首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive evidence indicate that platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) play a key role in the stimulation of the 3T3 fibroblast replication: in this connection, PDGF and EGF act as a competence and a progression factor, respectively. We have previously demonstrated that EGF alone leads density-arrested EL2 rat fibroblasts to synthesize DNA and proliferate in serum-free cultures. Here, we have analyzed the role of EGF in the control of EL2 cell proliferation. Our data show a dose-related effect of EGF on DNA synthesis and cell growth, with maximal stimulation for both parameters at 20 ng/ml. On the other hand, autocrine production of PDGF or PDGF-like substances by EL2 cells is seemingly excluded by experiments with anti-PDGF serum or medium conditioned by EL2 fibroblasts. EGF binding studies show that EL2 cells possess high affinity EGF receptors, at a density level 3 to 4-fold higher than other fibroblastic lines. In addition, EL2 cells show a normal down-regulation of EGF receptors, following exposure to EGF, but PDGF, fibroblast growth factor (FGF), transforming growth factor beta (TGF beta) and bombesin have not decreased the affinity of EGF receptor for its ligand. Moreover, in EL2 cells, the EGF is able to induce the synthesis of putative intracellular regulatory proteins that govern the PDGF-induced competence in 3T3 cells. Our data indicate that EGF in EL2 cells may act as both a competence and a progression factor, via induction of the mechanisms, regulated in other cell lines by cooperation between different growth factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Addition of a mixture of EGF + insulin to quiescent cell cultures synergistically stimulates the cells to reinitiate DNA synthesis and cell division. We have previously demonstrated that this mixture rapidly increases ATP turnover in quiescent cells. The present work shows that each of the two growth factors, EGF and insulin, when added separately to quiescent cells was able to stimulate the phosphorylation of the organic acid-soluble compounds (Po) pool and ATP turnover. The stimulation of ATP turnover was closely correlated with the increase in phosphorylation of the Po pool which suggests that Po labelling reflects the ATP turnover. In many experiments, the synergy between the two growth factors on the early increase in phosphorylation of the Po pool was clearly shown. Doubling the concentration of EGF (12-24 ng/ml) or insulin (50-100 ng/ml) did not increase early stimulation of phosphorylation of the Po pool, whereas simultaneous addition of the two growth factors induced a greater stimulation than that of each growth factor separately added. The augmentation in Po labelling after addition of EGF or insulin alone was transient. The synergistic effect of the two growth factors was more significant when determined 150 or 300 min after growth-factor addition. In our experimental conditions, each of the two growth factors, EGF and insulin, was able to induce a stimulation of DNA synthesis. However, the best stimulatory effect was observed with the mixture of the two which synergistically increased DNA synthesis determined between 6 and 24 h after growth-factor addition. The comparison between DNA replication and Po labelling suggests a correlation between the increase in DNA replication and in the total ATP synthesized in the first 5 h after cell stimulation by growth factors added separately or in combination.  相似文献   

3.
Plasma membranes derived from NR-6 cells, a variant line of Swiss mouse 3T3 cells that does not have cell surface receptors for epidermal growth factor (EGF), inhibited EGF-induced stimulation of DNA synthesis by 50% in serum-starved, subconfluent 3T3 cells. Membranes derived from SV3T3 cells were much less effective in inhibiting EGF-induced DNA synthesis. This inhibition on DNA synthesis by NR-6 membranes was not a direct effect of membranes on EGF, nor could it be overcome by high concentrations of EGF. NR-6 membranes were most effective when added 3 h before EGF addition and had little effect when added 2 h or more after EGF. NR-6 membranes also reduced the stimulation of DNA synthesis induced by platelet-derived growth factor or fibroblast growth factor in serum-starved 3T3 cells. These findings indicate that membrane- membrane interactions between nontransformed cells may diminish their ability to proliferate in response to serum polypeptide growth factors.  相似文献   

4.
Cartilage-derived factor (CDF), extracted from fetal bovine cartilage, and multiplication-stimulating activity (MSA) stimulated DNA synthesis in quiescent rabbit costal chondrocytes in culture under serum-free conditions. As described previously, when added in the presence of fibroblast growth factor (FGF) or epidermal growth factor (EGF) a somatomedin-like growth factor, CDF or MSA, synergistically stimulated DNA synthesis in the cultured chondrocytes. The present study showed that exposure of the cells to MSA or CDF for only the initial 5 h was sufficient for transmission of their full stimulatory effect. Furthermore, the limited exposure did not alter the time course of stimulation of DNA synthesis: [3H]thymidine incorporation into DNA began to increase after 16 h and reached a maximum after 24 h. In contrast to the somatomedin-like growth factors, FGF and EGF were required continuously in the culture medium during traverse of the entire G1 phase for stimulation of DNA synthesis, and the mitogenic effects of FGF and EGF in cultured chondrocytes were stronger than those of CDF and MSA. Synergistic stimulation of DNA synthesis by CDF or MSA in the presence of FGF or EGF could be observed as long as FGF or EGF was continuously present, even when CDF or MSA was withdrawn after the first 5 h of culture. These findings suggest that, in contrast to FGF and EGF, somatomedin-like growth factors affect an early distinct stage in the G1 phase of chondrocytes.  相似文献   

5.
It was recently demonstrated that growth in cell size can be dissociated from DNA synthesis and mitosis. 3T3 cells starved to quiescence in low serum concentration can be stimulated to undergo DNA synthesis and one cell division without growing in size (unbalanced growth) (42-44). We report here that in cells stimulated to undergo unbalanced growth, the cell nucleus undergoes balanced growth, i.e., nearly doubles in size prior to mitosis. The reduced ability to grow in cell size under unbalanced growth conditions is thus mainly ascribable to the cytoplasm. Furthermore, the extent to which cells grow in size prior to mitosis is dependent on the serum concentration in the tissue culture medium (44). This data suggests that some macromolecular factor or factors in serum are required for growth in cell size prior to mitosis. We report in this study that epidermal growth factor (EGF) alone exerts a small but significant stimulatory influence on DNA synthesis and mitosis but does not affect cellular enlargement. In contrast, insulin added at supraphysiological concentrations does not stimulate quiescent cells to enter S phase but instead stimulates growth in cell size in the small fraction of dividing cells. Furthermore, cells stimulated to proliferate by EGF could be induced to undergo balanced growth when insulin was added concomitantly. Finally, platelet-derived growth factor (PDGF) stimulates quiescent sparse 3T3 cells to undergo DNA synthesis and mitosis. PDGF also exerts a limited but significant effect on cellular enlargement. However, PDGF alone could not induce a complete balanced growth, i.e., a doubling in cell size prior to mitosis.  相似文献   

6.
Growth-arrested rat fibroblasts, 3Y1, and human diploid fibroblasts, TIG-1, were induced to synthesize DNA by stimulation with various agents such as fetal bovine serum (FBS), epidermal growth factor (EGF), colcemid, or colchicine. Taxol, a microtubule-stabilizing agent, blocked the induction of DNA synthesis after stimulation with colcemid or colchicine in both cell lines. Taxol inhibited the induction of DNA synthesis after stimulation with FBS or EGF in TIG-1, but did not in 3Y1. 12-O-tetradecanoylphorbol-13-acetate (TPA) induced DNA synthesis in TIG-1, which was reduced only partly by taxol. Taxol stabilized or polymerized microtubules in both cell lines. These results indicate that the inhibitory effect of taxol on the induction of DNA synthesis varied among cell lines and among growth factors, and suggest that signal transduction processes may be differentiated by taxol sensitivity. In TIG-1 cells, when taxol was added within 6 h, about halfway into the initiation of DNA synthesis after the addition of FBS or EGF, the inhibition of DNA synthesis still occurred. Taxol did not inhibit the induction of c-fos and c-myc genes by FBS or EGF stimulation. Colchicine itself did not induce these genes in TIG-1. Thus, taxol appeared to inhibit the induction of DNA synthesis not by blockage in the early transduction process of the growth signal from the cell surface to nuclei but by blockage in processes operating in the mid- or late-prereplicative phase.  相似文献   

7.
Interleukin-1 beta (IL-1 beta) strongly inhibited DNA synthesis of adult rat hepatocytes in primary culture stimulated by insulin and epidermal growth factor (EGF). Its effect was dose-dependent and was maximal at 2 ng/ml. IL-1 beta had no cytotoxic effect but changed the cells from a flat to a spindle shape as shown by phase-contrast microscopy. The inhibition of DNA synthesis by IL-1 beta was closely correlated with a decrease in the labeling index. This inhibitory effect was observed only when IL-1 beta was added for 10 h to cultured hepatocytes in the G1 phase within 12 h after addition of insulin and EGF: it was not observed in the S phase, which starts about 24 h after addition of the mitogens. Exposure of the hepatocytes to IL-1 beta for two 1-h periods, one at an early stage (0-6 h) and one at a late stage (6-12 h) of the G1 phase, resulted in the same marked inhibition of DNA synthesis as exposure to IL-1 beta for 10 h in the G1 phase. This requirement of IL-1 beta at two stages in the G1 phase for inhibition of DNA synthesis of hepatocytes is different from that with transforming growth factor-beta, which is required for only 1 h in the early G1 phase for a similar inhibition. These findings suggest that IL-1 beta acts at two distinct stages in the G1 phase and that its cooperative actions are necessary to inhibit growth of adult rat hepatocytes in primary culture. Other cytokines, such as IL-6/B-cell stimulating factor-2, were less potent, but caused significant inhibition of DNA synthesis of adult rat hepatocytes at 2 ng/ml, whereas IL-2 and tumor necrosis factor did not affect hepatocyte growth. From these results it is suggested that Kupffer cells in liver lobules and macrophages in the blood may play important roles, mainly via IL-1, in repair of liver damage and regeneration.  相似文献   

8.
The nuclear enzyme DNA topoisomerase II catalyzes the breakage and resealing of duplex DNA and plays an important role in several genetic processes. It also mediates the DNA cleavage activity and cytotoxicity of clinically important anticancer agents such as etoposide. We have examined the activity of topoisomerase II during the first cell cycle of quiescent BALB/c 3T3 cells following serum stimulation. Etoposide-mediated DNA break frequency in vivo was used as a parameter of topoisomerase II activity, and enzyme content was assayed by immunoblotting. Density-arrested A31 cells exhibited a much lower sensitivity to the effects of etoposide than did actively proliferating cells. Upon serum stimulation of the quiescent cells, however, there was a marked increase in drug sensitivity which began during S phase and reached its peak just before mitosis. Maximal drug sensitivity during this period was 2.5 times greater than that of log-phase cells. This increase in drug sensitivity was associated with an increase in intracellular topoisomerase II content as determined by immunoblotting. The induction of topoisomerase II-mediated drug sensitivity was aborted within 1 h of exposure of cells to the protein synthesis inhibitor cycloheximide, but the DNA synthesis inhibitor aphidicolin had no effect. In contrast to the sensitivity of cells to drug-induced DNA cleavage, maximal cytotoxicity occurred during S phase. A 3-h exposure to cycloheximide before etoposide treatment resulted in nearly complete loss of cytotoxicity. Our findings indicate that topoisomerase II activity fluctuates with cell cycle progression, with peak activity occurring during the G2 phase. This increase in topoisomerase II is protein synthesis dependent and may reflect a high rate of enzyme turnover. The dissociation between maximal drug-induced DNA cleavage and cytotoxicity indicates that the topoisomerase-mediated DNA breaks may be necessary but are not sufficient for cytotoxicity and that the other factors which are particularly expressed during S phase may be important as well.  相似文献   

9.
Growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and insulin-like growth factor-I (IGF-I) are required for quiescent 3T3 cells to proliferate, but zinc deprivation impairs IGF-I-induced DNA synthesis. We recently showed that labile intracellular pool of zinc is involved in cell proliferation. Our objective was to determine whether the labile intracellular pool of zinc plays a role in growth factor (PDGF, EGF, and IGF-I)-stimulated proliferation of 3T3 cells. Quiescent 3T3 cells were cultured in DMEM with or without growth factors. Labile intracellular pool of zinc, DNA synthesis, and cell proliferation were assessed using fluorescence microscopy, 3H-thymidine incorporation, and total cell number counts, respectively. After 24 h, growth factors stimulated DNA synthesis (24%) but not cell proliferation. After 48 h, growth factors stimulated both DNA synthesis (37%) and cell proliferation (89%). In response to growth factor stimulation, the labile intracellular pool of zinc was also elevated after 24 or 48 h of treatment. In summary, growth factor (PDGF, EGF, and IGF-I)-stimulated increase in DNA synthesis and cell proliferation were accompanied by an elevated labile intracellular pool of zinc in 3T3 cells. Since elevation of the labile intracellular pool of zinc occurred along with increased DNA synthesis, but cell proliferation remained unchanged, the elevation of the labile intracellular pool of zinc likely occurred during the S phase to provide the zinc needed to support DNA synthesis and ultimately cell proliferation.  相似文献   

10.
An extract termed growth-promoting ribosome extract (GPRE), isolated from mouse L-929 cells stimulates growth of HL-60 human promyelocytic leukemia cells. The stimulation first becomes apparent at 72 h when the cells start to enter the quiescent state. The inhibition of protein synthesis by the addition of cycloheximide to L-929 cells before ribosomal extracts were prepared did not alter the stimulatory effect of GPRE. When GPRE was added together with 20% fetal calf serum to cultures of quiescent HL-60 cells, growth was stimulated to the extent that the generation time was reduced by approximately 9 h to 32.4 h. GPRE alone was unable to stimulate the quiescent cells. The growth stimulatory effect was not restricted to one cell generation but was a characteristic of at least the following two cell cycles. GPRE extract from L-cells synchronized by centrifugal elutriation was most efficient when isolated from cells in early G1 phase, while extract from S phase cells had virtually no effect. It is tentatively suggested that the factor belongs to the competence/progression group of growth factors.  相似文献   

11.
We have investigated the growth effects of thyrotropin (TSH) (mimicked by forskolin and acting through cyclic AMP), epidermal growth factor (EGF), serum (10%) and insulin on quiescent dog thyroid epithelial cells in primary culture in a serum-free defined medium. These cells were previously shown to retain the capacity to express major thyroid differentiation markers. In the presence of insulin and after a similar prereplicative phase of 18 +/- 2h, TSH, EGF, and serum promoted DNA synthesis in such quiescent cells only a minority of which had proliferated in vitro before stimulation. The combination of these factors induced more than 90% of the cells to enter S phase within 48 h and near exponetial proliferation. Analysis of the cell cycle parameters of the stimulated cells revealed that the G1 period duration was similar to the length of the prereplicative phase of quiescent thyroid cells; this might indicate that they were in fact in an early G1 stage rather than in G0 prior to stimulation. TSH and EGF action depended on or was potentiated by insulin. Strikingly, nanomolar concentrations of insulin were sufficient to support stimulation of DNA synthesis by TSH, while micromolar concentrations of insulin were required for the action of EGF. This suggests that insulin supported the action of TSH by acting on its own high affinity receptors, whereas its effect on EGF action would be related to its somatomedinlike effects at high supraphysiological concentrations. Insulin stimulated the progression in the prereplicative phase initiated by TSH or forskolin. In addition, in some primary cultures TSH must act together with insulin to stimulate early events of the prereplicative phase. In the presence of insulin, EGF, and forskolin, an adenylate cyclase activator, markedly synergized to induce DNA synthesis. Addition of forskolin 24 h after EGF or EGF 24 h after forskolin also resulted in amplification of the growth response but with a lag equal to the prereplicative period observed with the single compound. This indicates that events induced by the second factor can no longer be integrated during the prereplicative phase set by the first factor. These findings demonstrate the importance of synergistic cooperation between hormones and growth factors for the induction of DNA synthesis in epithelial thyroid cells and support the proposal that essentially different mitogenic pathways--cyclic AMP-dependent or independent--may coexist in one cell.  相似文献   

12.
Anchorage-independent growth in soft agar of normal rat kidney (NRK) fibroblasts depends on both transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) (or TGF-alpha). We have isolated two EGF-nonresponsive cell lines, N-3 and N-9, from chemically mutagenized NRK cells, after selection of mitogen-specific nonproliferative variants in the presence of EGF and colchicine. Saturation binding kinetics with 125I-EGF showed one-half or fewer EGF receptors in N-3 and N-9 than in their parental NRK. Cellular uptake of 2-deoxy-D-glucose was enhanced in all NRK, N-3, and N-9 cell lines by TGF-beta treatment, whereas treatment with EGF significantly enhanced the cellular uptake of the glucose analog in NRK cells, but not in N-3 and N-9 cells. DNA synthesis of NRK during the quiescent state, but not that of N-3 and N-9, was stimulated by EGF. Anchorage-independent growth of N-9 could not be observed even in the presence of both EGF and TGF-beta, whereas that of N-3 was significantly enhanced by TGF-beta alone. EGF stimulated phosphorylation of a membrane protein with molecular size 170 kDa of NRK, but not of N-3, when immunoprecipitates reacting with anti-phosphotyrosine antibody were analyzed. Exposure of NRK cells to EGF increased cellular levels of TGF-beta mRNA, but there appeared little expression of TGF-beta mRNA in N-3 and N-9 cells. Exposure of N-3 cells to EGF or TGF-beta enhanced the secretion of EGF into culture medium, but exposure of NRK or N-9 cells did not. Altered response to EGF of N-3 or N-9 might be related to their aberrant growth behaviors.  相似文献   

13.
Summary Cloned mouse keratinocytes (MK-1 cells) display density-dependent growth arrest when reaching confluency in a serum-free medium with a calcium concentration <0.1 mM, supplemented only with insulin and transferrin. In this quiescent state, greater than 95% of the cell population is in the G0/1 phase of the cell cycle. Treatment of quiescent MK-1 cells with 1 to 10 ng/ml epidermal growth factor (EGF) resulted in a sharp burst of DNA synthetic activity. Both insulin and cholera toxin potentiated the mitogenic effect of EGF, but neither agent was necessary or sufficient to induce thymidine incorporation into DNA. Dexamethasone abolished the effect of insulin, but not the mitogenic effect of EGF alone. In contrast, retinoic acid (RA) did not possess any mitogenic effect for quiescent MK-1 cells, nor did it modulate the actions of EGF or dexamethasone. A number of commercially available crude extracts of bovine brain and pituitary were also capable of initiating DNA synthesis in resting MK-1 cells. Finally, transforming growth factor type beta (TGFβ) proved to be a potent inhibitor of the mitogen-induced DNA synthesis in MK-1 cells (IC50∶10pM). This defined culture system is eminently suited to study the regulation of DNA synthesis of epidermal cells. In addition, it can be used as a sensitive bioassay for the detection of epidermal mitogens, as well as inhibitors of DNA synthesis such as TGFβ. Supported by PHS Award CA-41556 from the National Cancer Institute, Bethesda, MD.  相似文献   

14.
Fetal brown adipocyte primary cultures increase DNA synthesis; cell number; and DNA, RNA, and protein contents in response to 10% fetal calf serum, IGF-I, and EGF plus vasopressin plus bombesin when added for 64 h to quiescent cells. IGF-I is a complete growth factor in this system while EGF needs the presence of vasopressin plus bombesin for its maximal proliferative effects. These mitogens induce the genetic expression of G6P dehydrogenase, increasing its mRNA content as well as its specific activity and amount of immunoreactive protein. The presence of cAMP elevating agents prevents the stimulatory effect of EGF plus vasopressin plus bombesin on DNA synthesis, cell number, and DNA content as well as on the induction of G6P dehydrogenase expression. Thus, changes on the proliferative state of these cells are associated with the level of expression of G6P dehydrogenase.  相似文献   

15.
Bone morphogenetic protein-2 (BMP-2) has been shown to act as an antiproliferative agent for a number of different cell types. We show that BMP-2 dose-dependently inhibits growth of MDA MB 231 human breast cancer cells. Epidermal growth factor (EGF) stimulates DNA synthesis and entry of these cells into the S-phase. BMP-2 inhibits EGF-induced DNA synthesis by arresting them in G1 phase of the cell cycle. BMP-2 increases the level of cyclin kinase inhibitor p21. Furthermore, we show that exposure of MDA MB 231 cells to BMP-2 stimulates association of p21 with cyclin D1 and with cyclin E resulting in the inhibition of their associated kinase activities. Finally, BMP-2 treatment is found to cause hypophosphorylation of the retinoblastoma protein (pRb), a key regulator of cell cycle progression. Our data provide a mechanism for the antiproliferative effect of BMP-2 in the breast cancer cells.  相似文献   

16.
Multiple growth factors that circulate in plasma have been shown to stimulate cellular growth in vitro. The plasma growth factors appear to stimulate DNA synthesis in cultured fibroblasts only after prior exposure of cell growth factors derived from circulating cell types, such as platelets and macrophages. The purpose of these studies was to investigate the role of the plasma growth factors in stimulating smooth muscle cell replication following exposure to platelet-derived growth factor (PDGF). Following transient exposure to PDGF, insulin stimulated smooth muscle cell replication but only when supraphysiologic concentrations were used (i.e., greater than 1.0 μg/ml). Somatomedin-C (Sm-C), in contrast, was found to stimulate a 320% increase in [3H]thymidine incorporation when concentrations that are present in extracellular fluids were used (i.e., 0.5–10 ng/ml). Epidermal growth factor (EGF), an important mitogen for multiple cell types, caused a 70% increase in [3H]thymidine incorporation when added to quiescent cells following PDGF exposure, and EGF caused a substantial increase in the absolute level of [3H]thymidine incorporation when coincubated with Sm-C. When EGF (1 ng/ml) was incubated simultaneously with concentrations of Sm-C between 1 and 10 ng/ml plus Sm-C-deficient plasma, maximal [3H]thymidine incorporation was 2.1-fold greater in the presence of EGF. In contrast, insulin (20 ng/ml), when coincubated with Sm-C under similar conditions, had no enhancing effect on the cellular response to Sm-C. None of the plasma factors tested was an effective stimultant of replication when incubated either in serum-free medium or in the presence of Sm-C-deficient plasma without prior PDGF exposure. Hydrocortisone was shown to inhibit smooth muscle cell replication in concentrations between 10?7 and 10?5M. In summary, multiple plasma growth factors can stimulate the smooth muscle cell replication, and Sm-C appears to be most effective of those tested. Insulin and EGF appear to work by different mechanisms; that is, EGF can facilitate the cellular response to Sm-C, whereas insulin is effective only at supraphysiologic concentrations at which it will directly bind to Sm-C receptors.  相似文献   

17.
Intracellular free calcium ([Ca2+]i) has been proposed to play an important part in the regulation of the cell cycle. Although a number of studies have shown that stimulation of quiescent cells with growth factors causes an immediate rise in [Ca2+]i (Rabinovitch et al., 1986; Vincentini and Villereal, 1986; Hesketh et al., 1988; Tucker et al., 1989, Wahl et al., 1990), a causal relationship between the [Ca2+]i transient and the ability of the cells to reenter the cell cycle has not been firmly established. We have found that blocking the mitogen-induced elevation of [Ca2+]i with the cytoplasmic [Ca2+]i buffer dimethyl BAPTA (dmBAPTA) also blocks subsequent entry of cells into S phase. The dose response curves for inhibition of serum stimulation of [Ca2+]i and DNA synthesis by dmBAPTA are virtually identical including an anomalous stimulation observed at low levels of dmBAPTA. Reversal of the [Ca2+]i buffering effect of dmBAPTA by transient exposure of the cells to the Ca2+ ionophore ionomycin also reverses the inhibition of DNA synthesis 20-24 h later. Ionomycin by itself does not stimulate DNA synthesis. These data are consistent with the conclusion that a transient increase in [Ca2+]i occurring shortly after serum stimulation of quiescent fibroblasts is necessary but not sufficient for subsequent entry of the cells into S phase. This study is the first to show a direct relationship between early serum stimulated Cai2+ increase and subsequent DNA synthesis in human cells. It also goes beyond recent studies on BALB/3T3 cells by providing dose response data and demonstrating reversibility, which are strong indications of a cause and effect relationship.  相似文献   

18.
Hepatocytes from adult and 4-week-old rats cultured on one of several extracellular matrix components were stimulated to replicate by epidermal growth factor (EGF). DNA synthesis was increased at 44-48 hr in adult hepatocytes and at 24, 48, and 72 hr in hepatocytes from young rats when EGF was added 2 hr after explantation. When EGF was added at 24 hr, maximal DNA synthesis of adult hepatocytes was observed at 48 hr, whereas that of 4-week-old hepatocytes was seen at 48 and 72 hr. Ten ng EGF per ml was the optimal concentration for maximal DNA synthesis in both adult and young cells. DNA synthesis decreased with increasing cell density, but this effect was less in hepatocytes from young than in those from adults. When hepatocytes were cultured on substrata consisting of individual extracellular matrix components, neither the time that adult cells needed to respond to EGF nor the time from stimulation by EGF to the peak of maximal DNA synthesis was altered in either adult or young cells. The optimal EGF concentration for maximal DNA synthesis and the cell density control of replication were also not altered by the substrata used. Substrata made from each of the extracellular matrix components studied enhanced DNA synthesis of adult and young hepatocytes stimulated by EGF in the following decreasing order: fibronectin, type IV collagen, type I collagen, and laminin. In both adult and young hepatocytes the enhancement of DNA synthesis was greatest when cultured on fibronectin. Thus the initiation and magnitude of DNA synthesis in primary cultures of rat hepatocytes were altered both by the age of the donor and the substratum on which the cells were explanted.  相似文献   

19.
We have previously shown that greater than 90% of B6.1 cells, a murine cytolytic T lymphocyte (CTL) cloned line which is solely dependent on T cell growth factor (TCGF) for continuous growth in vitro, accumulates in the G1 phase of the cell cycle after transfer into culture medium containing no TCGF. Moreover, when such quiescent cells are exposed again to TCGF, greater than 85% reenter the S phase and subsequently divide in a relatively synchronous fashion. In this study, the regulation of the rate of cell cycle progression of quiescent B6.1 cells after exposure to TCGF was analyzed using two complementary DNA staining techniques, namely, the propodium iodide method (to enumerate cells entering the S phase) and the Hoechst 33342-bromodeoxyuridine substitution technique (to enumerate cells which have gone through mitosis). After TCGF addition, quiescent B6.1 cells resumed DNA synthesis and divided after a lag phase of 10 and 20 h, respectively. The duration of the lag phase was found to be dependent on the length of time during which quiescent B6.1 cells had been deprived of TCGF, but was independent of the concentration of TCGF used for restimulation. In contrast, the proportion of cells responding to TCGF as well as the rate of their first passage through mitosis was dependent on TCGF concentration. The presence of TCGF for at least 6 h was required for a maximal response. Moreover, direct evidence was obtained that TCGF by itself was able to stimulate proliferation of quiescent B6.1 cells in the absence of other growth factors and serum constituents other than bovine serum albumin, transferrin, and lipids.  相似文献   

20.
Several studies indicate that glutamine is a critical requirement for cell growth in vitro. Growing and quiescent (serum-starved) 3T3-fibroblasts were exposed to media (Dulbecco's modified Eagle's minimal essential medium) in which the concentration of the 13 essential amino acids had been lowered to 1/100 or 1/1,000 of that in DMEM - either all together or one by one. The effects on DNA synthesis were measured by autoradiographic determinations of the percentage of labeled cells after 24 hours exposure to 3H-thymidine. A reduction of all 13 essential amino acids to 1/100 or 1/1,000 of the normal concentration in the medium resulted only in a minor growth inhibitory effect during the first cell cycle. A similar growth inhibitory effect was caused by the depletion of one of the 13 essential amino acids (except glutamine) from the medium. However, a depletion of glutamine from the medium resulted in a marked inhibition of growth. Conversely, a relative excess of glutamine, when the other 12 amino acids were lowered to 1/1,000 of the normal concentration, counteracted the growth inhibitory effect of serum starvation. It was even possible to stimulate quiescent cells to undergo DNA synthesis by exposing them to a serum-depleted (0.5% serum) medium with a relative excess of glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号