首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To visualize serotonin uptake sites by positron emission tomography (PET), N-(3-[18F]fluoropropyl)-paroxetine ([18F]FPP) (Fig. 1), a derivative of the selective serotonin uptake blocker paroxetine, was synthesized from 3-[18F]fluoropropyltosylate and paroxetine via a one-pot procedure. The rate of formation of [18F]FPP was a function of the ratio of the initial amount of paroxetine to that of 1,3-propanediol bistosylate with which [18F]fluoropropyltosylate was synthesized. When the reaction mixture contained an excess amount of paroxetine over that of the propyl-bistosylate, the radiosynthesis followed by HPLC purification, which took approx. 90 min, gave [18F]FPP in a radiochemical yield of approx. 8%, and in high radiochemical and chemical purity. The specific activity was 2640 ± 360 mCi/μmol.The brain biodistribution of [18F]FPP showed no distinguishable localization in regions with high density of serotonin uptake sites such as hypothalamus or olfactory tubercles. In vitro binding assays revealed that N-fluoropropylation of paroxetine reduced the affinity for the serotonin uptake site by three orders of magnitude.  相似文献   

2.
Eight radioiodinated 2-nitroimidazole derivatives for use as hypoxia imaging agents were synthesized by one-pot click reaction using four azides, two alkynes, and [131I]iodide ions and evaluated by hypoxic cellular uptake and biodistribution experiments. The results suggested that radiotracers with suitable partition coefficients (log P: −0.2–1.2) were more likely to have higher hypoxic cellular uptake. Among these eight molecules, [131I]15 ([131I]-(5-iodo-1-(2-(2-(2-nitro-1H-imidazol-1-yl)ethoxy)ethyl)-4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazole)) had a suitable log P (0.05 ± 0.03) and contained two 2-nitroimidazole groups. The hypoxic/aerobic cellular uptake ratio of [131I]15 was 4.4 ± 0.5, and the tumor/blood (T/B) and tumor/muscle (T/M) ratios were 2.03 ± 0.45 and 6.82 ± 1.70, respectively. These results suggested that [131I]15 was a potential hypoxia imaging agent.  相似文献   

3.
Legumain or asparaginyl endopeptidase is an enzyme overexpressed in some cancers and involved in cancer migration, invasion, and metastasis. We have developed radioiodine- ([125I]I-LCP) or fluorescein-labeled peptides (FL-LCP) with a cell-permeable d-Arg nonamer fused to an anionic d-Glu nonamer via a legumain-cleavable linker, to function as peptide probes that measure and monitor legumain activity. Non-cleavable probes of FL-NCP and [125I]I-NCP were similarly prepared and evaluated as negative control probes by altering their non-cleavable sequence. Model peptides with the legumain-cleavable or non-cleavable sequence (LCP and NCP, respectively) reacted with recombinant human legumain, and only LCP was digested by this enzyme. [125I]I-LCP uptake in legumain-positive HCT116 cells was significantly higher than that of [125I]I-NCP (11.2 ± 0.44% vs 1.75 ± 0.06% dose/mg). The accumulation of FL-LCP in the HCT116 cells was rather low (4.75 ± 0.29% dose/mg protein), but not significantly different from the levels of FL-NCP. It is possible that low concentrations of [125I]I-LCP (40 pM) can be effectively internalized after legumain cleavage. On the other hand, the cellular uptake of much higher concentrations of the FL-LCP derivative (1 mM) may be restricted by high concentrations of polyanions. The in vivo biodistribution studies in tumor-bearing mice demonstrated that the tumor uptake of [125I]I-LCP was 1.34% injected dose per gram (% ID/g) at 30 min. The tumor/blood and tumor/muscle ratios at 30 min were 0.63 and 1.77, respectively, indicating that the [125I]I-LCP accumulation in tumors was inadequate for in vivo imaging. Although further structural modifications are necessary to improve pharmacokinetic properties, [125I]I-LCP has been demonstrated to be an effective scaffold for the development of nuclear medicine imaging probes to monitor legumain activity in living subjects.  相似文献   

4.
Noninvasive imaging of iodide uptake via the sodium/iodide symporter (NIS) has received great interest for evaluation of thyroid cancer and reporter imaging of NIS-expressing viral therapies. In this study, we investigate 18F-labeled hexafluorophosphate (HFP or PF6?) as a high-affinity iodide analog for NIS imaging. 18F-HFP was synthesized by radiofluorination of phosphorus pentafluoride·N-methylpyrrolidine complex and evaluated in human NIS (hNIS)-expressing C6 glioma cells and a C6 glioma xenograft mouse model. 18F-HFP was obtained in radiochemical yield of 10?±?5%, radiochemical purity of >96% and specific radioactivity of 604?±?18?MBq/µmol. Specific uptake of 18F-HFP and high affinity of 19F-HFP were observed in hNIS+ C6-glioma cells. PET imaging showed robust uptake of 18F-HFP in NIS-expressing tissues (thyroid, stomach, and hNIS+ C6 glioma xenografts), and the uptake of 18F-HFP was blocked by NaClO4 pretreatment. Specific accumulation in hNIS-expressing xenograft (hNIS+) was observed relative to isogenic control tumor (hNIS?). Clearance of 18F-HFP was predominantly through renal excretion. The biodistribution showed consistent results with PET imaging. Minimal bone uptake was observed over 2?h period post-injection, indicating excellent in vivo stability of 18F-HFP. Although improvement in specific radioactivity is desirable, the results indicate that 18F-HFP is a promising candidate radiotracer for further evaluation for NIS imaging.  相似文献   

5.
The receptor tyrosine kinase Axl is overexpressed in and leads to patient morbidity and mortality in a variety of cancers. Axl–Gas6 interactions are critical for tumor growth, angiogenesis and metastasis. The goal of this study was to investigate the feasibility of imaging graded levels of Axl expression in tumors using a radiolabeled antibody. We radiolabeled anti-human Axl (Axl mAb) and control IgG1 antibodies with 125I with high specific radioactivity and radiochemical purity, resulting in an immunoreactive fraction suitable for in vivo studies. Radiolabeled antibodies were investigated in severe combined immunodeficient mice harboring subcutaneous CFPAC (Axlhigh) and Panc1 (Axllow) pancreatic cancer xenografts by ex vivo biodistribution and imaging. Based on these results, the specificity of [125I]Axl mAb was also validated in mice harboring orthotopic Panc1 or CFPAC tumors and in mice harboring subcutaneous 22Rv1 (Axllow) or DU145 (Axlhigh) prostate tumors by ex vivo biodistribution and imaging studies at 72 h post-injection of the antibody. Both imaging and biodistribution studies demonstrated specific and persistent accumulation of [125I]Axl mAb in Axlhigh (CFPAC and DU145) expression tumors compared to the Axllow (Panc1 and 22Rv1) expression tumors. Axl expression in these tumors was further confirmed by immunohistochemical studies. No difference in the uptake of radioactivity was observed between the control [125I]IgG1 antibody in the Axlhigh and Axllow expression tumors. These data demonstrate the feasibility of imaging Axl expression in pancreatic and prostate tumor xenografts.  相似文献   

6.
Prostate specific membrane antigen (PSMA) is a transmembrane protein that is highly expressed on prostate epithelial cells and is strongly upregulated in prostate cancer. Radioligand therapy using beta-emitting Lutetium-177 (177Lu)-labeled-PSMA-617, a radiolabeled small molecule, has gained attention as a novel targeted therapy for metastatic prostate cancer, given its high affinity and long tumor retention, and rapid blood pool clearance. In March 2022, the United States Food and Drug administration has granted approval to the targeted 177Lu-PSMA-617 therapy for treatment of patients with PSMA-positive metastatic castration resistant prostate cancer, who have been previously treated with an androgen-receptor pathway inhibitor and taxane-based chemotherapy. Studies have demonstrated the adverse effects of this treatment, mainly encountered due to radiation exposure to non-target tissues. Salivary glands show high PSMA-ligand uptake and receive increased radiation dose secondary to accumulation of 177Lu-PSMA-617. This predisposes the glands to radiation-mediated toxicity. The exact mechanism, scope and severity of radiation-mediated salivary gland toxicity are not well understood, however, the strategies for its prevention and treatment are under evaluation. This review will focus on the current knowledge about salivary gland impairment post 177Lu labeled PSMA-based radioligand therapies, diagnostic methodologies, and imaging with emphasis on salivary gland scintigraphy. The preventive strategies and known treatment options would also be briefly highlighted.  相似文献   

7.
Two 18F-labeled analogues of dexetimides, 2-[18F]fluorodexetimide (2-FDEX) and 4-[18F]fluorodexetimide (4-FDEX), were prepared and evaluated in vivo as possible agents for the study of the muscarinic acetylcholine receptor (mAChR) with PET. Two synthetic approaches, a 2-step reductive alkylation procedure and a 4-step alkylation approach, were investigated. The alkylation approach with higher overall radiochemical yields was used to prepare 2- and 4-FDEX for biodistribution studies. The overall synthesis time for both compounds was 2.5 h and the overall radiochemical yield at end-of-synthesis was 12%. The specific activity was found to be greater than 600 mCi/μmol. Biodistribution studies of 2-FDEX in rats produced striatum-to-cerebellum and cortex-to-cerebellum ratios of 8.6 ± 1.1 and 8.4 ± 1.0 at 1 h after injection, and 12.1 ± 2.1 and 10.7 ± 2.2 at 3 h, respectively. Substantial radioactivity detected in bone indicated the in vivo defluorination of 2-FDEX. The striatum-to-cerebellum ratio for 4-FDEX was slightly lower at 1 h (5.9 ± 0.9) but equally high at 3 h (12.3 ± 2.0) when compared to 2-FDEX, and there was little bone uptake. The uptake of both 2-FDEX and 4-FDEX into mAChR rich brain regions (e.g. striatum, cortex) was blocked by a dose of dexetimide (5 mg/kg). Our results suggest 4-FDEX is a potential PET agent for study mAChR in vivo.  相似文献   

8.
Carbonic anhydrase-IX (CA-IX) is a zinc enzyme overexpressed in the hypoxic regions of many types of solid tumors; therefore, in vivo imaging of CA-IX may contribute to cancer diagnosis. In this study, we newly designed and synthesized an 111In-labeled CA-IX imaging agent based on an imidazothiadiazole sulfonamide (IS) scaffold conjugated with a chelating moiety, DO3A ([111In]DO3A-IS1), and evaluated its utility for imaging of CA-IX high-expressing tumors. [111In]DO3A-IS1 was successfully synthesized at a 76% radiochemical yield by reacting its precursor with 111InCl3 in acetate buffer. In in vitro assays, [111In]DO3A-IS1 showed marked stability in murine plasma and greater binding to CA-IX high-expressing (HT-29) cells (118 ± 21% initial dose/mg protein) than CA-IX low-expressing (MDA-MB-231) cells (1.4 ± 0.3% initial dose/mg protein). Moreover, in an in vivo biodistribution assay, [111In]DO3A-IS1 showed marked accumulation in the HT-29 tumor (8.71 ± 1.41% injected dose/g at 24 h postinjection). In addition, in a single photon emission computed tomography (SPECT) study, [111In]DO3A-IS1 clearly and selectively visualized the HT-29 tumor as compared with the MDA-MB-231 tumor. These results indicate that [111In]DO3A-IS1 may serve as a useful SPECT imaging agent with the novel scaffold targeting CA-IX.  相似文献   

9.
The objective of the study was to prepare and evaluate a 18F-radiolabled tracer (Al18F-5), derivated from the antitumor agent 2-(4-aminophenyl)benzothiazole, as a PET probe for tumor imaging. Al18F-5 was successfully prepared with approx. 40% radiochemical yield in aqueous phase. In in vitro cell uptake experiments and competition assay, Al18F-5 displayed good tumor-binding ability and specificity in HeLa cells (24.7 ± 0.9% ID/106 cells, IC50 = 63.8 ± 13.6 nM) and MCF-7 cells (6.8 ± 0.3% ID/106 cells, IC50 = 331.1 ± 33.7 nM). The nonradioactive compound, Al19F-5, visibly marked HeLa cells and MCF-7 cells but did not stain HEB cells in florescent staining, which further indicated the tumor-binding ability of Al18F-5. In in vivo PET imaging, HeLa and MCF-7 tumors were clearly delineated by specific accumulation of Al18F-5 in model mice. In biodistribution study, Al18F-5 exhibited good tumor uptake (4.66 ± 0.13% ID/g and 3.69 ± 0.56% ID/g, respectively), moderate tumor-to-muscle ratio (3.38 and 2.48, respectively) at 1 h post injection, which were in a good consistency with the results of PET imaging. In conclusion, Al18F-5 might be developed as a candidate PET probe for tumor imaging, though additional optimizations are still needed to improve pharmacokinetics in vivo.  相似文献   

10.
Bombesin (BBN) is a peptide exhibiting high affinity for the gastrin-releasing peptide receptor (GRPR), which is overexpressed on several types of cancers. Various GRPR antagonists and agonists have been labeled with radiometals for positron emission tomography (PET) imaging of GRPR-positive tumors. However, unfavorable hepatobiliary excretion such as high intestinal activity may prohibit their clinical utility for imaging abdominal cancer. In this study, the modified BBN peptide with a new hydrophilic linker was labeled with 68Ga for PET imaging of GRPR-expressing PC-3 prostate cancer xenograft model. GRPR antagonists, MATBBN (Gly-Gly-Gly-Arg-Asp-Asn-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHCH2CH3) and ATBBN (d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHCH2CH3), were conjugated with 1,4,7-triazacyclononanetriacetic acid (NOTA) and labeled with 68Ga. Partition coefficient and in vitro stability were also determined. GRPR binding affinity of both tracers was investigated by competitive radioligand binding assay. The in vivo receptor targeting potential and pharmacokinetic of 68Ga-NOTA-MATBBN were also evaluated in PC-3 prostate tumor model and compared with those of 68Ga-NOTA-ATBBN. NOTA-conjugated BBN analogs were labeled with 68Ga within 20 min with a decay-corrected yield ranging from 90 to 95 % and a radiochemical purity of more than 98 %. The specific activity of 68Ga-NOTA-MATBBN and 68Ga-NOTA-ATBBN was at least 16.5 and 11.9 GBq/μmol, respectively. The radiotracers were stable in phosphate-buffered saline and human serum. 68Ga-NOTA-MATBBN was more hydrophilic than 68Ga-NOTA-ATBBN, as indicated by their log P values (?2.73 ± 0.02 vs. ?1.20 ± 0.03). The IC50 values of NOTA-ATBBN and NOTA-MATBBN were similar (102.7 ± 1.18 and 124.6 ± 1.21 nM). The accumulation of 68Ga-labeled GRPR antagonists in the subcutaneous PC-3 tumors could be visualized via small animal PET. The tumors were clearly visible, and the tumor uptakes of 68Ga-NOTA-MATBBN and 68Ga-NOTA-ATBBN were determined to be 4.19 ± 0.32, 4.00 ± 0.41, 2.93 ± 0.35 and 4.70 ± 0.40, 4.10 ± 0.30, 3.14 ± 0.30 %ID/g at 30, 60, and 120 min, respectively. There was considerable accumulation and retention of 68Ga-NOTA-ATBBN in the liver and intestines. In contrast, the abdominal area does not have much retention of 68Ga-NOTA-MATBBN. Biodistribution data were in accordance with the PET results, showing that 68Ga-NOTA-MATBBN had more favorable pharmacokinetics and higher tumor to background ratios than those of 68Ga-NOTA-ATBBN. At 1 h postinjection, the tumor to liver and intestine of 68Ga-NOTA-MATBBN were 8.05 ± 0.56 and 21.72 ± 3.47 and the corresponding values of unmodified counterpart were 0.85 ± 0.23 and 3.45 ± 0.43, respectively. GRPR binding specificity was demonstrated by reduced tumor uptake of radiolabeled tracers after coinjection of an excess of unlabeled BBN peptides. 68Ga-NOTA-MATBBN exhibited GRPR-targeting properties both in vitro and in vivo. The favorable characterizations of 68Ga-NOTA-MATBBN such as convenient synthesis, specific GRPR targeting, high tumor uptake, and satisfactory pharmacokinetics warrant its further investigation for clinical cancer imaging.  相似文献   

11.
In previous studies we have shown that in mice bearing head and neck squamous cell carcinoma (HNSCC) xenografts, radioimmunotherapy (RIT) with186Re-labeled MAb E48 resulted in complete regressions in one-third of the tumors (followup >150 d). MAb E48 was labeled with186Re following a novel labeling procedure developed at our institute. The injected dose was 600 μCi, which was the maximum tolerated dose (MTD; <15% wt loss) in these studies. The mean size of the tumors was 140±60 mm3. To investigate whether the therapeutic efficacy of RIT in our xenograft model would be improved when treating smaller xenografts, mice bearing 2 HNSCC xenografts with a vol of 75±17 mm3 (number of mice,n=6; number of tumors,t=12) were treated with 600 μCi of186Re-labeled MAb E48 IgG. All tumors completely regressed and did not regrow during followup (>150 d). In all mice, weight loss did not exceed 10%. to obtain biodistribution data, mice bearing two xenografts with a vol of 58±31 mm3 were injected with 100 μCi of186Re-labeled MAb E48 IgG. The maximum uptake in blood was 26.4% injected dose/g (%ID·g−1) at 2 h pi and was 53.1%ID·g−1 in the tumor at d 7 pi. In normal tissues, no nonspecific accumulation was observed. Based on these biodistribution data, the absorbed cumulative radiation dose was calculated. The accumulated dose in blood and tumor was 2004 cGy and 8580 cGy, respectively. In other tissues, the dose was less than 8.1% of the dose delivered to tumor. These data implicate that RIT with186Re-labeled MAb E48 may be especially suited to be used as adjuvant therapy for the treatment of head and neck cancer patients with minimal residual disease.  相似文献   

12.
L-ascorbic acid (AA) was reported to have an anti-cancer effect over 40 years. In recent years, several ongoing clinical trials are exploring the safety and efficacy of intravenous high-dose AA for cancer treatment. The lack of appropriate imaging modality limits the identification of potentially suitable patients for AA treatment. This study focuses on identifying AA-sensitive tumor cells using molecular imaging. 6-Deoxy-6-[18F] fluoro-L-ascorbic Acid (18F-DFA), a structural analog of AA, was synthesized and labeled to visualize the metabolism of AA in vivo. Colorectal cancer (CRC) cell lines with high and low expression of sodium-dependent vitamin C transporters 2 (SVCT2) were used for a series of cellular uptake tests. PET imaging was performed on xenograft tumor-bearing mice. More AA uptake was observed in CRC cells with high SVCT2 expression than in cells with low SVCT2 expression. The substrate (unlabeled AA) can competitively inhibit the 18F-DFA tracer uptake by CRC cells. The biodistribution of 18F-DFA in mice showed high radioactivity was seen in organs such as adrenal glands, kidneys, and liver that were known to have high concentrations of AA. Both PET imaging and tissue distribution showed that cancer cells with high SVCT2 expression enhanced the accumulation of 18F-DFA in mice after tumor formation. Immunohistochemistry was used to verify the corresponding results. As a radiotracer, 18F-DFA can provide powerful imaging information to identify tumor with high affinity of AA, and SVCT2 can be a potential biomarker in this process.  相似文献   

13.
In the 21st century, the incidence and mortality of cancer, one of the most challenging diseases in the world, have rapidly increased. The purpose of this study was to develop 2-(2-[18F]fluoroethoxy)ethyl 4-methylbenzenesulfonate ([18F]FEM) as a positron emission tomography (PET) agent for tumor imaging. In this study, [18F]FEM was synthesized with a good radiochemical yield (45.4 ± 5.8%), high specific radioactivity (over 25 GBq/μmol), and commendable radiochemical purity (over 99%). The octanol/water partition coefficient of [18F]FEM was 1.44 ± 0.04. The probe demonstrated good stability in vitro (phosphate-buffered saline (PBS) and mouse serum (MS)), and binding specificity to five different tumor cell lines (A549, PC-3, HCC827, U87, and MDA-MB-231). PET imaging of tumor-bearing mice showed that [18F]FEM specifically accumulated at the tumor site of the five different tumor cell lines. The average tumor-to-muscle (T/M) ratio was over 2, and the maximum T/M values reached about 3.5. The biodistribution and dynamic PET imaging showed that most probes were metabolized by the liver, whereas a small part was metabolized by the kidney. Moreover, dynamic brain images and quantitative data showed [18F]FEM can quickly cross the blood brain barrier (BBB) and quickly fade out, thereby suggesting it may be a promising candidate probe for the imaging of brain tumors. The presented results demonstrated that [18F]FEM is a promising probe for tumor PET imaging.  相似文献   

14.
《MABS-AUSTIN》2013,5(2):567-575
RG7356 is a humanized antibody targeting the constant region of CD44. RG7356 was radiolabeled with 89Zr for preclinical evaluations in tumor xenograft-bearing mice and normal cynomolgus monkeys to enable study of its biodistribution and the role of CD44 expression on RG7356 uptake.

Studies with 89Zr-RG7356 were performed in mice bearing tumor xenografts that differ in the level of CD44 expression (CD44+ or CD44-) and RG7356 responsiveness (resp or non-resp): MDA-MB-231 (CD44+, resp), PL45 (CD44+, non-resp) and HepG2 (CD44, non-resp). Immuno-PET whole body biodistribution studies were performed in normal cynomolgus monkeys to determine normal organ uptake after administration of a single dose.

At 1, 2, 3, and 6 days after injection, 89Zr-RG7356 uptake in MDA-MB-231 (CD44+, resp) xenografts was nearly constant and about 9 times higher than in HepG2 (CD44, non-resp) xenografts (range 27.44 ± 12.93 to 33.13 ± 7.42% ID/g vs. 3.25 ± 0.38 to 3.90 ± 0.58% ID/g). Uptake of 89Zr-RG7356 was similar in MDA-MB-231 (CD44+, resp) and PL45 (CD44+, non-resp) xenografts. Studies in monkeys revealed antibody uptake in spleen, salivary glands and bone marrow, which might be related to the level of CD44 expression. 89Zr-RG7356 uptake in these normal organs decreased with increasing dose levels of unlabeled RG7356.

89Zr-RG7356 selectively targets CD44+ responsive and non-responsive tumors in mice and CD44+ tissues in monkeys. These studies indicate the importance of accurate antibody dosing in humans to obtain optimal tumor targeting. Moreover, efficient binding of RG7356 to CD44+ tumors may not be sufficient in itself to drive an anti-tumor response.  相似文献   

15.
Glu-Urea-Lys (GUL) derivatives have been reported as prostate-specific membrane antigen (PSMA) agent. We developed derivatives of GUL conjugated with NOTA or DOTA via a thiourea linker and tested their feasibility as PSMA imaging agents after labeling with 68Ga. NOTA-GUL and DOTA-GUL were synthesized and labeled with 68Ga using generator-eluted 68GaCl3 in 0.1?M HCl in the presence of 1?M NaOAc at pH 5.5. The stabilities of 68Ga-labeled compounds in human serum were tested at 37.5?°C. A competitive binding assay was performed using the PSMA-positive prostate cancer cell line 22Rv1 and [125I]MIP-1072 (PSMA-specific binding agent) as a tracer. Biodistribution and micro-PET studies were performed using 22Rv1-xenograft BALB/c nude mice. The radiolabeling efficiency of NOTA-GUL (>99%) was higher than that of DOTA-GUL (92%). The IC50 of Ga-NOTA-GUL was 18.3?nM. In the biodistribution study, tumor uptake of 68Ga-NOTA-GUL (5.40% ID/g) was higher than that of 68Ga-DOTA-GUL (4.66% ID/g) at 1?h. Tumor/muscle and tumor/blood uptake ratios of 68Ga-NOTA-GUL (31.8 and 135, respectively) were significantly higher than those of 68Ga-DOTA-GUL (16.1 and 31.1, respectively). The tumor/kidney uptake ratio of 68Ga-NOTA-GUL was 3.4-fold higher than that of 68Ga-DOTA-GUL. 68Ga-NOTA-GUL showed specific uptake to PSMA positive tumor xenograft and was blocked by co-injection of the cold ligand. In conclusion, we successfully synthesized 68Ga-NOTA-GUL and 68Ga-DOTA-GUL for prostate cancer imaging. 68Ga-NOTA-GUL showed better radiochemical and biodistribution results. 68Ga-NOTA-GUL may be a promising PSMA targeting radiopharmaceutical.  相似文献   

16.

Purpose

To evaluate the importance of morphology in quantifying expression after in vivo gene transfer and to compare gene expression after intra-arterial (IA) and intra-tumoral (IT) delivery of adenovirus expressing a SSTR2-based reporter gene in a large animal tumor model.

Materials and Methods

Tumor directed IA or IT delivery of adenovirus containing a human somatostatin receptor type 2A (Ad-CMV-HA-SSTR2A) gene chimera or control adenovirus (Ad-CMV-GFP) was performed in VX2 tumors growing in both rabbit thighs. Three days later, 111In-octreotide was administered intravenously after CT imaging using a clinical scanner. 111In-octreotide uptake in tumors was evaluated the following day using a clinical gamma-camera. Gene expression was normalized to tumor weight with and without necrosis. This procedure was repeated on nine additional rabbits to investigate longitudinal gene expression both 5 days and 2 weeks after adenovirus delivery. CT images were used to evaluate tumor morphology and excised tissue samples were analyzed to determine 111In-octreotide biodistribution ex vivo.

Results

VX2 tumors infected with Ad-CMV-HA-SSTR2 had greater 111In-octreotide uptake than with control virus (P<0.05). Intra-arterial and intra-tumoral routes resulted in similar levels of gene expression. Longitudinally, expression appeared to wane at 2 weeks versus 5 days after delivery. Areas of necrosis did not demonstrate significant uptake ex vivo. Morphology identified areas of necrosis on contrast enhanced CT and upon excluding necrosis, in vivo biodistribution analysis resulted in greater percent injected dose per gram (P<0.01) and corresponded better with ex vivo biodistribution(r = 0.72, P<0.01, Coefficient of the x-variable = .72) at 2 weeks than without excluding necrosis (P<0.01).

Conclusion

Tumor specificity and high transgene expression can be achieved in tumors via both tumor directed intra-arterial and intra-tumoral delivery in a large animal tumor model. Using clinical machines, morphologic imaging contributes to functional imaging for quantifying SSTR2-based reporter expression in vivo.  相似文献   

17.
Expression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to 1,4,7-triazacyclononane-N,N'',N''''-triacetic acid (NOTA) via a diethylene glycol (PEG2) spacer (NOTA-P2-RM26) labeled with 68Ga and 111In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a 18F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with 18F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50) of the [natF]AlF-NOTA-P2-RM26 was compared to that of the natGa-loaded peptide using 125I-Tyr4-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with 18F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol). The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [natF]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM). The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [18F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p.i. The initial biological results suggest that [18F]AlF-NOTA-P2-RM26 is a promising candidate for PET imaging of GRPR in vivo.  相似文献   

18.
The purpose of this study was to determine the melanoma targeting property of 177Lu-DOTA-GGNle-CycMSHhex in B16/F1 melanoma-bearing C57 mice. 177Lu-DOTA-GGNle-CycMSHhex exhibited high receptor-mediated melanoma uptake and fast urinary clearance. The tumor uptake of 177Lu-DOTA-GGNle-CycMSHhex was 20.25 ± 4.59 and 21.63 ± 6.27% ID/g at 0.5 and 2 h post-injection, respectively. Approximately 83% of injected dose cleared out the body via urinary system at 2 h post-injection. 177Lu-DOTA-GGNle-CycMSHhex showed high tumor to normal organ uptake ratios except for the kidneys. The tumor/kidney uptake ratios of 177Lu-DOTA-GGNle-CycMSHhex were 2.76 and 1.74 at 2 and 24 h post-injection. The melanoma lesions were clearly visualized by SPECT/CT using 177Lu-DOTA-GGNle-CycMSHhex as an imaging probe at 2 h post-injection. Overall, high melanoma uptake coupled with fast urinary clearance of 177Lu-DOTA-GGNle-CycMSHhex underscored its potential for melanoma treatment in the future.  相似文献   

19.
The potent and selective prostanoid EP4 receptor antagonist CJ-042794 was radiolabeled with 18F, and evaluated for imaging EP4 receptor expression in cancer with positron emission tomography (PET). The fluorination precursor, arylboronic acid pinacol ester 4, was prepared in 4 steps with 42% overall yield. 18F-CJ-042794 was synthesized via a copper-mediated 18F-fluorination reaction followed by base hydrolysis, and was obtained in 1.5 ± 1.1% (n = 2) decay-corrected radiochemical yield. PET/CT imaging and biodistribution studies in mice showed that 18F-CJ-042794 was excreted through both renal and hepatobiliary pathways with significant retention in blood. The EP4-receptor-expressing LNCaP prostate cancer xenografts were clearly visualized in PET images with 1.12 ± 0.08%ID/g (n = 5) uptake value and moderate tumour-to-muscle contrast ratio (2.73 ± 0.22) at 1 h post-injection. However, the tumour uptake was nonspecific as it could not be blocked by co-injection of cold standard, precluding the application of 18F-CJ-042794 for PET imaging of EP4 receptor expression in cancer.  相似文献   

20.
Single domain antibody fragments (sdAbs) exhibit a rapid tumor uptake and fast blood clearance amenable for labeling with 18F (t½ = 110 min) but suffer from high kidney accumulation. Previously, we developed a method for 18F-labeling of sdAbs via trans-cyclooctene (TCO)-tetrazine (Tz) inverse electron demand Diel’s Alder cycloaddition reaction (IEDDAR) that incorporated a renal brush border enzyme (RBBE)-cleavable linker. Although >15 fold reduction in kidney activity levels was achieved, tumor uptake was compromised. Here we investigate whether replacing the [18F]AlF-NOTA moiety with [18F]fluoronicotinyl would rectify this problem. Anti-HER2 sdAb 5F7 was first derivatized with a TCO-containing agent that included the RBBE-cleavable linker GlyLys (GK) and a PEG chain, and then subjected to IEDDAR with 6-[18F]fluoronicotinyl-PEG4-methyltetrazine to provide [18F]FN-PEG4-Tz-TCO-GK-PEG4-5F7 ([18F]FN-GK-5F7). For comparisons, a control lacking GK linker and 5F7 labeled using residualizing N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate (iso-[125I]SGMIB) also were synthesized. Radiochemical purity, affinity (KD) and immunoreactive fraction of [18F]FN-GK-5F7 were 99%, 5.4 ± 0.7 nM and 72.5 ± 4.3%, respectively. Tumor uptake of [18F]FN-GK-5F7 in athymic mice bearing subcutaneous SKOV3 xenografts (3.7 ± 1.2% ID/g and 3.4 ± 1.0% ID/g at 1 h and 3 h, respectively) was 2- to 3-fold lower than for co-injected iso-[125I]SGMIB-5F7 (6.9 ± 1.9 %ID/g and 8.7 ± 3.0 %ID/g). However, due to its 6-fold lower kidney activity levels, tumor-to-kidney ratios for [18F]FN-GK-5F7 were 3–4 times higher than those for co-injected iso-[125I]SGMIB-5F7 as well as those observed for the 18F conjugate lacking the RBBE-cleavable linker. Micro-PET/CT imaging of [18F]FN-GK-5F7 in mice with SKOV-3 subcutaneous xenografts clearly delineated tumor as early as 1 h with minimal activity in the kidneys; however, there was considerable activity in gallbladder and intestines. Although the tumor uptake of [18F]FN-GK-5F7 was unexpectedly disappointing, incorporating an alternative RBBE-cleavable linker into this labeling strategy may ameliorate this problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号