首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Carbohydrate polymers》1997,33(1):19-26
Commercial potato amylose was used to study temperature effects on the retrogradation of amylose solutions (3.5mg/ml). The retrogradation rate decreased as incubation temperature increased (5 to 45 °C). The degree of retrogradation within 24 h decreased from 58.8 to 7.1% as incubation temperature increased from 5 to 45 °C. In the amylose solution, different-sized molecular subfractions retrograded at different rates. After incubating at 5 °C for 100 days, the majority of the amylose molecules retrograded and precipitated from the solution; at 45 °C, only amylose of the small-molecular subfraction (number average, DPn = 110; weight average, DPw = 150) retrograded and precipitated. Entanglement of molecules was observed in size exclusion chromatograms. The morphology of retrograded amylose observed by using a scanning electron microscope differed with the retrogradation temperature. The chain length of amylose crystalline segments, prepared by hydrolysis of retrograded amylose, showed a narrow distribution (polydispersity from 1.21 to 1.67). The chain lengths of resistant segments increased DPn from 39 to 52 and DPw from 47 to 72 for α-amylolysis and DPn from 34 to 40 and DPw from 48 to 67 for 16% sulfuric acid hydrolysis, when incubation temperature increased from 5 to 45 °C.  相似文献   

2.
1. The effects of morganic ions, electrolyte concentration, and pH on the appearance and volume of the isolated rat liver nucleus have been studied. Nuclei were isolated by differential centrifugation in a buffered salt-sucrose mixture at pH 7.1. Nuclear volumes were determined photographically. 2. In solutions of NaCl, of KCl, and in potassium phosphate buffers the nuclear volume decreased markedly with an increase in concentration from 0.001 M to 0.05 M but remained essentially constant with further increase in concentration to 1.0 M. The effects of CaCl(2) and MgCl(2) differed from those of NaCl and KCl in that a smaller volume was obtained in concentrations less than 0.15 M, and in the case of CaCl(2) an increase in volume was obtained in more concentrated solutions. The volume changes are considered to be due primarily to ionic effects on the nuclear colloids rather than to osmotic behavior. 3. Treatment of nuclei with DNAase prevented the characteristic volume changes resulting from ion effects, suggesting the importance of DNA in nuclear volume changes. 4. The optical changes in isolated nuclei in various concentrations of KCl, NaCl, CaCl(2), MgCl(2), and in potassium phosphate buffers as observed under phase contrast illumination are described. CaCl(2) gave the most marked nuclear changes from the conditions in the uninjured cell and caused shrinkage and granulation in 0.001 M concentration. The effects of CaCl(2) were also manifested in 0.88 M sucrose, in mixtures with monovalent salts, and in serum. Changes in nuclear volume and optical appearance which occurred in salt solutions and in 0.1 N HCl were readily reversible. 5. Nuclear volume remained constant between pH 8.91 and 5.12 and decreased in more acid solutions. 6. Sucrose had no appreciable osmotic effect, and in hyperosmotic solution. (0.88 M) nuclei showed swelling and rupture comparable to that in distilled water. 7. The results are considered in relation to the requirements of nuclear isolation media. 8. Rat liver nuclei isolated in a buffered salt-sucrose medium by differential centrifugation exhibited a pattern of size distribution similar to that of fixed nuclei but were of considerably larger volume. The ratio of the volumes of the peak frequencies of the two chief size groups was 1:1.9.  相似文献   

3.
Multi-endotherms of the gelatinization of corn starch, such as G, M1, M2, and Z endotherms, have been detected by DSC. The retrogradation of corn starch after initial thermal treatment at different temperatures was studied by DSC; in particular, the effect of thermal treatment before and after each endotherm of gelatinization on retrogradation was determined as a function of annealing time. The effect of thermal treatment at a certain temperature on the residual gelatinization endotherm at a higher temperature is also discussed. It was found that the higher temperature of thermal treatment always removed all the endotherms below that temperature. However, a certain thermal treatment temperature could affect the residual endotherm above this treatment temperature. The time-dependent retrogradation of corn starch is mainly due to G and M1 endotherms. The temperature and enthalpy of the melting of amylose–lipid complexes M2 and nonlipid complex amylose Z were not affected by aging time. The final enthalpy of retrogradation was found to be lower than that of gelatinization.  相似文献   

4.
The retrogradation of starch gels has been studied by using X-ray diffraction, differential scanning calorimetry, and measurements of the shear modulus. Starch gels were considered as composites containing gelatinised granules embedded in an amylose matrix. The short-term development of gel structure and crystallinity in starch gels was found to be dominated by irreversible (T <100°) gelation and crystallisation within the amylose matrix. Long-term increases in the modulus of starch gels were linked to a reversible crystallisation, involving amylopectin, within the granules on storage. It was considered that the crystallisation resulted in an increase in the rigidity of the granules and thus enhanced their reinforcement of the amylose matrix.  相似文献   

5.
Starch-poly (ethylene-co-acrylic acid) (EAA) complexes were prepared by jet-cooking mixtures of either cornstarch, waxy cornstarch or high amylose cornstarch with aqueous ammonia dispersions of EAA (4% EAA based on the weight of starch). Viscosities (η) were determined at temperatures ranging from 80°C to 22°C, and plots of log η versus 1/T (K−1) were prepared. When cooked with EAA, cornstarch and waxy cornstarch showed major changes in viscous behavior between 50°C and 60°C. Above 50–60°C, viscosity increased markedly with a reduction in temperature; however, viscosity increased slowly below 50–60°C with an apparent activation energy for the process approximating that of water itself. The temperature dependence of the measured viscosity from 80°C to 60°C could be attributed to the large increase in size and complexity of the flowing particles as individual amylopectin molecules were bound together by complexed EAA. Apparently, complexing is essentially complete at 50°C. When high amylose cornstarch was cooked in the absence of EAA, retrogradation produced a sharp increase in log η at temperatures below about 50°C. However, if EAA is present, association between amylose molecules apparently takes place via complex formation rather than retrogradation, since log η increases sharply at about 70–80°C. Also, in contrast to cornstarch and waxy cornstarch, log η versus 1/T plots for high amylose cornstarch did not level off at low temperatures. In general, viscosities increased with the pH of the system, particularly when η was measured at high temperatures. This could result from improved complexing ability of EAA under high pH conditions, possibly due to reduced micelle size and maximum extension of polymer chains from micelle surfaces.  相似文献   

6.
The phase change for an amylose solution in the binary solvent system of dimethylsulfoxide (DMSO) with water was investigated under various conditions from sol to gel. The phase change was determined with measurements of the fluorescent depolarization and other methods by varying the solvent constitution at 25°C, and then varying the temperature at 10% of DMSO concentration.

The phase diagrams obtained with both variables were substantially similar and were also similar to those for an aqueous agarose solution. This similarity in phase diagram suggests a similar gel formation mechanism of amylose to agarose.

It was found that the phase separation point for the amylose solution agreed with the gel formation point and also with the starting point of retrogradation.  相似文献   

7.
Crystallinity and structure of starch using wide angle X-ray scattering   总被引:1,自引:0,他引:1  
Wide angle X-ray diffraction was used to evaluate the crystalline fraction of a variety of starches, using preliminary smoothing then an iterative smoothing algorithm to estimate amorphous background scattering. This methodology was then used to determine initial crystallinity and monitor gelation and retrogradation of high amylose thermoplastic starch used to produce film. Retrogradation was monitored over a 5-day period. It was found that the starch film retrograded rapidly over the first 12 h with the film displaying both B-type crystallinity and long range amorphous ordering that were separately quantitatively calculated. Changes in starch films, including complete or partial gelatinization, retrogradation and crystallinity, were all determined through wide angle X-ray diffraction.  相似文献   

8.
The molecular size and poly-A content of RNA synthesized in isolated nuclei of Ehrlich ascites tumor cells were measured. KCl was found to be essential for synthesis of high molecular weight RNA: when 0.4 M KCl was added to the reaction mixture, the average molecular size of the RNA formed was 14S; without KCl the average molecular size was 5S. A significant amount of poly-A sequences was found in RNA synthesized in the presence of alpha-amanitin, suggesting that RNA polymerase I and/or III may synthesized some RNA containing poly-A in isolated nuclei.  相似文献   

9.
Potato tuber starch was genetically engineered in the plant by the simultaneous antisense suppression of the starch branching enzyme (SBE) I and II isoforms. Starch prepared from 12 independent lines and three control lines were characterised with respect to structural and physical properties. The lengths of the amylopectin unit chains, the concentrations of amylose and monoesterified phosphate were significantly increased in the transgenically engineered starches. Size exclusion chromatography with refractive index detection (SEC-RI) indicated a minor decrease in apparent molecular size of the amylose and the less branched amylopectin fractions. Differential scanning calorimetry (DSC) revealed significantly higher peak temperatures for gelatinisation and retrogradation of the genetically engineered starches whereas the enthalpies of gelatinisation were lower. Aqueous gels prepared from the transgenic starches showed increased gel elasticity and viscosity. Principle component analysis (PCA) of the data set discriminated the control lines from the transgenic lines and revealed a high correlation between phosphate concentration and amylopectin unit chain length. The PCA also indicated that the rheological characteristics were primarily influenced by the amylose concentration. The phosphate and the amylopectin unit chain lengths had influenced primarily the pasting and rheological properties of the starch gels.  相似文献   

10.
Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses.  相似文献   

11.
Physico-chemical properties of starch from wheat, rye, barley (waxy, high-amylose and normal-amylose), waxy maize, pea and potato (normal-amylose and high-amylopectin) were studied. Emphasis was given to the amylose (total, apparent and lipid-complexed) and amylopectin characteristics as well as to the gelatinization and retrogradation properties measured using differential scanning calorimetry. The total amylose content varied from ca. 1 % for waxy maize to 37% for high-amylose barley. The amylopectin characteristics were determined by high-performance size-exclusion chromatography after debranching with isoamylase. The weight-average degree of polymerization ( w) was 26, 33 and 27 for the A-, B-, and C-type starches, respectively. In general, the potato starches exhibited the highest retrogradation enthalpies and the cereal starches the lowest, while the pea starch showed an intermediate retrogradation enthalpy. The data were analysed by principal component analysis (PCA). The w showed positive correlation to the melting interval, the peak minimum, the offset temperatures of the retrogradation-related endotherm as well as to the gelatinization and retrogradation enthalpies. However, the high-amylose barley retrograded to a greater extent than the other cereal starches, despite low w (24). The amylose content was negatively correlated to the onset and the peak minimum temperatures of gelatinization.  相似文献   

12.
1. Rates of RNA synthesis in isolated Xenopus embryo nuclei decrease from blastula through gastrula and neurula stages to hatching tadpoles. 2. In blastula and gastrula nuclei, net synthesis of RNA continues for over 30 min, both in the presence of KCl at 0.4 M and in its absence. In nuclei from later stages, net synthesis continues for only about 10 min in the absence of KCl. 3. At low ionic strength, RNA synthesis in all nuclei is greater with optimum Mg-2+ (6 mM) than with optimum Mn-2+ (1 mM). At high ionic strength the reverse is true. 4. An unusual feature, which gradually disappears as development proceeds, is that curves relating RNA synthesis to KCl concentration show a peak at 0.1 M KCl. In blastula nuclei, RNA synthesis is more rapid at 0.1 M KCl than at 0.4 M. 5. This peak at low ionic strength is not observed in the presence of the initiation inhibitor rifamycin AF/013. It is concluded that the peak arises from initiation of RNA synthesis by an excess of RNA polymerases bound non-specifically to the isolated nuclei. The residual synthesis, representing elongation of chains that were initiated in vivo, still declines as development progresses. 6. In blastula nuclei, over half of the RNA synthesis is effected by polymerase II (inhibited by alpha-amanitin), the proportion remaining roughly constant with increasing ionic strength. In neurula nuclei, the proportion rises from about one-half to three-quarters. The initiation-dependent peak in blastula and gastrula nuclei is contributed by both alpha-amanitin-sensitive and alpha-amanitin-resistant enzymes.  相似文献   

13.
Columns packed with commercial glass beads 5 and 19 μm average size and a mixture of both (0.7 volume fraction of large particles) were used to analyse starch composition by hydrodynamic chromatography (HDC), applying water as mobile phase. To obviate retrogradation, experiments were carried out at column temperatures of 15 and 3 °C and several types of starch were assayed. In what concerns amylopectin and amylose separation, a better resolution and a lower pressure drop were obtained for the mixed binary packing when compared with the packing containing uniform 5 μm glass beads. A more efficient cooling of the mobile phase was also obtained with the mixed packing, which was determinant for improving resolution. For the Hylon VII starch the relative retention times (RRT) were 0.777 and 0.964 for amylopectin and amylose, respectively, while for the Tapioca starch the obtained RRTs were 0.799 and 0.923. Application of unbound glass beads as column packing not only might reduce equipment and running costs in preparative scale separations, but also proved to be useful as a fast and reliable method to monitor the amylose and amylopectin content of starch samples of different sources.  相似文献   

14.
15.
The physico-chemical, morphological, thermal, pasting, textural, and retrogradation properties of the starches isolated from four traditional Taewa (Maori potato) cultivars (Karuparera, Tutaekuri, Huakaroro, Moemoe) of New Zealand were studied and compared with starch properties of a modern potato cultivar (Nadine). The relationships between the different starch characteristics were quantified using Pearson correlation and principal component analysis. Significant differences were observed among physico-chemical properties such as phosphorus content, amylose content, swelling power, solubility and light transmittance of starches from the different potato cultivars. The starch granule morphology (size and shape) for all the potato cultivars showed considerable variation when studied by scanning electron microscopy and particle size analysis. Starch granules from Nadine and Moemoe cultivars showed the presence of large and irregular or cuboid granules in fairly high number compared with the starches from the other cultivars. The transition temperatures (To; Tp; Tc) and the enthalpies (ΔHgel) associated with gelatinization suggested differences in the stability of the crystalline structures among these potato starches. The Moemoe starch showed the lowest To, while it was higher for Tutaekuri and Karuparera starches. Pasting properties such as peak, final and breakdown viscosity and texture profile analysis (TPA) parameters of starch gels such as hardness and fracturability were found to be higher for Nadine and Huakaroro starches. The Nadine and Huakaroro starch gels also had lower tendency towards retrogradation as evidenced by their lower syneresis (%) during storage at 4 °C. Principal component analysis showed that the Tutaekuri and Nadine cultivars differed to the greatest degree in terms of the properties of their starches.  相似文献   

16.
“Retrogradation” has been used to describe the changes that occur in starch after gelatinization, from an initially amorphous state to a more ordered or crystalline state, which has a significant impact on starch application in food, textiles and materials fields. But mechanism of starch retrogradation is still unclear until now and there is no breakthrough in this area. Here we are speculating a possible structure of retrograded maize starch by UV (binding with iodine) and IR spectra of it and its compositions. We speculate that nucleation of retrograded starch origins from combination of reducing end of amylopectin and non-reducing end of amylose, and retrogradation terminates at combining of non-reducing end of amylopectin and reducing end of amylose. The chain length of resistant digestion retrograded starch should be nearly same. The hydroxyl associated with sixth carbon atoms of glucan must form hydrogen bond with other hydroxyl of starch.  相似文献   

17.
The response of cultured CHO cells to U.V.L. irradiation during treatment with anisotonic solutions shows that treatment with hypotonic sucrose, NaCl or KCl solutions causes an increase in the cellular U.V.L. sensitivity, while exposure to hypertonic solutions causes a large decrease in U.V.L. sensitivity. Cells exposed to 1.8 M sucrose, NaCl or KCl solutions and given a U.V.L. dose of 252 erg/mm2 towards the end of the 20 min solution exposure time have survival levels which are respectively 228,26, and 23 times higher than the controls, i.e. cells irradiated in phosphate buffered saline. Cell volume data obtained using a Coulter counter, and nuclear area data of attached cells obtained using an optical microscope with a micrometer reticle, show that cell and nuclear size are related to U.V.L. sensitivity. That is, as cells shrink and the nuclear area decreases, the cells become more U.V.L.-resistant. During hypotonic treatment with 0.1 M NaCl, the cell volume, nuclear area and U.V.L. sensitivity increased in the first 2 to 4 min of exposure time, but at longer exposure times (greater than 3 to 4 min), cell volume, nuclear area and cellular U.V.L. sensitivity decreased. For 0.1 M KCl treatment the cells initially displayed a rapid increase in volume, nuclear area and U.V.L. sensitivity, but at the longer exposure times no decrease in cell and nuclear size were observed, and a slight increase in U.V.L. sensitivity occurred. Changes in U.V.L. sensitivity were related to changes in nuclear size and cell volume; however, calculations showed that during hypertonic treatment there is an ionic effect as well as an osmotic effect. That is, the cellular U.V.L. survival in equal hypertonic concentrations of NaCl or KCl was lower than in the same concentration of sucrose.  相似文献   

18.
The organization of amylose and amylopectin within starch granules is still not well elucidated. This study investigates the radial distribution of amylose and amylopectin in different corn starches varying in amylose content (waxy corn starch (WC), common corn starch (CC), and 50% and 70% amylose corn starches (AMC)). Corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The gelatinized surface starch and remaining granules were characterized for amylose content, amylopectin chain-length distribution, thermal properties, swelling power (SP), and water solubility index (WSI). Except for the outmost 10% layer, the amylose content in CC increased slightly with increasing surface removal. In contrast, amylose was more concentrated at the periphery than at the core for 50% and 70% AMC. The proportion of amylopectin A chains generally decreased while that of B1 chains generally increased with increasing surface removal for all corn starches. The gelatinization enthalpy usually decreased, except for 70% AMC, whereas the retrogradation enthalpy relatively remained unchanged for CC but increased for WC, 50% and 70% AMC with increasing surface removal. The SP and WSI increased with increasing surface removal for all corn starches, with WC showing a significant increase in SP after the removal of the outmost 10% layer. The results of this study indicated that there were similarities and differences in the distribution of amylose and amylopectin chains along the radial location of corn starch granules with varying amylose contents. More amylose-lipid complex and amylopectin long chains were present at the periphery than at the core for amylose-containing corn starches.  相似文献   

19.
The nixtamalization, production and storage of tortillas in refrigeration cause several changes on the starch structure, resulting in an increased crystallinity and therefore a higher content of resistant starch. The IR analysis for resistant starch (RS) showed a band at 1047 cm−1 associated to the retrogradation process; this band was due to the weakening of the intermolecular H-bonds. These associated together to form ordered regions. The Raman analysis shows a characteristic band at 856 cm−1 corresponding to C-C skeletal modes of glucose of α-1,4 glycosidic linkage starches, and a band at 480 cm−1 attributed to skeletal vibrations of the pyranose ring in the glucose unit of starches. These changes may be related to the polymerization degree of the starch molecules, as well as to the retrogradation of amylose and amylopectin. The spectrum of 13C CP-MAS/NMR for RS3 supports the results obtained by IR and Raman. Lipidic and proteic groups were observed which may be in the form of complexes with amylose. One can proclaim that the existence of the salt form is induced and stabilized by the interactions dominating the V amylose structure in the solid state.  相似文献   

20.
The retrogradation of untreated wild-type starches (potato, maize, and wheat), waxy maize starches, and one pregelatinized, modified amylose-rich starch was investigated continuously using Raman spectroscopy. The method detects conformational changes due to the multi-stage retrogradation, the rate of which differs between the starches. The pregelatinized, modified amylose-rich starch shows all stages of retrogradation in the course of its Raman spectra. In comparison to amylose, the retrogradation of amylopectin is faster at the beginning of the measurements and slower in the later stages. The untreated starches can be ranked in the order of their rate of retrogradation as follows: potato>maize>wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号