首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Morphological changes of the oocyte, follicle cells and nurse cells of the ovaries of the viviparous fly Glossina austeni during vitellogenesis and postvitellogenesis are outlined. During vitellogenesis, material is pinocytosed and incorporated into yolk spheres by subsequent fusions. Various lines of evidence are presented that indicate much of this material is derived from the follicular epithelium. The ultrastructure of the follicular cells throughout the 9 day cycle and their role in protein synthesis is presented. Subsequent to vitellogenesis, the follicle cells synthesize the secondary envelopes.  相似文献   

3.
4.
5.
Analysis of the mechanisms that control epithelial polarization has revealed that cues for polarization are mediated by transmembrane proteins that operate at the apical, lateral, or basal surface of epithelial cells. Whereas for any given epithelial cell type only one or two polarization systems have been identified to date, we report here that the follicular epithelium in Drosophila ovaries uses three different polarization mechanisms, each operating at one of the three main epithelial surface domains. The follicular epithelium arises through a mesenchymal-epithelial transition. Contact with the basement membrane provides an initial polarization cue that leads to the formation of a basal membrane domain. Moreover, we use mosaic analysis to show that Crumbs (Crb) is required for the formation and maintenance of the follicular epithelium. Crb localizes to the apical membrane of follicle cells that is in contact with germline cells. Contact to the germline is required for the accumulation of Crb in follicle cells. Discs Lost (Dlt), a cytoplasmic PDZ domain protein that was shown to interact with the cytoplasmic tail of Crb, overlaps precisely in its distribution with Crb, as shown by immunoelectron microscopy. Crb localization depends on Dlt, whereas Dlt uses Crb-dependent and -independent mechanisms for apical targeting. Finally, we show that the cadherin-catenin complex is not required for the formation of the follicular epithelium, but only for its maintenance. Loss of cadherin-based adherens junctions caused by armadillo (beta-catenin) mutations results in a disruption of the lateral spectrin and actin cytoskeleton. Also Crb and the apical spectrin cytoskeleton are lost from armadillo mutant follicle cells. Together with previous data showing that Crb is required for the formation of a zonula adherens, these findings indicate a mutual dependency of apical and lateral polarization mechanisms.  相似文献   

6.

Background  

Proper patterning of the follicle cell epithelium over the egg chamber is essential for the Drosophila egg development. Differentiation of the epithelium into several distinct cell types along the anterior-posterior axis requires coordinated activities of multiple signaling pathways. Previously, we reported that lethal(2)giant larvae (lgl), a Drosophila tumor suppressor gene, is required in the follicle cells for the posterior follicle cell (PFC) fate induction at mid-oogenesis. Here we explore the role of another two tumor suppressor genes, scribble (scrib) and discs large (dlg), in the epithelial patterning.  相似文献   

7.
Extensive programmed structural and functional changes of insect follicular epithelium during oogenesis provide a model to study modulation of cytoskeletal organization during morphogenesis in a non-dividing cell population. Rhodamine-phalloidin staining of whole mounted and cryosectioned oogenic follicles reveal changing F-actin filament organization from pre- to post-vitellogenic stages consistent with the presumptive dorsal-ventral orientation of the future embryo. Filaments are not abundant in pre-vitellogenic follicle cells up to day 2. Differences between dorsal and ventral follicle cells appear first on day 3. Obviously patent follicle cells are seen only on the ventral follicle surface which exhibits stronger F-actin fluorescence than the dorsal non-patent epithelium. On the presumptive ventral side of midvitellogenic follicles morphologically distinct bundles of actin filaments orient peripherally into projections connecting adjacent follicle cells and from the center of follicle cells apically into macrovillar projections extending toward the oocyte surface. The mid-vitellogenic dorsal follicle cell layer also possesses macrovillar extensions containing F-actin which reach and appear to penetrate the oolema. During chorion deposition major reorganization of actin of follicle cells takes place. After chorion deposition all F-actin filaments within a given follicle cell are arranged into large parallel bundles with semi-regular cross-striations which exclude fluorescent label. The parallel orientation of actin striated filament bundles within each follicle cell appears to be random with respect to the orientation of bundles in neighboring follicle cells over much of the mid-latitude of the follicle epithelium. At anterior and posterior follicle poles a more axial orientation of striated bundles is evident. This muscle-like tissue arrangement is appropriate for cooperation in ovulating the chorionated oocyte from the follicle into the oviduct.  相似文献   

8.
The gall midge Heteropeza pygmaea can reproduce by means of paedogenesis (i.e., larval parthenogenesis). In that process, follicles are produced that develop while floating in the hemocoele of the mother larva. A chorion is not formed at the end of oogenesis, and the growing embryos remain enveloped by the follicular epithelium. To investigate possible adaptations of the follicular epithelium to this unusual egg development, its ultrastructure has been studied during late oogenesis and cleavage. Earlier investigations had shown that the follicle cells are provided with a specifically arranged microtubular frame, which may be responsible for the anisometric growth of the egg. The present work shows that the follicle cells are always joined by desmosomes and septate junctions. During development, the septate junctions increase their surface and change their orientation to become parallel to the longitudinal egg axis, thus increasing the resistance of the follicle cells to being torn apart by growth tensions. The total surface of the follicular epithelium increases during development. Well-developed nucleoli in the nuclei and numerous ribosomes in the cytoplasm of follicle cells indicate a high level of synthetic activity. This activity may be required to support the increase in the membrane surface and the establishment of the microtubular frame. Lipid droplets, glycogen, and different inclusions in the follicle cells may represent nutrient and energy reserves. Structures indicating a quantitative significant transfer of nutrients from the follicle cells to the egg were not found.  相似文献   

9.
10.
11.
Li Q  Feng S  Yu L  Zhao G  Li M 《Fly》2011,5(2):81-87
The epithelial follicle cell layer over the egg chamber in Drosophila ovary undergoes patterning and morphogenesis at oogenesis. These developmental processes are essential for constructing the eggshell and establishing the body axes of the egg and resultant embryo, thereby being crucial for the egg development. We have previously shown that lethal(2)giant larvae (lgl), a Drosophila neoplastic tumor suppressor gene (nTSG) is required for the posterior follicle cell (PFC) fate induction during antero-posterior pattern formation of the follicular epithelium. In this report, we further characterize lgl in this epithelium patterning and the morphogenetic changes of specified border cells. Genetic interactions of lgl with discs large (dlg) and scribble (scrib), another two nTSGs in specifying the PFC fate reveal a cooperative role of this group of genes. Meanwhile, we find that loss of lgl function causes failure of follicle cells at the anterior to differentiate properly. The clonal analysis further indicates that lgl is necessary not only for the border cell differentiation, but also for control of the collective border cell migration via presumably modulating the apico-basal polarity and cell adhesion. Overall, we identify Lgl as an essential factor in regulating differentiation and morphogenetic movement of the ovarian epithelial follicle cells.  相似文献   

12.
《Fly》2013,7(2):81-87
The epithelial follicle cell layer over the egg chamber in Drosophila ovary undergoes patterning and morphogenesis at oogenesis. These developmental processes are essential for constructing the eggshell and establishing the body axes of the egg and resultant embryo, thereby being crucial for the egg development. We have previously shown that lethal(2)giant larvae (lgl), a Drosophila neoplastic tumor suppressor gene (nTSG) is required for the posterior follicle cell (PFC) fate induction during antero-posterior pattern formation of the follicular epithelium. In this report, we further characterize lgl in this epithelium patterning and the morphogenetic changes of specified border cells. Genetic interactions of lgl with discs large (dlg) and scribble (scrib), another two nTSGs in specifying the PFC fate reveal a cooperative role of this group of genes. Meanwhile, we find that loss of lgl function causes failure of follicle cells at the anterior to differentiate properly. The clonal analysis further indicates that lgl is necessary not only for the border cell differentiation, but also for control of the collective border cell migration via presumably modulating the apico-basal polarity and cell adhesion. Overall, we identify Lgl as an essential factor in regulating differentiation and morphogenetic movement of the ovarian epithelial follicle cells.  相似文献   

13.
The structural organisation of the nucleolar apparatus during oogenesis of the spotted ray Torpedo marmorata was investigated. The observations showed that unlike other cartilaginous fishes, in T. marmorata the nucleolar apparatus was always represented by one or two conspicuous nucleoli, whose organization significantly changed during oocyte development. In the smallest follicles (follicles <300 μm in diameter) the nucleolus was made up of granular and fibrillar components, and actively incorporated 3H uridine; later it becomes more and more electron‐dense so in follicles of 400 μm in diameter its components and 3H uridine incorporation were no longer evident. These results indicate that in T. marmorata the nucleolar apparatus significantly changes and undergoes a possible impairment in rRNA synthesis. After nucleolus inactivation, the synthesis of rRNA may be substained by granulosa.  相似文献   

14.
15.
Using an immunofluorescence technique on ovarian sections, zona-immunoreactive components were detected in the cytoplasm of the oocyte from the beginning of its growth, when it is surrounded by only a thin squamous follicular cell layer, up to the end of its growth. In parallel with oocyte growth, the staining intensity decreased in the ooplasm. No staining was observed in the cytoplasm of the granulosa cells during normal follicular development in adult cyclic females. However, staining of the granulosa cells was observed at some stages of follicular development in immature females. This staining was especially evident in the ovaries of immature females (22 or 26 days old) stimulated with PMSG. In addition, the staining of the granulosa cells was consistently observed in ovaries showing an abnormal histology. Increased staining of the zona at its outer and inner regions could be distinguished in normal follicles, but when staining occurred on the granulosa cells no such pattern was observed over the zona matrix. These studies indicate that the oocyte itself but not the granulosa cells elaborates the native immunogenic material of the zona pellucida. The administration of PMSG at particular stages of ovarian differentiation interferes with follicular development leading to an abnormal extracellular assembly of the zona and its degradation (phagocytosis) by the surrounding granulosa cells.  相似文献   

16.
Summary

Among the many functions of follicle cells in the insect ovary is the regulation of the entrance into the follicle of the vitellogenin circulating in the hemolymph. The vitellogenin enters the follicle via large spaces which appear between the follicle cells. The appearance of these spaces (patency) is a result of a reduction in volume of the follicle cells caused by the action of juvenile hormone which activates a juvenile-hormone-sensitive Na+K+ ATPase via a pathway involving protein kinase C. A putative juvenile hormone receptor protein has been identified in membranes from follicle cells. An antigonadotropin, a small neuropeptide, antagonizes the action of juvenile hormone on the follicle cells.  相似文献   

17.
In S. bullata, the ovaries contribute to the synthesis of yolk polypeptides. A specific antiserum for yolk polypeptides was used to visualize the presence of yolk polypeptides in the follicle cells during their differentiation. After vitellogenesis has started, all follicle cells contain yolk polypeptides. The squamous follicle cells covering the nurse cells and the border cells lose yolk polypeptides before mid-vitellogenesis, whereas the follicle cells over the oocyte contain yolk polypeptides until after late vitellogenesis. All follicle cells are immunonegative afterwards. In vitro translation of poly(A)+ RNA demonstrated that the presence of yolk polypeptide mRNA correlates well with follicle cell immunopositivity for yolk polypeptides. This suggests that the follicle cells synthesize the ovarian yolk polypeptides. Differences in cellular and nuclear morphology, total and poly(A)+ RNA synthesis and the rate of yolk polypeptide synthesis were shown to be correlated with the presence or absence of yolk polypeptides in the differentiating follicular epithelium. The possible relationship between these different aspects of follicle cell differentiation, follicle cell polyploidy and the extracellular current pattern around follicles are discussed.  相似文献   

18.
19.
Nuclear matrix protein (NMP) composition of osteoblasts shows distinct two-dimensional gel electrophoretic profiles of labeled proteins as a function of stages of cellular differentiation. Because NMPs are involved in the control of gene expression, we examined modifications in the representation of NMPs induced by TGF-β1 treatment of osteoblasts to gain insight into the effects of TGF-β on development of the osteoblast phenotype. Exposure of proliferating fetal rat calvarial derived primary cells in culture to TGF-β1 for 48 h (day 4–6) modifies osteoblast cell morphology and proliferation and blocks subsequent formation of mineralized nodules. Nuclear matrix protein profiles were very similar between control and TGF-β–treated cultures until day 14, but subsequently differences in nuclear matrix proteins were apparent in TGF-β–treated cultures. These findings support the concept that TGF-β1 modifies the final stage of osteoblast mineralization and alters the composition of the osteoblast nuclear matrix as reflected by selective and TGF-β–dependent modifications in the levels of specific nuclear matrix proteins. The specific changes induced by TGF-β in nuclear matrix associated proteins may reflect specialized mechanisms by which TGF-β signalling mediates the alterations in cell organization and nodule formation and/or the consequential block in extracellular mineralization. J. Cell. Biochem. 69:291–303, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号