首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Spinal cord neurons from 9-day chick embryos were maintained in culture for up to 35 days and then fixed in 4% cacodylate-buffered glutaraldehyde containing 2% tannic acid. After about 15 days in culture a small percentage of the synaptic specializations present were characterized by striking electron-dense striations averaging 15 nm in width, oriented perpendicular to the postsynaptic membrane. These structures increased in frequency with time in culture (to a maximum of about 10% of all synapses in the oldest cultures); they were asymmetrical, protruding approximately 8 nm into the synaptic cleft, and more deeply (approximately 15–18 nm), into the postsynaptic cytoplasm. On the basis of earlier work by Sealock (1980) they are interpreted as concentrations of acetylcholine receptors.Similar membrane differentiations were also seen associated with active-zone areas of a few presynaptic membranes, and the possibility that these represent presynaptic acetylcholine receptors is discussed. Additional observations reported are (1) the presence of striations resembling those seen at the postsynaptic membrane in the membranes of some postsynaptic vesicles, and (2) filamentous links between the striations and cytoskeletal elements of the postsynaptic cell.  相似文献   

2.
Summary Although a number of studies have been carried out on alkaline phosphatase (Al-P), this enzyme has not definitely been detected in synapses at the electron-microscopic level. Recently, we have successfully demonstrated, by perfusing specimens with 1% glutaraldehyde for fixation for as short a time as 8–10 min, that Al-P activity is localized on the presynaptic and postsynaptic membranes of the rat central nervous system (CNS). There were four types of presynaptic membrane: (1) those with the activity only on the membrane, (2) those with the activity only on the synaptic vesicle membrane, (3) those with the activity on both the presynaptic membrane and the synaptic vesicle membrane, and (4) those entirely free of the activity. The postsynaptic membranes were classified into two varieties: (1) those with the activity in the postsynaptic membrane and the postsynaptic thickening, and (2) those entirely without the activity. Thus, the occurrence of the enzyme activity assumed various combinations of presynaptic and postsynaptic involvement. The incidence of synapses either with presynaptic or postsynaptic activity varied distinctly from site to site.  相似文献   

3.
The lipid polyunsaturated fatty acids are highly enriched in synaptic membranes, including synaptic vesicles, but their precise function there is unknown. Caenorhabditis elegans fat-3 mutants lack long-chain polyunsaturated fatty acids (LC-PUFAs); they release abnormally low levels of serotonin and acetylcholine and are depleted of synaptic vesicles, but the mechanistic basis of these defects is unclear. Here we demonstrate that synaptic vesicle endocytosis is impaired in the mutants: the synaptic vesicle protein synaptobrevin is not efficiently retrieved after synaptic vesicles fuse with the presynaptic membrane, and the presynaptic terminals contain abnormally large endosomal-like compartments and synaptic vesicles. Moreover, the mutants have abnormally low levels of the phosphoinositide phosphatase synaptojanin at release sites and accumulate the main synaptojanin substrate phosphatidylinositol 4,5-bisphosphate at these sites. Both synaptobrevin and synaptojanin mislocalization can be rescued by providing exogenous arachidonic acid, an LC-PUFA, suggesting that the endocytosis defect is caused by LC-PUFA depletion. By showing that the genes fat-3 and synaptojanin act in the same endocytic pathway at synapses, our findings suggest that LC-PUFAs are required for efficient synaptic vesicle recycling, probably by modulating synaptojanin localization at synapses.  相似文献   

4.
The fine structure of synapses in the central nervous system of lamprey (Petromyzon marinus) ammocoetes has been investigated. Both synapses within the neuropil and synaptic links between giant fibers (including Müller cells) and small postsynaptic units are described. The distribution of neurofilaments and microtubules in nerve profiles over a wide diameter range is described, and the possible role of these structures in intracellular transport is discussed. Electron micrographs indicate that small lucent "synaptic vesicles" occur sparsely throughout the axoplasm and in regular arrays in association with microtubules in the vicinity of synapses. Within a synaptic focus, immediately adjoining the presynaptic membrane, vesicles are randomly arranged and are not associated with microtubules. Neurofilaments are present, generally in large numbers, but these are not associated with vesicles or other particulates. The structural findings are considered in terms of current concepts of fast and slow transport in neurons and the mechanochemical control of intracellular movement of materials.  相似文献   

5.
A study has been made on the effects of ingestion of tannic acid on growth and development of Schistocerca gregaria. No deleterious effects were found on digestion or utilisation of food, even when food protein levels were very low. At high concentrations consumption rates were relatively low over the first day, but this effect was not sustained. The lack of ‘antidigestive’ effects is shown to be due partly to the hydrolysis of tannic acid to gallic acid and glucose, and partly to the adsorptive properties of the peritrophic membrane. Insects reared on food with high levels of tannic acid took a longer time to reach sexual maturity than did the controls, although fecundity was not affected thereafter.  相似文献   

6.
Quantitative-electron microscopic investigations have been performed on large morphologically mixed synapses in the oculomotor nucleus of the trout with the aim to get some hints at recycling processes of vesicle membranes. For this reason vesicle density of the presynaptic area and number of vesicle attachment sites of the presynaptic membrane of the active zones within these mixed contacts have been estimated in two different experimental groups. Furthermore, vesicle density near the unmyelinated axolemma of the axon terminal has been measured in both groups. The results obtained support the view that a recycling of vesicle membranes occurs in morphologically mixed synapses, probably also over the axolemma of the so-called extended extracellular spaces, which are interrupting the contact area between the two neuronal elements. The question of a recycling of gap-junction-vesicles has not been answered.  相似文献   

7.
Studies have been carried out on the synapses in the cerebral cortex of rat by using impregnation with ethanolic solution of phosphotungstic acid, contrast staining with ruthenium red and impregnation with bismuth iodide, with or without subsequent uranyl acetate and lead citrate staining. It has been established that dense projections are adequately visualized with methods demonstrating basic chemical groups (phosphotungstic acid and bismuth iodide), whereas the synaptic vesicles are stained by techniques demonstrating acid chemical groups (ruthenium red and uranyl acetate and lead citrate). On the basis of these observations a hypothesis is forwarded concerning the mechanisms of migration of synaptic vesicles towards the presynaptic membrane. Measurements of the parameters of the dense projections suggest that the configuration of the presynaptic vesicular grid is not uniform along the presynaptic areas.  相似文献   

8.
Dendro-dendritic synapses have been observed infrequently in the deep layers of the motor cortex. The presynaptic dendrites are of a varicose type and themselves receive a considerable density of synapses both of the asymmetric and symmetrical type. The ultrastructure of the dendro-dendritic synapse itself shows the typical arrangement of presynaptic and postsynaptic membrane densities, often with presynaptic dense projections, and the membrane specialization is of the symmetrical type. There is the usual cleft containing electron-dense material between the presynaptic and postsynaptic profiles. The synaptic vesicles occur in a small cluster confined to a region close to the presynaptic membrane specialization; some of the vesicles are flattened and were shown by tilt analysis to be of the discoid type. Two examples were found of reciprocal dendro-dendritic synapses, both components being of the symmetrical type. A single axon terminal may make a synapse on to both dendrites involved in a dendro-dendritic synapse.  相似文献   

9.
Although a number of studies have been carried out on alkaline phosphatase (A1-P), this enzyme has not definitely been detected in synapses at the electron-microscopic level. Recently, we have successfully demonstrated, by perfusing specimens with 1% glutaraldehyde for fixation for as short a time as 8-10 min, that A1-P activity is localized on the presynaptic and postsynaptic membranes of the rat central nervous system (CNS). There were four types of presynaptic membrane: (1) those with the activity only on the membrane, (2) those with the activity only on the synaptic vesicle membrane, (3) those with the activity on both the presynaptic membrane and the synaptic vesicle membrane, and (4) those entirely free of the activity. The postsynaptic membranes were classified into two varieties: (1) those with the activity in the postsynaptic membrane and the postsynaptic thickening, and (2) those entirely without the activity. Thus, the occurrence of the enzyme activity assumed various combinations of presynaptic and postsynaptic involvement. The incidence of synapses either with presynaptic or postsynaptic activity varied distinctly from site to site.  相似文献   

10.
The quantal-vesicular hypothesis equates miniature end-plate potentials (MEPPs) with fusions of synaptic vesicles. MEPP production thus predicts vesicle losses, increases in vesicle fusions and increases in terminal plasma membrane. MEPP production and these ultrastructural parameters have been evaluated in the cholinergic presynaptic terminals of skate electric organ following tannic acid saline incubation, known to promote capture and selective staining of dense-core granule fusions, and KCl stimulation, known to elevate MEPP production dramatically in these cholinergic terminals. After pretreatment in tannic acid-elasmobranch saline, KCl stimulation produced MEPPs at 40/s/microm(2)of terminal surface for several minutes with gradual reduction to spontaneous levels by 25-30 min. No loss of vesicles, no vesicle fusions, no expansions of plasma membrane and no tannic acid enhanced staining of vesicles or vacuoles accompanied the generation of 800 MEPPs/microm(3)of terminals having densities of 567 vesicles/microm(3). No ultrastructural footprints were found to support the notion that unnaturally high rates of vesicular exocytosis had occurred.  相似文献   

11.
Serial synapses occur between small profiles in the neuropil of Aplysia abdominal ganglion. Material was fixed in phosphate buffered OsO4, embedded in epon, and sections were stained with uranyl acetate and lead citrate. A class of synapses had the following characteristics: (1) synaptic vesicles clustered against the presynaptic membrane, (2) a widened extracellular space of about 20 nm containing electron-dense material, (3) straightening of the pre- and postsynaptic membranes, and (4) no postsynaptic membrane specialization. Some density between the presynaptic membrane and the adjacent synaptic vesicles was occasionally observed. Synapses occurred between small profiles in the neuropil (typical profile diameters were 1–3 m?m). In this sample of approximately 100 synapses, four serial synapses were identified. The serial synaptic profiles were all small. In addition to the finding of serial synapses, 40% of the postsynaptic profiles contained vesicles similar to the synaptic vesicles seen in presynaptic profile. Serial synapses may be the anatomical substrate of presynaptic inhibition and facilitation and of dishabituation.  相似文献   

12.
S S Stepanov  V V Semchenko 《Tsitologiia》1985,27(11):1235-1239
Hypoxic effect (a 6 minute asphyxia) on the presynaptic grid structure and on the amount of synapses in the neocortex has been studied in white rats using the method of selective staining of synapses with phosphoric tungsten acid. Neurofilamentous formations of the presynaptic grid appeared to be most labile structures. Dense projections of the presynaptic grid are most sensitive to hypoxia: their height, distinctness of the frame, and the intensity degree of phosphoric tungsten acid staining decrease. The content of intermediate form contacts with low indistict dense projections increases with the increase in the number of light type changed synapses. The principle organization of the presynaptic grid does not change in the posthypoxic period: hexagonal division of dense projections and places of vesicular attachment are kept. The hypertrophy of the presynaptic grid is also kept during that process.  相似文献   

13.
Carcinus muscle fibers respond to γ-aminobutyric acid (GABA) with a conductance increase that subsides rather rapidly. In the larger fibers which have low input resistance the decrease may disappear within 2 min. The inhibition of the excitatory postsynaptic potentials (EPSP's) by GABA nevertheless persists as long as the drug is applied. The subsidence of the increased conductance indicates that the membrane of the inhibitory synapses has become desensitized to GABA. The persistence of inhibition of the EPSP's appears to be due to an action of the drug on the presynaptic terminals of the excitatory axons which reduces or blocks the secretory activity that releases the excitatory transmitter.  相似文献   

14.
《Biophysical journal》2021,120(16):3409-3417
Repetitive stimulation of excitatory synapses triggers molecular events required for signal transfer across neuronal synapses. It has been hypothesized that one of these molecular events, the diffusion of extrasynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPARs) (i.e., the diffusion hypothesis), is necessary to help synapses recover from paired-pulse depression. To examine this presumed role of AMPAR diffusion during repetitive presynaptic stimulation, a biophysical model based on published physiological results was developed to track the localization and gating of each AMPAR. The model demonstrates that AMPAR gating in short intervals of fewer than 100 ms is controlled by their position in relation to the glutamate release site and by their recovery from desensitization, but it is negligibly influenced by their diffusion. Therefore, these simulations failed to demonstrate a role for AMPAR diffusion in helping synapses recover from paired-pulse depression.  相似文献   

15.
Some electrical properties of the synapses between central giant axons (presynaptic) and the motor giant axon (postsynaptic) of the crayfish abdominal nerve cord have been investigated. Postsynaptic potential change in response to presynaptic volleys contains two components: a spike potential and a synaptic potential of very long time course. Amplitude of the synaptic potential is graded according to the number of active presynaptic axons. Conductance increase in the synaptic membrane endures over most of the period of potential change, and it is this rather than the "electrical time constant" of the membrane that in large measure determines the form of the synaptic potential. Temporal summation of synaptic potential occurs during repetitive presynaptic stimulation, and after such stimulation the rate of decay of synaptic potential is greatly slowed.  相似文献   

16.
The marine cyanobacterium Phormidium valderianum BDU 140441 exhibited the ability to grow at 0.25?mM tannic acid, a known hindering chemical for microbial growth. The tannic acid-degrading ability of the organism is evident from the UV–visible absorption spectrum. In addition, the existence of tannase has been localized by activity staining, and its induction in activity upon tannic acid exposure was confirmed in native gel. The critical tannic acid metabolization enzymes tested for are polyphenol oxidase and esterases; both are well known for tannic acid degradation. Upon tannic acid exposure, increased activity of polyphenol oxidase and expression of few new isoforms of esterase were identified by activity staining.  相似文献   

17.
The inhibitory neurotransmitter γ-amino butyric acid (GABA) is synthesized by two isoforms of the enzyme glutamic acid decarboxylase (GAD): GAD65 and GAD67. Whereas GAD67 is constitutively active and produces >90% of GABA in the central nervous system, GAD65 is transiently activated and augments GABA levels for rapid modulation of inhibitory neurotransmission. Hydrophobic lipid modifications of the GAD65 protein target it to Golgi membranes and synaptic vesicles in neuroendocrine cells. In contrast, the GAD67 protein remains hydrophilic but has been shown to acquire membrane association by heterodimerization with GAD65. Here, we identify a second mechanism that mediates robust membrane anchoring, axonal targeting, and presynaptic clustering of GAD67 but that is independent of GAD65. This mechanism is abolished by a leucine-103 to proline mutation that changes the conformation of the N-terminal domain but does not affect the GAD65-dependent membrane anchoring of GAD67. Thus two distinct mechanisms target the constitutively active GAD67 to presynaptic clusters to facilitate accumulation of GABA for rapid delivery into synapses.  相似文献   

18.
Summary The threedimensional ultrastructure of presynaptic dense bars was examined by serial section electron microscopy in the excitatory neuromuscular synapses of the accessory flexor muscle in the limbs of larval, juvenile, and adult lobsters. The cross-sectional profile of the dense bar resembles an asymmetric hourglass, the part contacting the presynaptic membrane being larger than that projecting into the terminal. The bar has a height of 55–65 nm and varies in length from 75–600 nm. In its dimensions it resembles the dense projections in the synapses of the CNS of insects and vertebrates. The usual location of these dense bars is at well defined synapses, though a few are found at extrasynaptic sites either in the axon or terminal. In the latter case the bars are close to synapse-bearing regions, particularly in the larval terminals, suggesting that the extrasynaptic bars denote early events in synapse formation. In all cases the bars are intimately associated with electron lucent, synaptic vesicles located on either side, in the indentation of its hourglass-shaped cross sectional profile. The vesicles occur along the length of the bar and contact the presynaptic membrane. Consequently the dense bar may serve to align the vesicles at the presynaptic membrane prior to exocytosis. A similar role has been suggested for the presynaptic dense bodies at the neuromuscular junction of the frog, where synaptic vesicles form a row on either side of this structure.Supported by Muscular Dystrophy Association of Canada and NSERCC. Generous use of laboratory facilities at Woods Hole was provided by the late Fred Lang  相似文献   

19.
The ultrastructure and immunospecificity of synapses on primary afferents and dorsal sensory cells (DCs) were studied in lamprey (Lampetra fluviatilis) spinal cords. Using the postembedding immunogold method with a combination of antibodies—polyclonal antibodies to glutamate and monoclonal antibodies to gamma-aminobutyric acid (GABA)—the presence of GABA-positive on the primary afferent axons and GABA-and glutamate-immunopositive synapses on the DC somatic membranes have been shown. Thus, it is obvious that sensory information in the lamprey is controlled by both presynaptic inhibition via synapses on the primary afferent axons and by direct synaptic influence on the body of the sensory neuron.  相似文献   

20.
Brain function relies in large part on Ca2+-dependent release of the excitatory neurotransmitter glutamate from neuronal axons. Establishing the causal relationship between presynaptic Ca2+ dynamics and probabilistic glutamate release is therefore a fundamental quest across neurosciences. Its progress, however, has hitherto depended primarily on the exploration of either cultured nerve cells or giant central synapses accessible to direct experimental probing in situ. Here we show that combining patch-clamp with time-resolved imaging of Ca2+ −sensitive fluorescence lifetime of Oregon Green BAPTA-1 (Tornado-FLIM) enables readout of single spike-evoked presynaptic Ca2+ concentration dynamics, with nanomolar sensitivity, in individual neuronal axons in acute brain slices. In parallel, intensity Tornado imaging of a locally expressed extracellular optical glutamate sensor iGluSnFr provides direct monitoring of single-quantum, single-synapse glutamate releases in situ. These two methods pave the way for simultaneous registration of presynaptic Ca2+ dynamics and transmitter release in an intact brain at the level of individual synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号