首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blot-hybridization of sea urchin (Tripneustes gratilla) genomic DNA with a cloned rDNA probe revealed individual variation in the length of the rDNA repeat unit and also in the non-transcribed spacer sequences. The number of distinct rDNA repeat subclasses distinguishable within any one sea urchin was limited and usually 2 to 3. However, examination of a number of sea urchins indicated a large number of distinct rDNA repeat types in the population as a whole; all of the rDNA repeat types in nine individuals were different. The presence of limited heterogeneity in the rDNA repeats of single individuals, with may different repeat types in the population as a whole, suggests that rDNA variants can be rapidly and selectively propagated within a chromosomal lineage.  相似文献   

2.
3.
In situ hybridization of sea urchin (Psammechinus miliaris, Lytechinus pictus and Strongylocentrotus purpuratus) histone messenger RNA has been used to map complementary sequences on polytene chromosomes from Drosophila melanogaster. The sea urchin RNA hybridizes to the polytene regions from 39D3 through 39E1-2, including both of these bands (39D2 may also be included). This region is identical to the one which hybridizes most heavily with non-polyadenylated cytoplasmic RNA from D. melanogaster tissues. Sea urchin mRNAs coding for several individual histones each hybridize across the entire region from 39D3 (or D2) through 39E1-2, as would be expected if the individual mRNA sequences are interspersed. In view of the apparently even distribution of sequences complementary to histone mRNA within the 39D3-39E1-2 region, the significance of the several polytene bands in this region remains an open question. Biochemical characterization of the hybrids between sea urchin histone mRNA and D. melanogaster DNA suggests that sea urchin mRNAs for several of the histone classes have some portions which retain enough sequence homology with the D. melanogaster sequences to form hybrids, although the hybrids have base pair mismatches. In situ hybridization of chromosomes in which region 39D-E is ectopically paired show no evidence of sequence homology in the chromosome region with which 39D-E is associated.  相似文献   

4.
Characterization of five members of the actin gene family in the sea urchin   总被引:11,自引:0,他引:11  
Hybridization of an actin cDNA clone (pSA38) to restriction enzyme digests of Strongylocentrotus purpuratus DNA indicates that the sea urchin genome contains at least five different actin genes. A sea urchin genomic clone library was screened for recombinants which hydridize to pSA38 and four genomic clones were isolated. Restriction maps were generated which indicate that three of these recombinants contain different actin genes, and that the fourth may be an allele to one of these. The restriction maps suggest that one clone contains two linked actin genes. This fact, which was confirmed by heteroduplex analysis, indicates that the actin gene family may be clustered. The linked genes are oriented in the same direction and spaced about 8.0 kilobases apart. In heteroduplexes between genomic clones two intervening sequences were seen. Significant homology is confined to the actin coding region and does not include any flanking sequence. Southern blot analysis reveals that repetitive DNA sequences are found in the region of the actin genes.  相似文献   

5.
6.
The activation of sea urchin eggs at fertilization provides an ideal system for studying the molecular events involved in cellular activation. Rho GTPases, which are key signaling enzymes in eukaryotes, are involved in sustaining the activation of sea urchin eggs; however, their downstream effectors have not yet been characterized. In somatic cells, RhoA regulates a serine/threonine kinase known as Rho-kinase (ROCK). The activity of ROCK in early sea urchin development has been inferred, but not tested directly. A ROCK gene was identified in the sea urchin (Strongylocentrotus purpuratus) genome and the sequence of its cDNA determined. The sea urchin ROCK (SpROCK) sequence predicts a protein of 158 kDa with >72% and 45% identities with different protein orthologues of the kinase catalytic domain and the complete protein sequence, respectively. SpROCK mRNA levels are high in unfertilized eggs and decrease to 35% after 15 min postfertilization and remain low up to the 4 cell stage. Antibodies to the human ROCK-I kinase domain revealed SpROCK to be concentrated in the cortex of eggs and early embryos. Co-immunoprecipitation assays indicate that RhoA and SpROCK are physically associated. This association is destroyed by treatment with the C3 exoenzyme and with the ROCK antagonist H-1152. H-1152 also inhibited DNA synthesis in embryos. We conclude that the Rho-dependent signaling pathway, via SpROCK, is essential for early embryonic development.  相似文献   

7.
Exogastrula-inducing peptides (EGIPs) were identified in embryos of the sea urchin Anthocidaris crassispina as polypeptides with structural similarity to epidermal growth factor (EGF) that severely affect gastrulation of sea urchin embryos to induce exogastrulation. Here we have obtained genomic clones for the EGIP precursor gene (EGIP) and determined its genomic organization. The EGIP gene spans the length of 9 kb in the genome and is composed of seven exons and six introns. Each of the four EGF motifs in the precursor protein is encoded by a single exon, and all the exon boundaries are in phase 1, suggesting that EGIP have been generated during evolution by duplication of an exon encoding a single ancient EGIP sequence. The 5'-flanking sequence of EGIP from -4372 to +194 revealed the presence of multiple repeat sequences including direct and inverted repeats as well as two clusters of GGGG/CCCC elements. The function of the upstream flanking region of EGIP was examined by introducing the gene constructs into embryos in which different regions from the flanking DNA were placed upstream to the GFP reporter gene. Systematic deletion of the upstream DNA revealed the presence of potent enhancer activity between -372 and -210.  相似文献   

8.
The locus SU(Lv)-ets-2 of the sea urchin Lytechinas variegatus related to the oncogene v-ets of avian erythroblastosis virus E26 has been molecularly cloned. The cloned DNA was found to contain a region with a high degree of homology to E26 v-ets. The sea urchin homology with v-ets starts at a consensus splice acceptor sequence and stops at the point where homology between v-ets and human c-ets ends. This region corresponds to the Hu-ets-2 homologous sequences defined by Watson et al. (1985, Proc. Natl. Acad. Sci, USA 82, 7294-7298). Ninety-one out of 97 (or 94%) predicted amino acids are identical between sea urchin c-ets and E26 v-ets over the region of homology. This degree of homology exceeds the maximum homology previously found between any oncogene and an invertebrate homolog. A somewhat weaker homology with the Hu-ets-2 sequences continues beyond, for 13 codons, ending at a common termination codon. Northern blot analysis of mature unfertilized eggs and early embryos from sea urchins of the species Strongylocentrotus purpuratus revealed a single 6.8-kb ets-related RNA that is expressed at a maximum level during the early stages of embryonic development. This RNA species is polyadenylated indicating that it is the message for the sea urchin ets-2 gene.  相似文献   

9.
We have isolated and characterized a third nonallelic tandemly arrayed histone cluster (LpE) from the sea urchin Lytechinus pictus. Although this tandem array is not intermingled with the other two early histone gene families also found in the L. pictus genome, the order and polarity of the five histone coding sequences in this family are the same as every other well characterized sea urchin early histone gene family. Heteroduplex analysis and restriction endonuclease mapping experiments indicate that the LpE family is more closely related to the B-C than the A-D family of early histone genes. Examination of several individual sperm DNA samples has revealed considerable polymorphism in each of the three tandem repeat families. Within an individual, however, each family is remarkably homogeneous. Thus, our results indicate that rapid fixation of variants acts to homogenize the members of a single tandem array at a considerably faster rate within a family than between families. However, at least some exchange of sequences between families is evident based on the conservation of many restriction endonuclease recognition sites and from analysis of a a cosmid clone in which the A-D and E tandem repeats are found adjacent to one another. These differences in the rate of fixation of variants within and between these families are likely to be responsible for the maintenance of diversity between the different families.  相似文献   

10.
The length of the small subunit ribosomal DNA (SSU rDNA) differs significantly among individuals from natural populations of the ascomycetous lichen complex Cladonia chlorophaea. The sequence of the 3' region of the SSU rDNA from two individuals, chosen to represent the shortest and longest sequences, revealed multiple insertions within a region that otherwise aligned with a 520-nucleotide sequence of the SSU rDNA in Saccharomyces cerevisiae. The high degree of variability in SSU rDNA size can be accounted for by different numbers of insertions; one individual had two group I introns and the second had five introns, two of which were clearly related to introns at identical positions in the other individual. Yet, introns in different positions, whether within an individual or between individuals, were not similar in sequence. The distribution of introns at three of the positions is consistent with either intron loss or acquisition, and clearly indicates the dynamic variability in this region of the nuclear genome. All seven insertions, which ranged in size from 210 to 228 nucleotides, had the conserved sequence and secondary structural elements of group I introns. The variation in distribution and sequence of group I introns within a short highly conserved region of rDNA presents a unique opportunity for examining the molecular evolution and mobility of group I introns within a systematics framework.  相似文献   

11.
12.
13.
In order to further characterize the previously observed disruptive effect of the RNA polymerase I promoter sequence (Pol I) from Acanthamoeba castellanii on tandemly repeated 5S rDNA positioning sequences from sea urchin (Lytechinus variegatus), we compared the histone-binding ability of the isolated 199-bp Pol I promoter region to that of the 208-bp 5S rDNA and that of nucleosome core particle sequences isolated from chicken erythocytes. We found the 5S rDNA positioning sequence to be more efficient at forming nucleosomes than the RNA polymerase I promoter sequence. Nevertheless, examination of the free-DNA half-depletion points during the titrations suggested that twice as much histone had bound to RNA polymerase I promoter sequence as to the 5S nucleosome-positioning or core particle sequences. DNA bending analysis suggested two potential DNA bending loci in the RNA polymerase I promoter, whereas only one such locus was predicted for the 5S positioning sequence. Such mixed bending signals on the RNA polymerase I promoter could favor non-nucleosomal deposition of histones on these sequences.  相似文献   

14.
The organization of sea urchin histone genes   总被引:1,自引:0,他引:1  
Sucrose gradient analysis of total sea urchin DNA cleaved with theEcoRI andHind III restriction endonucleases and identification of histone coding gene sequences by hybridization with histone mRNA have elucidated the basic organization of the histone gene repeat unit. These data, plus results obtained by electrophoretic analysis of purified endonuclease-cleaved sea urchin histone DNA and hybridization with cRNA transcribed from the eucaryotic segment of constructed plasmid chimeras cloned in E. coli, show that the several DNA sequences coding for individual histone proteins are intermingled in a 7 kilobase (kb) repeat unit. Cleavage of total sea urchin DNA withEcoRI produces 2.2 and 4.8 kb fragments which are homologous with the two cloned fragments, and which are contained in a 7 kbHind III fragment. Cleavage with both enzymes reveals that the 2.2 kbEcoRI fragment contains aHind III site 0.15–0.2 kb from an end. RNA · DNA hybridization between chimeric plasmid DNA and purified individual mRNAs isolated from sea urchin embryo polyribosomes has been used to assign coding sequences to either the 2.2 or 4.8 kb region of the histone DNA repeat unit. A map of the histone genes is proposed.  相似文献   

15.
The phylogenetic distribution and structural diversity of the nitric oxide synthases (NOS) remain important and issues that are little understood. We present sequence information, as well as phylogenetic analysis, for three NOS cDNAs identified in two non-mammalian species: the vertebrate marine teleost fish Stenotomus chrysops (scup) and the invertebrate echinoderm Arbacia punctulata (sea urchin). Partial gene sequences containing the well-conserved calmodulin (CaM)-binding domain were amplified by RT-PCR. Identical 375-bp cDNAs were amplified from scup brain, heart, liver and spleen; this sequence shares 82% nucleic acid and 91% predicted amino acid identity with the corresponding region of human neuronal NOS. A 387-bp cDNA was amplified from sea urchin ovary and testes; this sequence shares 72% nucleic acid identity and 65% deduced amino acid identity with human neuronal NOS. A second cDNA of 381 bp was amplified from sea urchin ovary and it shares 66% nucleic acid and 57% deduced amino acid identity with the first sea urchin sequence. Together with earlier reports of neuronal and inducible NOS sequences in fish, these data indicate that multiple NOS isoforms exist in non-mammalian species. Phylogenetic analysis of these sequences confirms the conserved nature of NOS, particularly of the calmodulin-binding domains.  相似文献   

16.
17.
Three repetitive sequence families from the sea urchin genome were studied, each defined by homology with a specific cloned probe one to a few hundred nucleotides long. Recombinant λ-sea urchin DNA libraries were screened with these probes, and individual recombinants were selected that include genomic members of these families. Restriction mapping, gel blot, and kinetic analyses were carried out to determine the organization of each repeat family. Sequence elements belonging to the first of the three repeat families were found to be embedded in longer repeat sequences. These repeat sequences frequently occur in small clusters. Members of the second repeat family are also found in a long repetitive sequence environment, but these repeats usually occur singly in any given region of the DNA. The sequences of the third repeat are only 200 to 300 nucleotides long, and are generally terminated by single copy DNA, though a few examples were found associated with other repeats. These three repeat sequence families constitute sets of homologous sequence elements that relate distant regions of the DNA.  相似文献   

18.
19.
Comparison has been made between sea urchin and starfish sperm chromatin. The only protein by which chromatins from these sources differ significantly is histone H2B. Sea urchin sperm H2B is known to contain an elongated N-terminal region enriched in Arg. Analysis of the micrococcal nuclease digests of sea urchin and starfish nuclei in one- and two-dimensional electrophoresis has shown that sperm chromatin of both animals consists of repeated units similar in general features to those of rat thymus or liver. However, DNA repeat length in chromatin of sea urchin sperm (237 bp) is higher than that of starfish sperm (224 bp), while the core DNA length does not differ and is the same as in the chromatin of rat liver or thymus. A suggestion has been made that the N-terminal region of histone H2B is associated with the linker DNA and is responsible for the increased length of sea urchin linker DNA.  相似文献   

20.
Long and short repetitive sequences of sea urchin DNA were prepared by reassociation of 2000 nucleotide long fragments to Cot 4 and digestion with the single strand specific nuclease S1. The S1 resistant duplexes were separated into long repetitive and short repetitive fractions on Agarose A50. The extent of shared sequences was studied by reassociating a labeled preparation of short repetitive DNA with an excess of unlabeled long repetitive DNA. Less than 10% of the long repetitive DNA preparation was able to reassociate with the short repetitive DNA. Thus the long and short repetitive elements appear to be principally independent sequence classes in sea urchin DNA. Precisely reassociating repetitive DNA was prepared by four successive steps of reassociation and thermal chromatography on hydroxyapatite. This fraction (3% of the genome) was reassociated by itself or with a great excess of total sea urchin DNA. The thermal stability of the products was identical in both cases (Tm=81 degrees C), indicating that precisely repeated sequences do not have many imprecise copies in sea urchin DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号