首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibiotic resistance is a growing crisis that threatens many aspects of modern healthcare. Dogma is that resistance often develops due to acquisition of a resistance gene or mutation and that when this occurs, all the cells in the bacterial population are phenotypically resistant. In contrast, heteroresistance (HR) is a form of antibiotic resistance where only a subset of cells within a bacterial population are resistant to a given drug. These resistant cells can rapidly replicate in the presence of the antibiotic and cause treatment failures. If and how HR and resistance are related is unclear. Using carbapenem-resistant Enterobacterales (CRE), we provide evidence that HR to beta-lactams develops over years of antibiotic usage and that it is gradually supplanted by resistance. This suggests the possibility that HR may often develop before resistance and frequently be a stage in its progression, potentially representing a major shift in our understanding of the evolution of antibiotic resistance.

A study of heteroresistance to broad range of beta-lactam antibiotics in clinical isolates of E. coli suggests that it may be an intermediate stage in the development of full antibiotic resistance, representing a shift in our understanding of the evolution of antibiotic resistance.  相似文献   

2.
For many bacterial infections, drug resistant mutants are likely present by the time antibiotic treatment starts. Nevertheless, such infections are often successfully cleared. It is commonly assumed that this is due to the combined action of drug and immune response, the latter facilitating clearance of the resistant population. However, most studies of drug resistance emergence during antibiotic treatment focus almost exclusively on the dynamics of bacteria and the drug and neglect the contribution of immune defenses. Here, we develop and analyze several mathematical models that explicitly include an immune response. We consider different types of immune responses and investigate how each impacts the emergence of resistance. We show that an immune response that retains its strength despite a strong drug-induced decline of bacteria numbers considerably reduces the emergence of resistance, narrows the mutant selection window, and mitigates the effects of non-adherence to treatment. Additionally, we show that compared to an immune response that kills bacteria at a constant rate, one that trades reduced killing at high bacterial load for increased killing at low bacterial load is sometimes preferable. We discuss the predictions and hypotheses derived from this study and how they can be tested experimentally.  相似文献   

3.
Evolution of antibiotic resistance (AR) is increasingly perceived as a major clinical problem. The use of bactericidal antibiotics may protect against this, to some extent, by eradication of the pathogen, but the borders between cidal and inhibitory activity in the patient are often blurred. In addition, there are clinical reasons why eradication of the pathogen may not always be desirable. Antibiotic dosing schedules are currently driven by the perception that T > MIC and AUIC are the main predictors of outcome for time-dependent and concentration-dependent antibiotics, respectively. In the context of protecting against development of resistance in the pathogen however, peak antibiotic concentration and the concept of mutant prevention concentrations may be more important. The role of post-antibiotic and sub-MIC effects is more conjectural. Considerations of mechanisms of resistance and their relationship to antibiotic dosing schedules will also be highlighted. Lastly, the relevance of all this to the development of resistance in the normal bacterial flora will be discussed.  相似文献   

4.
Antimicrobial resistance is a serious threat to public health that dramatically undermines our ability to treat bacterial infections. Microorganisms exhibit resistance to different drug classes by acquiring resistance determinants through multiple mechanisms including horizontal gene transfer. The presence of drug resistance genotypes is mostly associated with corresponding phenotypic resistance against the particular antibiotic. However, bacterial communities harbouring silent antimicrobial resistance genes—genes whose presence is not associated with a corresponding resistant phenotype do exist. Under suitable conditions, the expression pattern of such genes often revert and regain resistance and could potentially lead to therapeutic failure. We often miss the presence of silent genes, since the current experimental paradigms are focused on resistant strains. Therefore, the knowledge on the prevalence, importance and mechanism of silent antibiotic resistance genes in bacterial pathogens are very limited. Silent genes, therefore, provide an additional level of complexity in the war against drug-resistant bacteria, reminding us that not only phenotypically resistant strains but also susceptible strains should be carefully investigated. In this review, we discuss the presence of silent antimicrobial resistance genes in bacteria, their relevance and their importance in public health.  相似文献   

5.
Mutations in an organism’s genome can arise spontaneously, that is, in the absence of exogenous stress and prior to selection. Mutations are often neutral or deleterious to individual fitness but can also provide genetic diversity driving evolution. Mutagenesis in bacteria contributes to the already serious and growing problem of antibiotic resistance. However, the negative impacts of spontaneous mutagenesis on human health are not limited to bacterial antibiotic resistance. Spontaneous mutations also underlie tumorigenesis and evolution of drug resistance. To better understand the causes of genetic change and how they may be manipulated in order to curb antibiotic resistance or the development of cancer, we must acquire a mechanistic understanding of the major sources of mutagenesis. Bacterial systems are particularly well-suited to studying mutagenesis because of their fast growth rate and the panoply of available experimental tools, but efforts to understand mutagenic mechanisms can be complicated by the experimental system employed. Here, we review our current understanding of mutagenic mechanisms in bacteria and describe the methods used to study mutagenesis in bacterial systems.  相似文献   

6.
Antimicrobial resistance (AMR) and persistence are associated with an elevated risk of treatment failure and relapsing infections. They are thus important drivers of increased morbidity and mortality rates resulting in growing healthcare costs. Antibiotic resistance is readily identifiable with standard microbiological assays, and the threat imposed by antibiotic resistance has been well recognized. Measures aiming to reduce resistance development and spreading of resistant bacteria are being enforced. However, the phenomenon of bacteria surviving antibiotic exposure despite being fully susceptible, so‐called antibiotic persistence, is still largely underestimated. In contrast to antibiotic resistance, antibiotic persistence is difficult to measure and therefore often missed, potentially leading to treatment failures. In this review, we focus on bacterial mechanisms allowing evasion of antibiotic killing and discuss their implications on human health. We describe the relationship between antibiotic persistence and bacterial heterogeneity and discuss recent studies that link bacterial persistence and tolerance with the evolution of antibiotic resistance. Finally, we review persister detection methods, novel strategies aiming at eradicating bacterial persisters and the latest advances in the development of new antibiotics.  相似文献   

7.
Antibiotic resistance in bacteria remains a major problem and environments that help to maintain such resistance, represent a significant problem to infection control in the community. Restrooms have always been regarded as potential sources of infectious diseases and we suggest they have the potential to sustain bacterial “resistomes”. Recent studies have demonstrated the wide range of different bacterial phyla that can be found in non-healthcare restrooms. In our study we focused on the Staphylococci. These species are often skin contaminants on man and have been reported as common restroom isolates in recent molecular studies. We collected samples from 18 toilets sited in 4 different public buildings. Using MALDI-TOF-MS and other techniques, we identified a wide range of antibiotic resistant Staphylococci and other bacteria from our samples. We identified 19 different Staphylococcal species within our isolates and 37.8% of the isolates were drug resistant. We also identified different Staphylococcal species with the same antibiograms inhabiting the same restrooms. Bacterial “resistomes” are communities of bacteria often localised in specific areas and within these environments drug resistance determinants may be freely transferred. Our study shows that non-healthcare restrooms are a source of antibiotic resistant bacteria where a collection of antibiotic resistance genes in pathogenic and non-pathogenic bacteria could form a resistome containing a “nexus of genetic diversity”  相似文献   

8.
A multi-type branching process with varying environment was used to construct a pharmacokinetic/pharmacodynamic (PK/PD) model that captures the postantibiotic effect (PAE) seen in bacterial populations after exposure of antibiotics. This phenomenon of continued inhibition of bacterial growth even after removal of the antibiotic from the growth medium is of high relevance in the context of optimizing dosing regimens. The clinical implication of long PAEs lies in the interesting possibility of increasing the intervals between drug administrations.The model structure is generalizable to most types of antibiotics and is useful both as a theoretical framework for understanding the time properties of PAE and to explore optimal antibiotic dosing regimens. Data from an in vitro study with Escherichia coli exposed to different dosing regimens of cefotaxime were used to evaluate the model.  相似文献   

9.
The availability of complete genome sequences of many bacterial species is facilitating numerous computational approaches for understanding bacterial genomes. One of the major incentives behind the genome sequencing of many pathogenic bacteria is the desire to better understand their diversity and to develop new approaches for controlling human diseases caused by these microorganisms. This task has become even more urgent with the rapid evolution of antibiotic resistance among many bacterial pathogens. Novel drug targets are required in order to design new antimicrobials against antibiotic-resistant pathogens. The complete genome sequences of an ever increasing number of pathogenic microbes constitute an invaluable resource and provide lead information on potential drug targets. This review focuses on in silico analyses of microbial genomes, their host-specific adaptations, with specific reference to genome architecture, design, evolution, and trends in computational identification of microbial drug targets. These trends underscore the utility of genomic data for systematic in silico drug target identification in the post-genomic era.  相似文献   

10.
Staphylococcus aureus is a leading cause of hospital- and community-acquired infections. Despite current advances in antimicrobial chemotherapy, the infections caused by S. aureus remain challenging due to their ability to readily develop resistance. Indeed, antibiotic resistance, exemplified by methicillin-resistant S. aureus (MRSA) is a top threat to global health security. Furthermore, the current rate of antibiotic discovery is much slower than the rate of antibiotic-resistance development. It seems evident that the conventional in vitro bacterial growth-based screening strategies can no longer effectively supply new antibiotics at the rate needed to combat bacterial antibiotic-resistance. To overcome this antibiotic resistance crisis, screening assays based on host–pathogen interactions have been developed. In particular, the free-living nematode Caenorhabditis elegans has been used for drug screening against MRSA. In this review, we will discuss the general principles of the C. elegans-based screening platform and will highlight its unique strengths by comparing it with conventional antibiotic screening platforms. We will outline major hits from high-throughput screens of more than 100,000 small molecules using the C. elegans–MRSA infection assay and will review the mode-of-action of the identified hit compounds. Lastly, we will discuss the potential of a C. elegans-based screening strategy as a paradigm shift screening platform.  相似文献   

11.
Surgical site infection (SSI) remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycol)fumarate) / sodium methacrylate (OPF/SMA) charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel) and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.  相似文献   

12.
We carried out a retrospective analysis of 946 strains of Enterobacteriaceae isolated from wild Australian mammals between 1993 and 1997. The prevalence of resistance to fixed concentrations of 32 antimicrobial agents was determined, and the respective roles that taxonomic family of the host, state of origin and bacterial species play in defining prevalence and range of resistance were investigated. Our results demonstrated a low but widespread prevalence of antimicrobial resistance in wild isolates. Only amikacin, ciprofloxacin, meropenem and gentamicin inhibited growth in all 946 samples. There was extensive variation in the combination of antibiotics to which isolates were resistant, and multiple antibiotic resistance was common. Geographical location and host group significantly influenced the antibiotic resistance profile of an isolate, whereas bacterial species influenced both the resistance profile of an isolate and the number of antibiotics it was resistant to. The role of these factors in determining observed antibiotic resistance profiles suggests that any study measuring resistance in wild isolates should include the broadest possible range of bacterial species, host species and sampling locations. As such, this study provides an important new baseline for future measurements of antibiotic resistance in the Australian environment.  相似文献   

13.
Silver was widely used in medicine to treat bacterial infections in the 19th and early 20th century, up until the discovery and development of the first modern antibiotics in the 1940s, which were markedly more effective. Since then, every new antibiotic introduced to the clinic has led to an associated development of drug resistance. Today, the threat of extensive bacterial resistance to antibiotics has reignited interest in alternative strategies to treat infectious diseases, with silver regaining well-deserved renewed attention. Silver ions are highly disruptive to bacterial integrity and biochemical function, with comparatively minimal toxicity to mammalian cells. This review focuses on the antimicrobial properties of silver and their use in synergistic combination therapy with traditional antibiotic drugs.  相似文献   

14.
Prolonged antibiotic therapy for the bacterial infections has resulted in high levels of antibiotic resistance. Initially, bacteria are susceptible to the antibiotics, but can gradually develop resistance. Treating such drug-resistant bacteria remains difficult or even impossible. Hence, there is a need to develop effective drugs against bacterial pathogens. The drug discovery process is time-consuming, expensive and laborious. The traditionally available drug discovery process initiates with the identification of target as well as the most promising drug molecule, followed by the optimization of this, in-vitro, in-vivo and in pre-clinical studies to decide whether the compound has the potential to be developed as a drug molecule. Drug discovery, drug development and commercialization are complicated processes. To overcome some of these problems, there are many computational tools available for new drug discovery, which could be cost effective and less time-consuming. In-silico approaches can reduce the number of potential compounds from hundreds of thousands to the tens of thousands which could be studied for drug discovery and this results in savings of time, money and human resources. Our review is on the various computational methods employed in new drug discovery processes.  相似文献   

15.
16.
Drug resistance in food-borne bacterial pathogens is an almost inevitable consequence of the use of antimicrobial drugs, used either therapeutically or to avoid infections in food-producing animals. In the past decades, the spread and inappropriate use of antibiotics have caused a considerable increase of antibiotics to which bacteria have developed resistance and, moreover, bacteria are becoming resistant to more than one antibiotic simultaneously. Understanding mechanisms at the molecular level is extremely important to control multi-resistant strains and to develop new therapeutic strategies. In the present study, comparative proteomics was applied to characterize membrane and cytosolic proteome in order to investigate the regulation of protein expression in multi-resistance E. coli isolated from young never vaccinated water buffalo. Results highlighted differentially expressed proteins under multi drug resistance conditions giving new insights about mechanisms involved in resistance, as quorum sensing mechanisms, and suggesting possible novel bacterial targets to develop alternative antibiotic drugs.  相似文献   

17.
Tuberculosis is a bacterial disease that predominantly affects the lungs and results in extensive tissue pathology. This pathology contributes to the complexity of drug development as it presents discrete microenvironments within which the bacterium resides, often under conditions where replication is limited and intrinsic drug susceptibility is low. This consolidated pathology also results in impaired vascularization that limits access of potential lead molecules to the site of infection. Translating these considerations into a target-product profile to guide lead optimization programs involves implementing unique in vitro and in vivo assays to maximize the likelihood of developing clinically meaningful candidates.  相似文献   

18.
Unfortunately for mankind, it is very likely that the antibiotic resistance problem we have generated during the last 60 years due to the extensive use and misuse of antibiotics is here to stay for the foreseeable future. This view is based on theoretical arguments, mathematical modeling, experiments and clinical interventions, suggesting that even if we could reduce antibiotic use, resistant clones would remain persistent and only slowly (if at all) be outcompeted by their susceptible relatives. In this review, we discuss the multitude of mechanisms and processes that are involved in causing the persistence of chromosomal and plasmid-borne resistance determinants and how we might use them to our advantage to increase the likelihood of reversing the problem. Of particular interest is the recent demonstration that a very low antibiotic concentration can be enriching for resistant bacteria and the implication that antibiotic release into the environment could contribute to the selection for resistance. Several mechanisms are contributing to the stability of antibiotic resistance in bacterial populations and even if antibiotic use is reduced it is likely that most resistance mechanisms will persist for considerable times.  相似文献   

19.
It is well known that disinfection methods that successfully kill suspended bacterial populations often fail to eliminate bacterial biofilms. Recent efforts to understand biofilm survival have focused on the existence of small, but very tolerant, subsets of the bacterial population termed persisters. In this investigation, we analyze a mathematical model of disinfection that consists of a susceptible-persister population system embedded within a growing domain. This system is coupled to a reaction-diffusion system governing the antibiotic and nutrient. We analyze the effect of periodic and continuous dosing protocols on persisters in a one-dimensional biofilm model, using both analytic and numerical method. We provide sufficient conditions for the existence of steady-state solutions and show that these solutions may not be unique. Our results also indicate that the dosing ratio (the ratio of dosing time to period) plays an important role. For long periods, large dosing ratios are more effective than similar ratios for short periods. We also compare periodic to continuous dosing and find that the results also depend on the method of distributing the antibiotic within the dosing cycle.  相似文献   

20.
Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号