首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogeography and phyloecology of dorid nudibranchs (Mollusca, Gastropoda)   总被引:2,自引:0,他引:2  
Dorid nudibranchs exhibit a number of anatomical and physiological adaptations that reflect a complex evolutionary history. The lack of a fossil record means that all available information on the evolution of this group comes from phylogenetic evidence. Deep imbalances in the phylogeny of dorid nudibranchs indicates that this group has probably undergone random extinction events and subsequent speciation of derived lineages. Sister-group relationships between eastern Pacific, Atlantic and tropical Indo-Pacific taxa [(eastern Pacific, Atlantic) Indo-Pacific], repeated throughout several lineages of dorid nudibranchs, provide solid evidence of two consecutive vicariant events: (1) the closure of communication between the tropical Indo-Pacific region and the Atlantic and eastern Pacific, which began during the Oligocene–Miocene transition and was completed with the formation of the East Pacific Barrier, and (2) the rise of the Panama isthmus. The absence of solid dates for the effective isolation of the eastern Pacific and the central Pacific does not allow estimations of the time of diversification of dorid nudibranchs. Phylogenetic evidence indicates that omnivorism and de novo synthesis of chemical defences are probably the plesiomorphic conditions in dorid nudibranchs. It is also likely that all sponge-feeding cryptobranch dorids have a common ancestor, but other cases of sponge feeding in phanerobranch dorids have arisen independently. The numerous instances in which de novo synthesis was replaced by sequestration of chemicals from the prey are evidence of a great metabolic versatility in dorid nudibranchs.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 551–559.  相似文献   

2.
The drilling mode of feeding is known from two clades of Gastropoda: Caenogastropoda and Heterobranchia. However, the level of convergence and parallelism or homology among these two lineages is unclear. The morphology of the buccal complex is well studied for drilling caenogastropods, but poorly known for drilling nudibranchs. It is also unclear whether the drilling feeding mechanism is similar between inside gastropods. Accordingly, a comparison between the feeding mechanisms of drilling nudibranchs and caenogastropods can help to understand the evolutional trends inside gastropods. In this study, we redescribe the morphology of the buccal complex of drilling dorid nudibranch Vayssierea cf. elegans, and compare it to that of previous investigations on this species and closely related dorid species. We describe the feeding mechanism of this species based on the obtained morphological and literature data and compare it to the feeding mechanisms described for drilling caenogastropods. The feeding apparatus of Vayssierea cf. elegans corresponds to the general morphology of the dorid buccal complex; that is, it has a similar arrangement of the buccal musculature and pattern of radular morphology. However, there are also adaptations to the drilling feeding mode similar to those found in Caenogastropoda: that is, specialized dissolving glands and lateral teeth with elongated pointed cusps; and even Sacoglossa: the specialized muscle for sucking. The feeding process of Vayssierea cf. elegans includes the same two stages as those described for drilling caenogastropods: (a) the boring stage, which is provided by mechanical and chemical activity, and (b) the swallowing stage.  相似文献   

3.
Many dorid nudibranchs possess large numbers of calcareous spicules in their mantle, gill, rhinophores and foot. However, the arrangements of these structures and their differences among taxa are poorly known. Spicule networks were stained with Alizarin red and compared among 12 species of cryptobranchiate dorid nudibranchs and four outgroups. Three general types of networks were found: a cobweb-like, unbraced framework of one or few spicules per side; a ramifying system of thick, spiculated tracts; and a lattice-like arrangement of distinct radial and circumferential tracts. The Discodorididae species investigated shared a cobweb-like network and papillae supported by a ring of spicules, while the Porostomata showed consistent characters leading to a lattice-like network with larger spicules in the central notum. The Dorididae studied were not cohesive, but each species shared characters with the aforementioned groups. Therefore, spicule network form may provide new characters to help resolve the phylogeny of Doridina.  相似文献   

4.
Stephen A. Bloom 《Oecologia》1981,49(3):305-315
Summary Habitat and food resource partitioning ecologically isolate six species of Pacific Northwest dorid nudibranchs. Food resources along a gradient of sponge skeletal structure are partitioned between two exploitive guilds. The guilds are characterized by mutually exclusive predatory and digestive adaptations which allow efficient processing of sponges with poorly- or well-organized skeletons. Habitats along a depth gradient are partitioned within guilds. For a dorid species, feeding rates, extraction efficiencies and food quality are virtually identical for sponges with the appropriate extreme (either poorly- or well-organized) and intermediate skeletal organizations, but growth and reproductive rates supported by the former prey type are twice those supported by the latter prey type. Prey types with the appropriate extreme skeletal organization are thus optimal food and specialization to that food is expected. When two divergent specialist species co-occur, food resource partitioning is demonstrable but arises from self-stabilizing specializations to maximize net energy accumulation and not from competitive interactions. Habitat partitioning is viewed as arising from prey distributions and dorid physiological tolerances. This system represents an example of morphological and behavioral specializations giving rise to resource partitioning as opposed to competition giving rise to resource partitioning and subsequent morphological and behavioral specializations.  相似文献   

5.
A total of 13 enzymes, coded by 14 loci, were successfully examined by horizontal starch gel electrophoresis in the intertidal dorid nudibranchs Adalaria proxima (Alder & Hancock) and Onchidorismuricata (Muller). The derived genetic identity and similarity values provided estimates more typical of congeneric, than only confamilial, species. The suggestion is that these two species hold a recent common ancestry, and that Adalaria proxima (with its more advanced, pelagic lecithotrophic larva) is an evolutionary derivative of the Onchidoris muricata stock. At least three loci (Pgm and Fum, A. proxima; Pep-2, O. muricata) are all highly polymorphic.  相似文献   

6.
Natural products play an invaluable role as a starting point in the drug discovery process, and plants and animals use many interesting biologically active natural products as a chemical defense mechanism against predators. Among marine organisms, many nudibranch gastropods are known to derive defensive metabolites from the sponges they eat. Here we investigated the putative sequestration of the toxic compound latrunculin A—a 16-membered macrolide that prevents actin polymerization within cellular processes—which has been identified from sponge sources, by five closely related nudibranch molluscs of the genus Chromodoris. Only latrunculin A was present in the rim of the mantle of these species, where storage reservoirs containing secondary metabolites are located, whilst a variety of secondary metabolites were found in their viscera. The species studied thus selectively accumulate latrunculin A in the part of the mantle that is more exposed to potential predators. This study also demonstrates that latrunculin-containing sponges are not their sole food source. Latrunculin A was found to be several times more potent than other compounds present in these species of nudibranchs when tested by in vitro and in vivo toxicity assays. Anti-feedant assays also indicated that latrunculin A was unpalatable to rock pool shrimps, in a dose-dependent manner. These findings led us to propose that this group of nudibranchs has evolved means both to protect themselves from the toxicity of latrunculin A, and to accumulate this compound in the mantle rim for defensive purposes. The precise mechanism by which the nudibranchs sequester such a potent compound from sponges without disrupting their own key physiological processes is unclear, but this work paves the way for future studies in this direction. Finally, the possible occurrence of both visual and chemosensory Müllerian mimicry in the studied species is discussed.  相似文献   

7.
The invasion success of exotic species has been frequently correlated to abiotic and biotic features of the receptor region and to the biological aspects of the invasive organism. There is, however, no information about defensive chemicals found in invasive species as strategy that could promote or facilitate an invasion in a marine environment. We conducted experimental field assays to verify the potential of secondary metabolites of an Indo-Pacific exotic soft coral, Stereonephthya aff. curvata, as a defensive chemical against generalist fish and as an allelopathic agent against the potential local competitor-the gorgonian Phyllogorgia dilatata-in Arraial do Cabo, on the southeastern coast of Brazil. As a result of our experiments, it was confirmed as an efficient chemical defense against fishes by crude coral hexanic extract. In addition to its role as defense against consumers, the field experimental assay also verified that chemicals from this exotic coral had an allelopatic effect causing large necrosis on tissues of the Brazilian endemic gorgonian P. dilatata. Both defensive strategies observed may facilitate the perpetuation and/or expansion and characterize an expressive, invasive facilitator for S. aff. curvata. The obtained results indicate that this exotic coral species may be a real threat to the biological integrity of the Arraial do Cabo Harvest Reserve, Rio de Janeiro. In addition, the study reveals that defensive chemicals can be used to predict the potential invasiveness of introduced species.  相似文献   

8.
Abstract. Many cryptobranch dorid nudibranchs contain innumerable calcareous spicules, yet the function of these elements is unknown. Two possible roles are defense against predators and structural support. In one dorid, Cadlina luteomarginata , whole-mount and thin-section staining revealed an intricate network of spicule tracts and connective tissue ramifying throughout the body, with muscle fibers associated with this spicule/connective tissue matrix and inserting into it. Spicules were present in high concentrations in all areas of the body, but highest in exterior mantle tissue. Relative investment increased isometrically with body size for most body regions, in contrast to the positively allometric investment seen in prosobranch shells. Bioassays with artificial food indicated that spicules alone did not deter generalist crabs and anemones, and only weakly increased the deterrence of secondary chemicals to anemones. Thus, while nudibranch spicules may serve as a defense against other predators, their primary role may be in body support.  相似文献   

9.

Background

Storage of secondary metabolites with a putative defensive role occurs in the so-called mantle dermal formations (MDFs) that are located in the more exposed parts of the body of most and very likely all members of an entire family of marine mollusks, the chromodorid nudibranchs (Gastropoda: Opisthobranchia). Given that these structures usually lack a duct system, the mechanism for exudation of their contents remains unclear, as does their adaptive significance. One possible explanation could be that they are adapted so as to be preferentially attacked by predators. The nudibranchs might offer packages containing highly repugnant chemicals along with parts of their bodies to the predators, as a defensive variant of the strategic theme of the Trojan horse.

Methodology and Principal Findings

We detected, by quantitative 1H-NMR, extremely high local concentrations of secondary metabolites in the MDFs of six species belonging to five chromodorid genera. The compounds were purified by chromatographic methods and subsequently evaluated for their feeding deterrent properties, obtaining dose-response curves. We found that only distasteful compounds are accumulated in the reservoirs at concentrations that far exceed the values corresponding to maximum deterrent activity in the feeding assays. Other basic evidence, both field and experimental, has been acquired to elucidate the kind of damage that the predators can produce on both the nudibranchs'' mantles and the MDFs.

Significance

As a result of a long evolutionary process that has progressively led to the accumulation of defensive chemical weapons in localized anatomical structures, the extant chromodorid nudibranchs remain in place when molested, retracting respiratory and chemosensory organs, but offering readily accessible parts of their body to predators. When these parts are masticated or wounded by predators, breakage of the MDFs results in the release of distasteful compounds at extremely high concentration in a way that maximizes their repugnant impact.  相似文献   

10.
The dorid nudibranchs Peltodoris lentiginosa and Archidoris odhneri were found on glass sponges (Porifera, Hexactinellida) during remotely operated vehicle surveys of three reefs in the Strait of Georgia, British Columbia, Canada. Eight nudibranchs were sampled from 2009 to 2011. Identification of sponge spicules found in their gut and fecal contents confirmed the nudibranchs to be predators of the reef‐forming hexactinellids Aphrocallistes vastus and Heterochone calyx, as well as of the demosponge Desmacella austini, which encrusts skeletons of the glass sponges. Four of five nudibranchs dissected for gut content analysis had stomachs containing sponge spicules. Counts from high‐definition video footage taken during systematic surveys done in 2009 showed that nudibranchs were found in only two of the three glass sponge reefs. These data provide the first quantitative evidence of a molluscan predator on glass sponges found outside of Antarctica, and establish the first trophic link between glass sponges and their associated community of animals in a sponge reef ecosystem on the western Canadian continental shelf.  相似文献   

11.
Herbivore damage induces the production of defensive chemicals in many plant species. However, defensive chemicals sometimes have functions other than protection from herbivores, and these chemicals may respond to hervibory differentialy than those which are primarily defensive. A well-studied group of leaf constituents with multiple functions is the phenolic leaf resins, which protect leaves from herbivores, UV radiation, and possibly excess water loss. The effects of herbivory on phenolic leaf resins were investigated in the chapparral shrub Eriodictyon californicum by artificially damaging leaves during the growing season and subsequently measuring resin content and composition. We found that (i) resin content declined in leaves damaged by artificial herbivory; (ii) resin declined (at the P < 0.1 level) in undamaged leaves present on the same plant as those heavily damaged; and (iii) resin composition, as measured by the ratio of the major components, was unaffected by artificial herbivory.  相似文献   

12.
Dorid nudibranchs (Gastropoda: Nudipleura) are a key taxon for studying the evolution and interaction of chemical defence, colour patterns and feeding specialization, but we lack a robust phylogeny for hypothesis testing. To provide new morphological characters, we investigated the extensive interior spicule networks of several dorid taxa. We compared traditional staining methods versus micro-computed tomography (μCT) of 31 specimens representing 10 species of Aldisa, Cadlina and Onchidoris. We found that μCT offered a nondestructive view of sufficient resolution to study the gross morphology of networks, although images of fine structures were too grainy to allow robust comparisons. Network form did not vary within species and was consistent within genera. The three genera varied in several obvious characters, such as the presence of a pleural sinus channel, large dorsal spicules and multispicular tracts, as well as in relative size, shape and orientation of spicules. These characters, combined with those from the literature, supported recent molecular phylogenies that group Cadlina with Aldisa, and that question the monophyly of the Cryptobranchia. This suggests that these network forms will prove a fruitful source of phylogenetic characters with at least genus-level resolution.  相似文献   

13.
Trigona pectoralis and T. mexicana attacked when volatile chemicals that have been identified from their heads were presented at the nest entrance; mixtures approximating the composition of the head extracts elicited stronger reactions than did any of the single chemicals. Alarm pheromones of T. pectoralis occur in approximately equal concentrations in the mandibular glands and the remainder of the heads; other alarm pheromones occur in small concentrations in the abdomen. Three other species of stingless bees gave defensive reactions when presented with the mixture of chemicals, with some of the single chemicals, with living or freshly killed T. pectoralis, or with the heads of that species. Living or freshly killed Lestrimelitta limao, which are known to live by robbing other bees, elicited strong defence reactions from all species; citral, the major volatile component of the head extract of L. limao, gave similar results. Variations in the strength of reactions of bees to other species and to a wide variety of volatile chemicals led to the conclusion that bees probably learn to recognize the odour of other species that rob from their nests, and that the pheromones of the robbing species are allomones that recruit the victims to the defence of the nest. It is postulated that the reactions to some of the chemicals developed because the bees had been exposed to enemies that contained the chemicals. It is often impossible to decide whether the reactions of bees to a chemical result from an inability to distinguish the chemical from some other, or from the properties and usual origin of the chemical itself.Some of the problems that arise from the reactions of the bees, and particularly from their reactions to 2-heptanone, geraniol, and benzoic acid, are discussed.  相似文献   

14.
Tadpoles of some ranid species appear to possess chemical defenses against fish predators, but the chemicals have not been characterized. Here, we evaluated the vulnerability of three Japanese anuran tadpole species (Glandirana rugosa, Pelophylax nigromaculatus, and Hyla japonica) to a fish (Gnathopogon elongatus elongatus) and analyzed the defensive chemicals extracted from the unpalatable tadpoles. Additionally, we examined the defensive behavior of unpalatable tadpoles in response to fish chemical cues. The fish rejected both G. rugosa (83%) and P. nigromaculatus (48%), but not H. japonica (0%). Many of the rejected tadpoles survived (60–80%). Possible defensive chemicals were extracted by methanol from the skin of G. rugosa, but were not identifiable by gas chromatography–mass spectrometry because of small quantities. The chemicals have high polarity and non-volatility. When exposed to fish chemical cues, P. nigromaculatus decreased activity presumably as a defensive behavior, but G. rugosa did not. We demonstrated the presence of chemical defenses in at least two of these species and revealed that G. rugosa releases more effective or greater amounts of defense chemicals than P. nigromaculatus with respect to this fish predator. The increased efficacy of chemical defenses may correlate with decreasing defensive behavior.  相似文献   

15.
1. Aqueous extracts of digestive glands of specimens of the dorid nudibranchs Cadlina flavomaculata, Doriopsilla albopunctata, Anisodoris nobilis, Archidoris montereyenis, and A. odhneri were lethal when injected into shore crabs and when injected intraperitoneally into mice. 2. Aqueous extracts of the degestive glands of Doriopsilla albopunctata and of Anisodoris nobilis were shown by bioassay (guinea pig ileum)and by chemical determination to contain histamine. The amount present was far too small to account for the toxicity of the glands. 3. Extracts of the digestive glands of Anisodoris nobilis were fractionated by column chromatography on Biogel P-2 to yield an active fraction designated "dorid toxin". This produces lethargy and bradycardia in mice. In anesthetized rats it produces sustained (60 min or more) bradycardia and hypotension. On isolated hearts, especially spontaneously beating guinea pig atria, it has negative inotropic and chronotropic effects. 4. Dorid toxin has a molecular weight under 8000. It is heat stable and is not destroyed by trypsin, chymotrypsin or Pronase. It is therefore unlikely that it is a polypeptide.  相似文献   

16.
Chromodorid nudibranchs (16 genera, 300+ species) are beautiful, brightly colored sea slugs found primarily in tropical coral reef habitats and subtropical coastal waters. The chromodorids are the most speciose family of opisthobranchs and one of the most diverse heterobranch clades. Chromodorids have the potential to be a model group with which to study diversification, color pattern evolution, are important source organisms in natural products chemistry and represent a stunning and widely compelling example of marine biodiversity. Here, we present the most complete molecular phylogeny of the chromodorid nudibranchs to date, with a broad sample of 244 specimens (142 new), representing 157 (106 new) chromodorid species, four actinocylcid species and four additional dorid species utilizing two mitochondrial markers (16s and COI). We confirmed the monophyly of the Chromodorididae and its sister group relationship with the Actinocyclidae. We were also able to, for the first time, test generic monophyly by including more than one member of all 14 of the non-monotypic chromodorid genera. Every one of these 14 traditional chromodorid genera are either non-monophyletic, or render another genus paraphyletic. Additionally, both the monotypic genera Verconia and Diversidoris are nested within clades. Based on data shown here, there are three individual species and five clades limited to the eastern Pacific and Atlantic Oceans (or just one of these ocean regions), while the majority of chromodorid clades and species are strictly Indo-Pacific in distribution. We present a new classification of the chromodorid nudibranchs. We use molecular data to untangle evolutionary relationships and retain a historical connection to traditional systematics by using generic names attached to type species as clade names.  相似文献   

17.
Chemical signaling is a vital mode of communication for most organisms, including larval amphibians. However, few studies have determined the identity or source of chemical compounds signaling amphibian defensive behaviors, in particular, whether alarm pheromones can be actively secreted from tadpoles signaling danger to conspecifics. Here we exposed tadpoles of the common toad Bufo bufo and common frog Rana temporaria to known cues signaling predation risk and to potential alarm pheromones. In both species, an immediate reduction in swimming activity extending over an hour was caused by chemical cues from the predator Aeshna cyanea (dragonfly larvae) that had been feeding on conspecific tadpoles. However, B. bufo tadpoles did not detectably alter their behavior upon exposure to potential alarm pheromones, neither to their own skin secretions, nor to the abundant predator-defense peptide bradykinin. Thus, chemicals signaling active predation had a stronger effect than general alarm secretions of other common toad tadpoles. This species may invest in a defensive strategy alternative to communication by alarm pheromones, given that Bufonidae are toxic to some predators and not known to produce defensive skin peptides. Comparative behavioral physiology of amphibian alarm responses may elucidate functional trade-offs in pheromone production and the evolution of chemical communication.  相似文献   

18.
The association of the sponges Myxilla incrustans (Esper) and Mycale adhaerens (Lambe) with the scallops Chlamys hastata hericia Gould and C. rubida (Hines) is shown to be a mutualism, which protects the sponges from predatory sponge-rasping dorid nudibranchs and the scallops from predatory starfish. The sponge is protected by scallop motility (also shown for the Suberites ficus-hermit crab association). The sponge helps to protect the scallops by altering the surface texture of the shell so increasing the efficacy of the swimming escape response by decreasing the adhesive abilities of asteroid tube-feet. The sponge also provides tactile camouflage against certain predatory starfish. There was no evidence that either component chemically deceived or repelled the predators of the other component. Predation pressure on both components of the association appears to be the major force leading to the mutualism.  相似文献   

19.
How do predators cope with chemically defended foods?   总被引:1,自引:0,他引:1  
Many prey species (including plants) deter predators with defensive chemicals. These defensive chemicals act by rendering the prey's tissues noxious, toxic, or both. Here, I explore how predators cope with the presence of these chemicals in their diet. First, I describe the chemosensory mechanisms by which predators (including herbivores) detect defensive chemicals. Second, I review the mechanisms by which predators either avoid or tolerate defensive chemicals in prey. Third, I examine how effectively free-ranging predators can overcome the chemical defenses of prey. The available evidence indicates that predators have mixed success overcoming these defenses. This conclusion is based on reports of free-ranging predators rejecting unpalatable but harmless prey, or voluntarily ingesting toxic prey.  相似文献   

20.
Amphibian defensive skin secretions are known to contain a plethora of biologically-active peptides that are often structural and functional analogues of vertebrate neuropeptides. Here we report the structures of two invertebrate neuropeptide analogues, IPPQFMRF amide (IF-8 amide) and EGDEDEFLRF amide (EF-10 amide), from the defensive skin secretions of two different species of African hyperoliid frogs, Kassina maculata and Phylictimantis verrucosus, respectively. These represent the first canonical FMRF amide-related peptides (FaRPs) from a vertebrate source. The cDNA encoding IF-8 amide was cloned from a skin secretion library and found to contain a single copy of the peptide located at the C-terminus of a 58 amino acid residue open-reading frame. These data extend the potential targets of the defensive arsenal of amphibian tegumental secretions to parasitic/predatory invertebrates and the novel peptides described may represent the first vertebrate peptidic endectocides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号