated that it was a peripheral membrane protein. The effect of various divalent cations in reducing the amount of enzyme released by cation depletion suggests a requirement for Mg2+ in the binding of d-alanine dehydrogenase to the cytoplasmic membrane. The peripheral nature of all four dehydrogenases was confirmed by examination of the molecular properties and phospholipid content of preparations of the enzymes solubilised with 1 M phosphate buffer (pH 7.0). Additional confirmatory evidence was provided by Arrhenius plots of membrane-bound activity of d-alanine and allohydroxy-d-proline dehydrogenases which were monophasic and independent of the discontinuities attributable to membrane lipid phase separations which characterise such plots of the activity of integral membrane-bound enzymes. The shape of the Arrhenius plots obtained for the activities of known integral respiratory proteins of P. aeruginosa suggests that these enzymes may remain in a fluid environment throughout the course of the phase separation.  相似文献   

10.
2-haloacid dehalogenases are enzymes that are capable of degrading 2-haloacid compounds. These enzymes are produced by bacteria, but so far they have only been purified and characterized from terrestrial bacteria. The present study describes the purification and characterization of 2-haloacid dehalogenase from the marine bacterium Pseudomonas stutzeri DEH130. P. Stutzeri DEH130 contained two kinds of 2-haloacid dehalogenase (designated as Dehalogenase I and Dehalogenase II) as detected in the crude cell extract after ammonium sulfate fractionation. Both enzymes appeared to exhibit stereo-specificity with respect to substrate. Dehalogenase I was a 109.9-kDa enzyme that preferentially utilized D-2-chloropropropionate and had optimum activity at pH 7.5. Dehalogenase II, which preferentially utilized L-2-chloropropionate, was further purified by ion-exchange chromatography and gel filtration. Purified Dehalogenase II appeared to be a dimeric enzyme with a subunit of 26.0-kDa. It had maximum activity at pH 10.0 and a temperature of 40 °C. Its activity was not inhibited by DTT and EDTA, but strongly inhibited by Cu2+, Zn2+, and Co2+. The K m and V max for L-2-chloropropionate were 0.3 mM and 23.8 μmol/min/mg, respectively. Its substrate specificity was limited to short chain mono-substituted 2-halocarboxylic acids, with no activity detected toward fluoropropionate and monoiodoacetate. This is the first report on the purification and characterization of 2-haloacid dehalogenase from a marine bacterium.  相似文献   

11.
Dye-linked ethanol dehydrogenases fromPseudomonas aeruginosa ATCC 17 933 andP. putida ATCC 17 421 were purified to homogeneity and crystallized. The amino acid composition of the two enzymes is very similar and the number of the aromatic amino acid residues found per subunit are almost identical.With respect to their catalytic and molecular properties both ethanol dehydrogenases are similar to the quinoprotein methanol dehydrogenases known from methylotrophic bacteria. They show a high pH-optimum, need ammonia or an amine as activator and are dimers of identical subunits of a molecular mass of 60 000. The dimer is the catalytically active form. Each subunit carries one prosthetic group pyrroloquinoline quinone, which can be titrated by the suicide substrate cyclopropanone ethylhemiketal. In contrast to the general methanol dehydrogenases the two ethanol dehydrogenases have a low affinity for methanol and in addition to primary alcohols they also oxidize secondary alcohols. With secondary alcohols preferentially one of the two enantiomers is oxidized.The catalytic and spectral properties of the two enzymes are very similar to the quinoprotein ethanol dehydrogenase isolated fromP. aeruginosa LMD 80.53 (Groen et al., 1984. Biochem. J. 223: 921–924). However this enzyme is reported to be a monomer of molecular mass 100 000.  相似文献   

12.
《BBA》1987,893(3):386-397
Three NAD(P)H dehydrogenases were found and purified from a soluble fraction of cells of the purple non-sulfur bacterium Rhodobacter capsulatus, strain B10. Molecular mass of NAD(P)H, NADPH and NADH dehydrogenases are 67 000 (4 · 18 000), 35 000 and 39 000, and the isoelectric points are 4.6, 4.3 and 4.5, respectively. NAD(P)H dehydrogenase is characterized by a higher sensitivity to quinacrine, NADPH dehydrogenase by its sensitivity to p-chloromercuribenzoate and NADH dehydrogenase by its sensitivity to sodium arsenite. In contrast to the other two enzymes, NAD(P)H dehydrogenase is capable of oxidizing NADPH as well as NADH, but the ratio of their oxidation rates depends on the pH. All NAD(P)H dehydrogenases reacted with ferricyanide, 2,6-dichlorophenolindophenol, benzoquinone and naphthoquinone, but did not exhibit transhydrogenase, reductase or oxidase activity. Moreover, NADH dehydrogenase was also capable of reducing FAD and FMN. NAD(P)H and NADH dehydrogenases possessed cytochrome-c reductase activity, which was stimulated by menadione and ubiquinone Q1. The activity of NAD(P)H and NADH dehydrogenases depended on culture-growth conditions. The activity of NAD(P)H dehydrogenase from cells grown under chemoheterotrophic aerobic conditions was the lowest and it increased notably under photoheterotrophic anaerobic conditions upon lactate or malate growth limitation. The activity of NADH dehydrogenase was higher from the cells grown under photoheterotrophic anaerobic conditions upon nitrate growth limitation and under chemoheterotrophic aerobic conditions. NADPH dehydrogenase synthesis dependence on R. capsulatus growth conditions was insignificant.  相似文献   

13.
Two polyhydroxyalkanoate depolymerases, PHAase I and PHAase II, were purified to homogeneity from the culture supernatant of an effective PHA-degrading bacterium, Pseudomonas mendocina DS04-T. The molecular masses of PHAase I and PHAase II were determined by SDS-PAGE as 59.4 and 33.8 kDa, respectively. Their optimum pH values were 8.5 and 8, respectively. Enzymatic activity was optimal at 50 °C. Both purified enzymes could degrade PHB, PHBV, and P(3HB-co-4HB). Addition of Na+ and K+ slightly increased the rate of PHAase II. EDTA significantly inhibited PHAase II but not PHAase I. Mercaptoethanol and H2O2 also inhibited the activities of both enzymes.  相似文献   

14.
Two isozymes of superoxide dismutase (SOD; EC 1.15.1.1) were purified from Norway spruce (Picea abies L.) needles to apparent electrophoretic homogeneity. Purification factors were 354 for SOD I and 265 for SOD II. The native molecular mass of both purified enzymes was approximately 33 kD, as determined by gel filtration. The subunit molecular weights, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, were 20,000 for SOD I and 16,000 for SOD II in the presence of 2-mercaptoethanol, and 15,800 and 15,000, respectively, in its absence. These results indicate that the native enzymes were homodimers whose subunits contained intrachain disulfide bonds. Isoelectric points determined by nondenaturing isoelectric focusing were 4.5 and 5.5 for SOD I and II, respectively. NH2-terminal sequence analysis of the first 22 to 23 amino acids revealed 70 to 75% sequence identity with chloroplastic CuZn SODs from other plant species for SOD I, and 75% sequence identity with the cytosolic CuZn SOD from Scots pine for SOD II. SOD I was the major activity in needles and it was associated with chloroplasts. SOD II activity was dominant in roots.  相似文献   

15.
Constitutively produced extracellular pectinesterases from culture filtrates of the potato late blight fungus Phytophthora infestans were purified and characterized. One enzyme (PE II) was purified to homogeneity. Sodium dodecyl sulfate electrophoresis of the second enzyme (PE I) revealed two protein bands; there are indications that both proteins are pectinesterases, which were not separable by a number of different techniques. Thus, P. infestans might produce three pectinesterases in vitro. Enzyme activities were optimal in the neutral pH range and were largely dependent on the presence of NaCl or CaCl2 in the reaction medium. The molecular weight of the PE I-complex was between 45 and 48 kilodaltons, and the one of PE II was between 35 and 40 kilodaltons. Further investigations will help us to clarify the role of these enzymes during pathogenesis.  相似文献   

16.
The genomic sequence of Pseudomonas aeruginosa PAO1 was searched for the presence of open reading frames (ORFs) encoding enzymes potentially involved in the formation of Gln-tRNA and of Asn-tRNA. We found ORFs similar to known glutamyl-tRNA synthetases (GluRS), glutaminyl-tRNA synthetases (GlnRS), aspartyl-tRNA synthetases (AspRS), and trimeric tRNA-dependent amidotransferases (AdT) but none similar to known asparaginyl-tRNA synthetases (AsnRS). The absence of AsnRS was confirmed by biochemical tests with crude and fractionated extracts of P. aeruginosa PAO1, with the homologous tRNA as the substrate. The characterization of GluRS, AspRS, and AdT overproduced from their cloned genes in P. aeruginosa and purified to homogeneity revealed that GluRS is discriminating in the sense that it does not glutamylate tRNAGln, that AspRS is nondiscriminating, and that its Asp-tRNAAsn product is transamidated by AdT. On the other hand, tRNAGln is directly glutaminylated by GlnRS. These results show that P. aeruginosa PAO1 is the first organism known to synthesize Asn-tRNA via the indirect pathway and to synthesize Gln-tRNA via the direct pathway. The essential role of AdT in the formation of Asn-tRNA in P. aeruginosa and the absence of a similar activity in the cytoplasm of eukaryotic cells identifies AdT as a potential target for antibiotics to be designed against this human pathogen. Such novel antibiotics could be active against other multidrug-resistant gram-negative pathogens such as Burkholderia and Neisseria as well as all pathogenic gram-positive bacteria.  相似文献   

17.
Flavin reductase plays an important biological role in catalyzing the reduction of flavin by NAD(P)H oxidation. The gene that codes for flavin reductase from Citrobacter freundii A1 was cloned and expressed in Escherichia coli BL21(DE3)pLysS. In this study, we aimed to characterize the purified recombinant flavin reductase of C. freundii A1. The recombinant enzyme was purified to homogeneity and the biochemical profiles, including the effect of pH, temperature, metal ions and anions on flavin reductase activity and stability, were determined. This enzyme exhibited optimum activity at 45 °C in a 10-min reaction at pH 7.5 and was stable at temperatures up to 30 °C. At 0.1 mM concentration of metal ions, flavin reductase activity was stimulated by divalent cations including Mn2+, Sr2+, Ni2+, Sn2+, Ba2+, Co2+, Mg2+, Ca2+ and Pb2+. Ag+ was noticeably the strongest inhibitor of recombinant flavin reductase of C. freundii A1. This enzyme should not be defined as a standard flavoprotein. This is the first attempt to characterize flavin reductase of C. freundii origin.  相似文献   

18.
1,3-Propanediol (1,3-PD), an important material for chemical industry, is biologically synthesized by glycerol dehydratase (GDHt) and 1,3-propanediol dehydrogenase (PDOR). In present study, the dhaBCE and dhaT genes encoding glycerol dehydratase and 1,3-propanediol dehydrogenase respectively were cloned from Citrobacter freundii and co-expressed in E. coli. Sequence analysis revealed that the cloned genes were 85 and 77 % identical to corresponding gene of C. freundii DSM 30040 (GenBank No. U09771), respectively. The over-expressed recombinant enzymes were purified by nickel-chelate chromatography combined with gel filtration, and recombinant GDHt and PDOR were characterized by activity assay, kinetic analysis, pH, and temperature optimization. This research may form a basis for the future work on biological synthesis of 1,3-PD.  相似文献   

19.
In natural 1,3-propanediol (PDO) producing microorganisms such as Klebsiella pneumoniae, Citrobacter freundii and Clostridium sp., the genes coding for PDO producing enzymes are grouped in a dha cluster. This article describes the dha cluster of a novel candidate for PDO production, Citrobacter werkmanii DSM17579 and compares the cluster to the currently known PDO clusters of Enterobacteriaceae and Clostridiaceae. Moreover, we attribute a putative function to two previously unannotated ORFs, OrfW and OrfY, both in C. freundii and in C. werkmanii: both proteins might form a complex and support the glycerol dehydratase by converting cob(I)alamin to the glycerol dehydratase cofactor coenzyme B12. Unraveling this biosynthesis cluster revealed high homology between the deduced amino acid sequence of the open reading frames of C. werkmanii DSM17579 and those of C. freundii DSM30040 and K. pneumoniae MGH78578, i.e., 96 and 87.5 % identity, respectively. On the other hand, major differences between the clusters have also been discovered. For example, only one dihydroxyacetone kinase (DHAK) is present in the dha cluster of C. werkmanii DSM17579, while two DHAK enzymes are present in the cluster of K. pneumoniae MGH78578 and Clostridium butyricum VPI1718.  相似文献   

20.
Crude ribosomes were isolated fromListeria monocytogenes serotype 4b and separated into two fractions by molecular sieve chromatography. Chemical analysis indicated that fraction I contained cell envelope components while fraction II contained the ribosomes. Both fractions protected mice againstListeria, but only in combination with the adjuvant dimethyldioctadecylammonium bromide (DDA). RNase-treatment; but not proteinase K-treatment destroyed the protective properties of fraction II, and RNA purified from fraction II also induced protection. Protection induced by fraction I was not affected by either RNase- or proteinase K-treatment. Both subcutaneous and intraperitoneal, but not intravenous administration of fraction I, fraction 11, or purified RNA induced significant protection against intraperitoneal infection, the intraperitoneal route of administration being the most effective. All preparations induced high levels of protection 3 to 7 days after administration, but protection was already decreased after 14 days. Protection induced with RNA appeared to be biphasic, because it also protected mice 1 day, but not 2 days after administration. Protection induced with both fraction I and RNA was at least in part nonspecific, because both preparations also protected mice againstL. monocytogenes serotype 3,Streptococcus pneumoniae andPseudomonas aeruginosa. Results are discussed in relation to previous work with analogous preparations fromP. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号