首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proctolin increases the frequency and amplitude of myogenic contractions and results in a sustained contraction of the oviducts of Locusta migratoria. The possible mode of action of proctolin receptors on this visceral muscle has been investigated. Calcium-free saline, containing either 20 mM magnesium ions or 100 μM EGTA, inhibited myogenic contractions, lowered basal tension, and abolished all the effects of proctolin following a 20 min incubation. These effects were reversible upon washing with normal saline. Similar results were obtained with normal saline containing 10 mM cobalt ions. Nifedipine at 50 μM lowered basal tension, abolished myogenic contractions, and reduced the proctolin-induced sustained contraction by 42-62% at 0.5 nM proctolin and by 33-37% at 5 nM proctolin. Similar results were obtained with 100 μM verapamil. Proctolin was still capable of eliciting considerable contractions (25-67% of controls) in preparations depolarized with 100 mM potassium saline. The removal of calcium from the high-potassium saline reversibly abolished the potassium-induced contraction and reversibly blocked the action of proctolin. Nifedipine was ineffective in blocking the action of proctolin in high-potassium saline. Neither cyclic AMP levels nor cyclic GMP levels of the lateral oviducts were elevated by proctolin in the presence of a phosphodiesterase inhibitor. The results indicate that proctolin mediates its effects via an influx of external calcium ions. This calcium appears to enter through two channels, a voltage-dependent channel and a receptor-operated channel. Cyclic nucleotides do not appear to be involved in the action of proctolin in this visceral muscle.  相似文献   

2.
1. The longitudinal muscle of the body wall (LMBW) of the holothurian, Isostichopus badionotus contracted when treated with acetylcholine (ACh). The threshold concentration for initiating a contraction was 10−8M ACh.2. Inward calcium (Ca2+) current blockers, diltiazem and verapamil, blocked contractions induced by ACh suggesting that Ca2+ channels are involved. Verapamil caused small rhythmic contractions to occur in some muscle preparations.3. Caffeine initiated contractions only at the high concentration of 10 mM and caused rhythmic contractions in otherwise non-spontaneously beating muscle. The caffeine-contractions were partially blocked by verapamil.  相似文献   

3.
Nitric oxide (NO) and calcium channel blockers are two agents that can affect gastrointestinal motility. The goal of this work was to study the rabbit intestinal smooth muscle contraction response to (1) sodium nitroprusside (SNP), the NO donor, and its potential mechanism of action, and (2) nifedipine, the l-type Ca2+ channel blocker; to clarify the degree of participation by extra- and intracellular Ca2+ in smooth muscle contraction. We used standard isometric tension and intracellular micro-electrode recordings. To record the activity of the longitudinal smooth muscle of the ileum, segments of 1.5?cm length of the ileum were suspended vertically in organ baths of Krebs solution. The mechanical activity of the isolated ileal longitudinal muscle was recorded. Different substances were added, and the changes produced on spontaneous contraction were recorded. We found that SNP produced significant decrease, while nitric oxide synthase inhibitor produced significant increase in the amplitude of spontaneous contractions. Both apamin, the Ca2+-dependent K+ channel blocker, and methylene blue, the inhibitor of soluble guanylate cyclase, alone, partially decreased relaxation induced by SNP. Addition of both methylene blue and apamine together abolished the inhibitory effect produced by SNP on spontaneous contractions. Nifedipine produced significant decrease in the amplitude of spontaneous contractions. In conclusion, in longitudinal muscle of rabbit ileum, calcium channels blocker are potent inhibitors of spontaneous activity. However, both extracellular and intracellular Ca2+ participates in the spontaneous contractions. NO also has inhibitory effect on spontaneous activity, and this effect is mediated by cGMP generation system and Ca2+-dependent K+ channels.  相似文献   

4.
Recent studies have identified paracrine and endocrine cells in the midgut of larval Drosophila melanogaster as well as midgut and hindgut receptors for multiple neuropeptides implicated in the control of fluid and ion balance. Although the effects of diuretic factors on fluid secretion by isolated Malpighian tubules of D. melanogaster have been examined extensively, relatively little is known about the effects of such factors on gut peristalsis or ion transport across the gut. We have measured the effects of diuretic hormone 31 (DH31), drosokinin and allatostatin A (AST‐A) on both K+ transport and muscle contraction frequency in the isolated gut of larval D. melanogaster. K+ absorption across the gut was measured using K+‐selective microelectrodes and the scanning ion‐selective electrode technique. Allatostatin A (AST‐A; 1 μM) increased K+ absorption across the anterior midgut but reduced K+ absorption across the copper cells and large flat cells of the middle midgut. AST‐A strongly inhibited gut contractions in the anterior midgut but had no effect on contractions of the pyloric sphincter induced by proctolin. DH31 (1 μM) increased the contraction frequency in the anterior midgut, but had no effect on K+ flux across the anterior, middle, or posterior midgut or across the ileum. Drosokinin (1 μM) did not affect either contraction frequency or K+ flux across any of the gut regions examined. Possible functions of AST‐A, DH31, and drosokinin in regulating midgut physiology are discussed.  相似文献   

5.
The effects of lanthanum(La) on contractions induced by prostaglandin F(PGF) or isotonic K+ were investigated in the isolated stomach muscle of guinea-pig.Low concentrations of La(0.1–1 μM) inhibited the contraction to PGF 1 μM in a dose-dependent manner, without affecting the tonic contraction to isotonic K+.0.1 and 1 μM La shifted the dose-response curve for PGF(0.001 – 1 μM) to the right and reduced the maximum response.The IC50 of La against PGF and K+ were 0.6 μM and 30 μM, respectively.These results support the suggestion that PGF -induced contraction in the stomach muscle depends mainly on the intracellular release of sequestered Ca, which would be depleted or immobilized by La.  相似文献   

6.
86Rb was used to monitor potassium movements in strips of rabbit aorta simultaneously with measurements of tension. Histamine, noradrenaline, the prostaglandin endoperoxide analogue U46619, angiotensin II, and 144 mM K+ each induced an increase in 86Rb efflux concomitantly with contraction. For the first four agonists there was a rank-order correlation between the contractile response and 86Rb efflux, but 144 mM K+ induced a massive increase in 86Rb efflux although it was the weakest contractile stimulus. Contraction and increase in 86Rb efflux-induced K+ were both reduced by verapamil, which blocks voltage-sensitive calcium channels, implying that both effects of K+ were mediated mainly by a depolarisation-induced influx of calcium. Noradrenaline increased both tension and 86Rb efflux through an action on alpha-adrenoceptors, but its effect on efflux, unlike its effect on tension, was apparently totally dependent on the presence of extracellular calcium. Experiments performed in the presence of lanthanum, which blocks calcium influx, showed that the intracellular store of calcium released by noradrenaline apparently played no role in inducing 86Rb efflux, although it could trigger contraction. Lanthanum also blocked contraction induced by K+ but less effect on the increase in 86Rb efflux induced by K+. Thus, agonist-induced vascular contraction and 86Rb efflux can be dissociated, but under normal conditions all the contractile stimuli tested induced 86Rb efflux.  相似文献   

7.
The resting membrane potential and electrogenic contribution of α1- and α2-isoforms of Na+/K+-ATPase in the rat soleus muscle at early stages of gravity unloading were analyzed. The role of L-type calcium channels in accumulation of calcium ions in the myoplasm under these conditions was estimated. After 3-day antiorthostatic suspension, the resting membrane potential of the muscle fibers decreased from ?71.0 ± 0.5 to ?66.8 ± 0.7 mV, the muscle excitability reduced, and a trend of muscle fatigue acceleration appeared. The electrogenic contribution of ouabain-sensitive α2-isoform of Na+/K+-ATPase, determined as the depolarization caused by 1μM ouabain, decreased after suspension from 6.2 ± 0.6 to 0.5 ± 0.8 mV. The contribution of ouabain-resistant α1-isoform of Na+/K+-ATPase, determined as an additional depolarization after addition of 500 μM ouabain, decreased from 4.6 ± 0.6 to 2.6 ± 0.6 mV. The intensity of Fluo-4AM fluorescence in individual muscle fibers increased after suspension more than fourfold, which suggests an elevated calcium concentration in the myoplasm. A local delivery of nifedipine, a blocker of the L-type calcium channels, to the muscle removed this effect. The existence of a selective mechanism suppressing the electrogenic contribution of Na+/K+-ATPase α2-isoform, which is the main cause of the muscle fiber membrane depolarization after 3-day suspension, is postulated. The depolarization can activate part of potential-sensitive L-type Ca2+ channels, causing the accumulation of calcium ions in the muscle fiber myoplasm.  相似文献   

8.
The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na,K-ATPase in most other cells. However, α2 activity is stimulated immediately upon the start of contraction and, in working muscles, its contribution is crucial to maintaining excitation and resisting fatigue. Here, we show that α2 activity is determined in part by the K+ concentration in the T-tubules, through its K+ substrate affinity. Apparent K+ affinity was determined from measurements of the K1/2 for K+ activation of pump current in intact, voltage-clamped mouse flexor digitorum brevis muscle fibers. Pump current generated by the α2 Na,K-ATPase, Ip, was identified as the outward current activated by K+ and inhibited by micromolar ouabain. Ip was outward at all potentials studied (−90 to −30 mV) and increased with depolarization in the subthreshold range, −90 to −50 mV. The Q10 was 2.1 over the range of 22–37°C. The K1/2,K of Ip was 4.3 ± 0.3 mM at −90 mV and was relatively voltage independent. This K+ affinity is lower than that reported for other cell types but closely matches the dynamic range of extracellular K+ concentrations in the T-tubules. During muscle contraction, T-tubule luminal K+ increases in proportion to the frequency and duration of action potential firing. This K1/2,K predicts a low fractional occupancy of K+ substrate sites at the resting extracellular K+ concentration, with occupancy increasing in proportion to the frequency of membrane excitation. The stimulation of preexisting pumps by greater K+ site occupancy thus provides a rapid mechanism for increasing α2 activity in working muscles.  相似文献   

9.
The contractions of the dorsal longitudinal muscle of the mollusc Lymnaea stagnalis L., which are evoked by electric stimulation of n. cervicalis inferior were studied. It has been shown that an increase of magnesium ion concentration in saline to 10–15 mM decreases reversibly amplitude of the evoked contractions. Application of serotonin produced a dual effect: at concentrations of 2 × 10–5–10–6 M, it enhanced muscle contractions, whereas at concentrations above 10-5 M, on the contrary, decreased them. The inhibitory effect of the serotonin antagonist mianserin on the evoked contraction amplitude increased with elevation of its concentrations in the studied range (from 10–5 to 10–3 M). The enhancing effect of serotonin on muscle contractions was blocked either by previous mianserin application or its application on the background of the already acting serotonin. A participation of serotoninergic mechanisms in the control of the contractile function of the studied muscle is suggested.  相似文献   

10.
Both octopamine and proctolin potentiate nerve-evoked skeletal muscle contractions in the horseshoe crab, Limulus. The threshold concentration for octopamine was 10?9 to 10?8M, while for proctolin it was 3 × 10?9M. Norepinephrine and dopamine produced effects similar to octopamine but at higher thresholds; tyramine and serotonin were ineffective. Octopamine caused significant increases in amplitudes of excitatory postsynaptic potentials (epsps) of muscle fibers, but had little effect on muscle fiber input resistance or membrane potential. Also, octopamine did not affect depolarization of muscle fibers and subsequent contraction due to the direct action of exogenously applied glutamate. These results suggest that octopamine potentiates nerve-evoked contractions primarily by facilitating release of neuromuscular transmitter. At concentrations above 10?7M, however, octopamine sometimes caused muscle spikes in response to motoneuron stimulation, a finding that suggests that octopamine may also have some postsynaptic action. Proctolin potentiated the muscle contractions evoked by glutamate but had little effect on glutamate-evoked muscle fiber depolarization, muscle fiber input resistance, or membrane potential. Thus, proctolin appears to act directly on skeletal muscle to enhance contractility. The proctolin-induced potentiations of contraction were sometimes accompanied by modest increases in epsp amplitude, so that unlike lobster skeletal and Limulus cardiac neuromuscular preparations, proctolin may have a secondary direct synaptic effect. Both octopamine and proctolin have been found in Limulus cardiac ganglion. This potential access to the hemolymph and the relatively low threshold concentrations needed for physiological action suggest that octopamine and proctolin could function as hormonal modulators of neuromuscular function in Limulus.  相似文献   

11.
The myotropic neuropeptide proctolin is, in additional to its action on proctodaeum and on some other systems, highly effective on the hyperneural muscle of Periplaneta americana and evokes long-term contractions. During this proctolin response the input resistance (Rinput) increases by about 25% accompanied by only slight depolarization. These processes require extracellular Ca2+ but are still present in Na+-free solution.Junction potentials evoked by threshold stimulation of the nerve are not affected by proctolin. Synaptic processes do not seem to be important for the proctolin action on hyperneural muscle. It is more likely that the whole membrane of the muscle fibre serves as target for proctolin. Proctolin reduces the threshold for neurally evoked muscle contractions, the only available route of excitation since the muscle fibres themselves are not electrically excitable.The K+-channel blocker 4-aminopyridine may evoke contraction as well as proctolin, but this is only a transitory response. In contrast to proctolin, 4-aminopyridine is still effective after blocking the Ca2+-channels by Co2+, but the response is smaller. Therefore proctolin seems to be primarily effective via Ca2+-channels, whereas 4-aminopyridine exerts its effects via K+-channels. The decrease in membrane conductance produced by proctolin could result from a Ca2+-dependent reduction of the K+-outward current.  相似文献   

12.
《Life sciences》1997,60(20):PL289-PL294
Therapeutic concentrations of praziquantel produce a rapid and intense contraction of the human flatworm Schistosoma mansoni. As an action on ATPases responsible for calcium homeostasis arises as a possible explanation for the molecular mechanism of this effect, we tested here the effect of praziquantel on different preparations from male adult worms that were previously characterized for their content in (Na++K+)-ATPase and (Ca2+-Mg2+)ATPase activities from different origins. Concentrations as high as 100 μM praziquantel did not inhibit (Na++K+)-ATPase from tegument and carcass nor (Ca2+-Mg 2+)ATPase from heterogeneous (P1) and microsomal (P4) fractions. As 100 μM praziquantel was also without effect on calcium permeability of microsomal vesicles actively loaded with 45Ca2+, the present results discard three hypotheses recently raised for the mechanism of praziquantel-induced contraction of S. mansoni.  相似文献   

13.
14.
In mouse intestine, caveolae and caveolin‐1 (Cav‐1) are present in smooth muscle (responsible for executing contractions) and in interstitial cells of Cajal (ICC; responsible for pacing contractions). We found that a number of calcium handling/dependent molecules are associated with caveolae, including L‐type Ca2+ channels, Na+‐Ca2+ exchanger type 1 (NCX1), plasma membrane Ca2+ pumps and neural nitric oxide synthase (nNOS), and that caveolae are close to the peripheral endo‐sarcoplasmic reticulum (ER‐SR). Also we found that this assemblage may account for recycling of calcium from caveolar domains to SR through L‐type Ca + channels to sustain pacing and contractions. Here we test this hypothesis further comparing pacing and contractions under various conditions in longitudinal muscle of Cav‐1 knockout mice (lacking caveolae) and in their genetic controls. We used a procedure in which pacing frequencies (indicative of functioning of ICC) and contraction amplitudes (indicative of functioning of smooth muscle) were studied in calcium‐free media with 100 mM ethylene glycol tetra‐acetic acid (EGTA). The absence of caveolae in ICC inhibited the ability of ICC to maintain frequencies of contraction in the calcium‐free medium by reducing recycling of calcium from caveolar plasma membrane to SR when the calcium stores were initially full. This recycling to ICC involved primarily L‐type Ca2+ channels; i.e. pacing frequencies were enhanced by opening and inhibited by closing these channels. However, when these stores were depleted by block of the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump or calcium release was activated by carbachol, the absence of Cav‐1 or caveolae had little or no effect. The absence of caveolae had little impact on contraction amplitudes, indicative of recycling of calcium to SR in smooth muscle. However, the absence of caveolae slowed the rate of loss of calcium from SR under some conditions in both ICC and smooth muscle, which may reflect the loss of proximity to store operated Ca channels. We found evidence that these channels were associated with Cav‐1. These changes were all consistent with the hypothesis that a reduction of the extracellular calcium associated with caveolae in ICC of the myenteric plexus, the state of L‐type Ca2+ channels or an increase in the distance between caveolae and SR affected calcium handling.  相似文献   

15.
Contractions of guinea pig trachea in the absence and presence of indomethacin to LTD4 > LTC4 > K+ > histamine > acetylcholine were reduced following a 45 minute exposure of the tissues to calcium-free Krebs' solution (Ca2+-free Krebs' solution), were further reduced by a transient exposure to EGTA (1.25 mM) in Ca2+-free Krebs' solution and were virtually abolished when tested in the presence of EGTA (0.125 mM) in Ca2+-free Krebs' solution. In normal Krebs' solution (2.5 mM Ca2+) the Ca2+ entry blockers nifedipine (N) ? D-600 > verapamil (V) > diltiazem (D) almost completely abolished the contractions to K+ but blocked only a component of the maximum response to the other agonists. After exposure to Ca2+-free Krebs' solution for 45 minutes, any residual contractions to LTC4 & LTD4, were reversed by low concentrations of N (0.3 μM) or D-600 (2.1 μM). Leukotrienes appear to mobilize a superficial and a bound store of Ca2+ which gains entry through at least two types of Ca2+ channels (or mechanisms), one of which is blocked by N and D600. K+-induced contractions appear to be dependent on superficial and tightly bound Ca2+ but entry is solely through channels which are blocked by the Ca2+ entry blockers studied. Contraction to histamine and acetylcholine persisted following exposure of the tissues to Ca2+ free Krebs' solution but contractile activity was virtually abolished in Ca2+ free Krebs' solution containing EGTA. Residual contractions to histamine and part of the residual contractions to acetylcholine in Ca2+-free Krebs' solution were blocked by low dose N (0.3μM) or D600 (2.1 μM). These findings suggest a major role for extracellular Ca2+ during spasmogen-induced contraction in this tissue.  相似文献   

16.
Ion Effects on Calcium Accumulation by Cardiac Sarcoplasmic Reticulum   总被引:6,自引:3,他引:3  
The effects of monovalent cations on the active calcium-accumulating ability of cardiac sarcoplasmic reticulum were assessed. Grana prepared in an ion-free system accumulated calcium when ATP and Mg++ were present. Sodium ion and to a lesser extent lithium but not K+ reduced the amount of calcium taken up. The reduction of calcium binding by Na+ is not due to inhibition of uptake but to a rapid release of the radiocalcium bound. The amount of calcium released by sodium does not appear to be enough to explain contraction on the basis of sodium influx into muscle, but may be significant in the regulation of tension.  相似文献   

17.

Background

It has recently been suggested that RhoA plays an important role in the enhancement of the Ca2+ sensitization of smooth muscle contraction. In the present study, a participation of RhoA-mediated Ca2+ sensitization in the augmented bronchial smooth muscle (BSM) contraction in a murine model of allergic asthma was examined.

Methods

Ovalbumin (OA)-sensitized BALB/c mice were repeatedly challenged with aerosolized OA and sacrificed 24 hours after the last antigen challenge. The contractility and RhoA protein expression of BSMs were measured by organ-bath technique and immunoblotting, respectively.

Results

Repeated OA challenge to sensitized mice caused a BSM hyperresponsiveness to acetylcholine (ACh), but not to high K+-depolarization. In α-toxin-permeabilized BSMs, ACh induced a Ca2+ sensitization of contraction, which is sensitive to Clostridium botulinum C3 exoenzyme, indicating that RhoA is implicated in this Ca2+ sensitization. Interestingly, the ACh-induced, RhoA-mediated Ca2+ sensitization was significantly augmented in permeabilized BSMs of OA-challenged mice. Moreover, protein expression of RhoA was significantly increased in the hyperresponsive BSMs.

Conclusion

These findings suggest that the augmentation of Ca2+ sensitizing effect, probably via an up-regulation of RhoA protein, might be involved in the enhanced BSM contraction in antigen-induced airway hyperresponsiveness.  相似文献   

18.
The role of calcium in excitation-contraction coupling of lobster muscle   总被引:2,自引:1,他引:1  
Potassium contractures were induced in lobster muscle bundles under conditions which produced varying KCl fluxes into the fibers. The presence or absence of chloride fluxes during depolarization by high concentrations of potassium, had no effect on the tensions developed. The curve relating tension to the membrane potential had a typical sigmoid shape with an apparent "threshold" for tension at -60 mv. Soaking the muscles in low (0.1 mM) calcium salines for 30 min completely eliminated the potassium contractures but the caffeine contractures were only slightly reduced under these conditions. The potassium contracture could be completely restored in less than 2 min by return of the calcium ions to the saline. Evidence is presented for independent, superficial, and deep calcium sites; the superficial sites appear to be involved in the coupling mechanisms associated with potassium contractures. These sites are highly selective for Ca++, and attempts to substitute either Cd++, Co++, Mg++, Ba++, or Sr++ for Ca++ were unsuccessful. However, K+ appeared to compete with Ca++ for these sites, and the evoked tension could be reduced by prestimulation of the muscle fibers with high K+ salines. The results of studies on the influx of 45Ca during potassium contractures were compatible with the view of muscle activation by the entry of extracellular calcium.  相似文献   

19.
Malignant hyperthermia (MH) is potentially fatal pharmacogenetic disorder of skeletal muscle caused by intracellular Ca2+ dysregulation. NCX is a bidirectional transporter that effluxes (forward mode) or influxes (reverse mode) Ca2+ depending on cellular activity. Resting intracellular calcium ([Ca2+]r) and sodium ([Na+]r) concentrations are elevated in MH susceptible (MHS) swine and murine muscles compared with their normal (MHN) counterparts, although the contribution of NCX is unclear. Lowering [Na+]e elevates [Ca2+]r in both MHN and MHS swine muscle fibers and it is prevented by removal of extracellular Ca2+ or reduced by t-tubule disruption, in both genotypes. KB-R7943, a nonselective NCX3 blocker, reduced [Ca2+]r in both swine and murine MHN and MHS muscle fibers at rest and decreased the magnitude of the elevation of [Ca2+]r observed in MHS fibers after exposure to halothane. YM-244769, a high affinity reverse mode NCX3 blocker, reduces [Ca2+]r in MHS muscle fibers and decreases the amplitude of [Ca2+]r rise triggered by halothane, but had no effect on [Ca2+]r in MHN muscle. In addition, YM-244769 reduced the peak and area under the curve of the Ca2+ transient elicited by high [K+]e and increased its rate of decay in MHS muscle fibers. siRNA knockdown of NCX3 in MHS myotubes reduced [Ca2+]r and the Ca2+ transient area induced by high [K+]e. These results demonstrate a functional NCX3 in skeletal muscle whose activity is enhanced in MHS. Moreover reverse mode NCX3 contributes to the Ca2+ transients associated with K+-induced depolarization and the halothane-triggered MH episode in MHS muscle fibers.  相似文献   

20.
The participation of large-conductance Ca2+ activated K+ channels (BKs) in chloroquine (chloro)-induced relaxation of precontracted airway smooth muscle (ASM) is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs) and chloro both completely blocked spontaneous transient outward currents (STOCs) in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs). We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH). Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax), BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号