首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Human hair dermal papilla (DP) cells are specialized mesenchymal cells that play a pivotal role in hair regeneration and hair cycle activation. The current study aimed to first develop three‐dimensional (3D) DP spheroids (DPS) with or without a silk–gelatin (SG) microenvironment, which showed enhanced DP‐specific gene expression, resulting in enhanced extracellular matrix (ECM) production compared with a monolayer culture. We tested the feasibility of using this DPS model for drug screening by using minoxidil, which is a standard drug for androgenic alopecia. Minoxidil‐treated DPS showed enhanced expression of growth factors and ECM proteins. Further, an attempt has been made to establish an in vitro 3D organoid model consisting of DPS encapsulated by SG hydrogel and hair follicle (HF) keratinocytes and stem cells. This HF organoid model showed the importance of structural features, cell–cell interaction, and hypoxia akin to in vivo HF. The study helped to elucidate the molecular mechanisms to stimulate cell proliferation, cell viability, and elevated expression of HF markers as well as epithelial–mesenchymal crosstalks, demonstrating high relevance to human HF biology. This simple in vitro DP organoid model system has the potential to provide significant insights into the underlying mechanisms of HF morphogenesis, distinct molecular signals relevant to different stages of the hair cycle, and hence can be used for controlled evaluation of the efficacy of new drug molecules.  相似文献   

2.
During hair follicle (HF) morphogenesis, p75 neurotrophin receptor (p75NTR) reportedly is the first growth factor receptor found to be expressed by those fibroblasts that later develop into the dermal papilla (DP) of the HF. However, the functional role of p75NTR in HF morphogenesis is still unknown. Studying HF development in fetal and neonatal C57BL/6 murine back skin, we show that p75NTR-immunoreactivity (IR) is prominently expressed by DP fibroblasts as well as by skin nerves during the early steps of HF development. In contrast, p75NTR-IR disappears from the DP in the fully developed HF and it is expressed only in the epithelial outer root sheath of the HF. Compared to age-matched wild-type animals, p75NTR knockout (-/-) mice show significant acceleration of HF morphogenesis, and DP fibroblasts of p75NTR knockout mice show reduced proliferative activity in situ, indicating alterations in their transition from proliferation to differentiation. Although no significant differences in the expression of adhesion molecules (NCAM), selected morphogens (TGFbeta-2, HGF/SF, FGF-2, KGF), or their receptors (TGFbetaR-II, m-met, FGFR-1) were seen between DP of p75NTR knockout and wild-type mice, p75NTR mutants showed a prominent upregulation of FGFR-2, a high-affinity receptor for KGF, in both follicular DP and epithelium. Furthermore, the administration of anti-KGF neutralizing antibody significantly inhibited acceleration of HF morphogenesis in p75NTR knockout mice in vivo. These observations suggest that p75NTR plays an important role during HF morphogenesis, functioning as a receptor that negatively controls HF development, most likely via alterations in DP fibroblast proliferation/differentiation and via downregulation of KGF/FGFR-2 signaling in the HF.  相似文献   

3.
Organ homeostasis and organismal survival are related to the ability of stem cells to sustain tissue regeneration. As a consequence of accelerated telomerase shortening, telomerase-deficient mice show defective tissue regeneration and premature death. This suggests a direct impact of telomere length and telomerase activity on stem cell biology. We recently found that short telomeres impair the ability of epidermal stem cells to mobilize out of the hair follicle (HF) niche, resulting in impaired skin and hair growth and in the suppression of epidermal stem cell proliferative capacity in vitro. Here, we demonstrate that telomerase reintroduction in mice with critically short telomeres is sufficient to correct epidermal HF stem cell defects. Additionally, telomerase reintroduction into these mice results in a normal life span by preventing degenerative pathologies in the absence of increased tumorigenesis.  相似文献   

4.
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.  相似文献   

5.
Hair follicle (HF) regeneration begins when communication between quiescent epithelial stem cells (SCs) and underlying mesenchymal dermal papillae (DP) generates sufficient activating cues to overcome repressive BMP signals from surrounding niche cells. Here, we uncover a hitherto unrecognized DP transmitter, TGF-β2, which activates Smad2/3 transiently in HFSCs concomitant with entry into tissue regeneration. This signaling is critical: HFSCs that cannot sense TGF-β exhibit significant delays in HF regeneration, whereas exogenous TGF-β2 stimulates HFSCs in vivo and in vitro. By engineering TGF-β- and BMP-reporter mice, we show that TGF-β2 signaling antagonizes BMP signaling in HFSCs but not through competition for limiting Smad4-coactivator. Rather, our microarray, molecular, and genetic studies unveil Tmeff1 as a direct TGF-β2/Smad2/3 target gene, expressed by activated HFSCs and physiologically relevant in restricting and lowering BMP thresholds in the niche. Connecting BMP activity to an SC's response to TGF-βs may explain why these signaling factors wield such diverse cellular effects.  相似文献   

6.
Nestin has been shown to be expressed in the hair follicle, both in the bulge area (BA) as well as the dermal papilla (DP). Nestin-expressing stem cells of both the BA and DP have been previously shown to be pluripotent and be able to form neurons and other non-follicle cell types. The nestin-expressing pluripotent stem cells from the DP have been termed skin precursor or SKP cells. The objective of the present study was to determine the major source of nestin-expressing pluripotent stem cells in the hair follicle and to compare the ability of the nestin-expressing pluripotent stem cells from the BA and DP to repair spinal cord injury. Transgenic mice in which the nestin promoter drives GFP (ND-GFP) were used in order to observe nestin expression in the BA and DP. Nestin-expressing DP cells were found in early and middle anagen. The BA had nestin expression throughout the hair cycle and to a greater extent than the DP. The cells from both regions had very long processes extending from them as shown by two-photon confocal microscopy. Nestin-expressing stem cells from both areas differentiated into neuronal cells at high frequency in vitro. Both nestin-expressing DP and BA cells differentiated into neuronal and glial cells after transplantation to the injured spinal cord and enhanced injury repair and locomotor recovery within four weeks. Nestin-expressing pluripotent stem cells from both the BA and DP have potential for spinal cord regeneration, with the BA being the greater and more constant source.  相似文献   

7.
Hypoxia-inducible factors (HIFs) induce numerous genes regulating oxygen homeostasis. As oxygen sensors of the cells, the HIF prolyl 4-hydroxylases (HIF-P4Hs) regulate the stability of HIFs in an oxygen-dependent manner. During hair follicle (HF) morphogenesis and cycling, the location of dermal papilla (DP) alternates between the dermis and hypodermis and results in varying oxygen levels for the DP cells. These cells are known to express hypoxia-inducible genes, but the role of the hypoxia response pathway in HF development and homeostasis has not been studied. Using conditional gene targeting and analysis of hair morphogenesis, we show here that lack of Hif-p4h-2 in Forkhead box D1 (FoxD1)-lineage mesodermal cells interferes with the normal HF development in mice. FoxD1-lineage cells were found to be mainly mesenchymal cells located in the dermis of truncal skin, including those cells composing the DP of HFs. We found that upon Hif-p4h-2 inactivation, HF development was disturbed during the first catagen leading to formation of epithelial-lined HF cysts filled by unorganized keratins, which eventually manifested as truncal alopecia. Furthermore, the depletion of Hif-p4h-2 led to HIF stabilization and dysregulation of multiple genes involved in keratin formation, HF differentiation, and HIF, transforming growth factor β (TGF-β), and Notch signaling. We hypothesize that the failure of HF cycling is likely to be mechanistically caused by disruption of the interplay of the HIF, TGF-β, and Notch pathways. In summary, we show here for the first time that HIF-P4H-2 function in FoxD1-lineage cells is essential for the normal development and homeostasis of HFs.  相似文献   

8.
Maintaining the architecture, size and composition of an intact stem cell (SC) compartment is crucial for tissue homeostasis and regeneration throughout life. In mammalian skin, elevated expression of the anti‐apoptotic Bcl‐2 protein has been reported in hair follicle (HF) bulge SCs (BSCs), but its impact on SC function is unknown. Here, we show that systemic exposure of mice to the Bcl‐2 antagonist ABT‐199/venetoclax leads to the selective loss of suprabasal BSCs (sbBSCs), thereby disrupting cyclic HF regeneration. RNAseq analysis shows that the pro‐apoptotic BH3‐only proteins BIM and Bmf are upregulated in sbBSCs, explaining their addiction to Bcl‐2 and the marked susceptibility to Bcl‐2 antagonism. In line with these observations, conditional knockout of Bcl‐2 in mouse epidermis elevates apoptosis in BSCs. In contrast, ectopic Bcl‐2 expression blocks apoptosis during HF regression, resulting in the accumulation of quiescent SCs and delaying HF growth in mice. Strikingly, Bcl‐2‐induced changes in size and composition of the HF bulge accelerate tumour formation. Our study identifies a niche‐instructive mechanism of Bcl‐2‐regulated apoptosis response that is required for SC homeostasis and tissue regeneration, and may suppress carcinogenesis.  相似文献   

9.
Although Wnts are expressed in hair follicles (HFs) and considered to be crucial for maintaining dermal papilla (DP) cells, the functional differences among them remain largely unknown. In the present study, we investigated the effects of Wnts (Wnt-3a, 5a, 10b, 11) on the proliferation of mouse-derived primary DP cells in vitro as well as their trichogenesis-promoting ability using an in vivo skin reconstitution protocol. Wnt-10b promoted cell proliferation and trichogenesis, while Wnt-3a showed those abilities to a limited extent, and Wnt-5a and 11 had no effects. Furthermore, we investigated the effects of these Wnts on cultured DP cells obtained from versican-GFP transgenic mice and found that Wnt-10b had a potent ability to sustain their GFP-positivity. These results suggest that canonical Wnts, specifically Wnt-10b, play important roles in the maintenance of DP cells and trichogenesis.  相似文献   

10.
BackgroundAlopecia is a highly prevalent disease characterizing by the loss of hair. Dermal papilla (DP) cells are the inducer of hair follicle regeneration, and in vitro three-dimensional (3D) culturing DP cells have been proven to induce hair follicle regeneration. However, the molecular mechanisms behind the regulation of 3D culturing DP cells remain unclear.Methods3D-cultivated DP cells were used as in vitro cell model. DP sphere xenograft to nude mice was performed for in vivo study of hair follicle regeneration. qRT-PCR, Western blotting, and immunofluorescence were used for detecting the level of XIST, miR-424 and Hedgehog pathway-related proteins, respectively. H&E staining was used to examine hair neogenesis. Cell viability, proliferation and ALP activity were measured by MTT, CCK-8 and ELISA assays, respectively. Luciferase assays were used for studying molecular regulation between XIST, miR-424 and Shh 3′UTR.ResultsXIST and Shh were up-regulated, and miR-424 was down-regulated in 3D DP cells. Molecular regulation studies suggested that XIST sponged miR-424 to promote Shh expression. Knockdown of XIST suppressed DP cell activity, cell proliferation, ALP activity and the expression of other DP markers by sponging miR-424. Knockdown of XIST suppressed Shh mediated hedgehog signaling by targeting miR-424. Moreover, the knockdown of XIST inhibited DP sphere induced in vivo hair follicle regeneration and hair development.ConclusionXIST sponges miR-424 to promote Shh expression, thereby activating hedgehog signaling and facilitating DP mediated hair follicle regeneration.  相似文献   

11.
Recent studies on stem cells in the adult hair follicle (HF) have uncovered a veritable menagerie of exceptionally diverse and dynamic keratinocytes with stem cell properties located in distinct regions of the HF. Although endowed with specific functions during normal hair follicle maintenance, the majority of these cells can act as multipotent stem cells in stress situations, such as physical injury, which argues for an unanticipated degree of plasticity of these cells. This review provides an overview of the different epithelial stem cell populations, identified in the mouse HF, and their relationships with one another, and envisions possible cellular mechanisms underlying normal HF maintenance and skin regeneration.  相似文献   

12.
Avian feathers have robust growth and regeneration capability. To evaluate the contribution of signaling molecules and pathways in these processes, we profiled gene expression in the feather follicle using an absolute quantification approach. We identified hundreds of genes that mark specific components of the feather follicle: the dermal papillae (DP) which controls feather regeneration and axis formation, the pulp mesenchyme (Pp) which is derived from DP cells and nourishes the feather follicle, and the ramogenic zone epithelium (Erz) where a feather starts to branch. The feather DP is enriched in BMP/TGF-β signaling molecules and inhibitors for Wnt signaling including Dkk2/Frzb. Wnt ligands are mainly expressed in the feather epithelium and pulp. We find that while Wnt signaling is required for the maintenance of DP marker gene expression and feather regeneration, excessive Wnt signaling delays regeneration and reduces pulp formation. Manipulating Dkk2/Frzb expression by lentiviral-mediated overexpression, shRNA-knockdown, or by antibody neutralization resulted in dual feather axes formation. Our results suggest that the Wnt signaling in the proximal feather follicle is fine-tuned to accommodate feather regeneration and axis formation.  相似文献   

13.
Cutaneous evaporation is the main avenue by which cattle dissipate heat via the involvement of sweat glands and other skin components. The difference in skin morphology between B. indicus and B. taurus has been recognized, as well as differences in their ability to tolerate heat. The objective of this study was to compare skin morphology between B. indicus, B. taurus, and their crossbreds. Skin samples of Sahiwal (B. indicus) (n?=?10, reddish brown skin) and Holstein Friesian (HF) (B. taurus) (n?=?10, black and white skin) and crossbred of HF75% (n?=?10, black and white skin) and HF87.5 % (n?=?10, black and white skin) were biopsied for histological study, followed by measurement of skin components. The results indicated that breed significantly affected sweat gland morphology. The shape of the sweat gland, as indicated by the ratio of length/diameter, in Sahiwal was baggier in shape compared to HF (5.99 and 9.52) while values for crossbreds were intermediate (7.82, 8.45). The density and volume of sweat glands in Sahiwal (1,058 glands/cm2; 1.60 μ3?×?10?6) were higher than in HF (920 glands/cm2; 0.51 μ3x10?6) and crossbreds, both HF 75 % (709 glands/cm2; 0.68 μ3?×?10?6) and HF 87.5 % (691 glands/cm2; 0.61 μ3?×?10?6) respectively. However, capillary surface area was greater for HF (2.07 cm2) compared to Sahiwal (1.79 cm2); accordingly, the lower genetic fraction of HF in crossbred cattle showed less capillary surface area (1.83 and 1.9 cm2 for HF75% and HF87.5 %) (P?<?0.01). Nerve density was not significantly different between Sahiwal and HF but was higher in the crossbred (P?<?0.01) cattle. Moreover, the effect of skin color (black and white) was evaluated and it was found that there was an interaction (P?<?0.01) between breed and skin color on the skin components. This study reveals that there are differences in skin morphology among B. indicus, B. taurus and their crossbreds, with these differences being more or less related to the genetic fraction of HF. This may imply that capability for cutaneous evaporative heat loss and tolerance to heat in crossbred cattle could be related to skin morphology.  相似文献   

14.
Dermal Papillae (DP) is a unique population of mesenchymal cells that was shown to regulate hair follicle formation and growth cycle. During development most DP cells are derived from mesoderm, however, functionally equivalent DP cells of cephalic hairs originate from Neural Crest (NC). Here we directed human embryonic stem cells (hESCs) to generate first NC cells and then hair-inducing DP-like cells in culture. We showed that hESC-derived DP-like cells (hESC-DPs) express markers typically found in adult human DP cells (e.g. p-75, nestin, versican, SMA, alkaline phosphatase) and are able to induce hair follicle formation when transplanted under the skin of immunodeficient NUDE mice. Engineered to express GFP, hESC-derived DP-like cells incorporate into DP of newly formed hair follicles and express appropriate markers. We demonstrated that BMP signaling is critical for hESC-DP derivation since BMP inhibitor dorsomorphin completely eliminated hair-inducing activity from hESC-DP cultures. DP cells were proposed as the cell-based treatment for hair loss diseases. Unfortunately human DP cells are not suitable for this purpose because they cannot be obtained in necessary amounts and rapidly loose their ability to induce hair follicle formation when cultured. In this context derivation of functional hESC-DP cells capable of inducing a robust hair growth for the first time shown here can become an important finding for the biomedical science.  相似文献   

15.
Heterotopic ossification is a pathological condition in which bone forms outside the skeletal system. It can also occur in skin, which is the case in some genetic disorders. In addition to precursor cells and the appropriate tissue environment, heterotopic ossification requires inductive signals such as bone morphogenetic proteins (BMP). BMPs are growth and differentiation factors that have the ability to induce cartilage and bone formation in ectopic sites. The objective of this study is to explore the effect of the BMP-4 homodimer and BMP-2/7 heterodimer on the osteogenic differentiation of primary mouse skin fibroblasts and hair follicle dermal papilla (DP) cells. Osteogenic differentiation was induced by osteogenic induction medium (OS) containing 10 nM dexamethasone. The effect of BMP-4 and BMP-2/7 was studied using alkaline phosphatase (ALP) and calcium assays after 1.5, 3 and 5 weeks of differentiation. Fibroblasts and DP cells were able to differentiate into osteoblast-like matrix mineralizing cells. The first visible sign of differentiation was the change of morphology from rounded to more spindle-shaped cells. BMP-4 and BMP-2/7 exposure elevated ALP activity and calcium production significantly more than OS alone. The osteogenic response to BMP-4 and BMP-2/7 was similar in fibroblasts, whereas, in DP cells, BMP-2/7 was more potent than BMP-4. OS alone could not induce osteogenic differentiation in DP cells. Clear and consistent results show that dermal fibroblasts and stem cells from the dermal papilla were capable of osteogenic differentiation. The BMP-2/7 heterodimer was significantly more effective on hair follicular dermal stem cell differentiation.  相似文献   

16.
Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells.  相似文献   

17.
The hair follicle (HF) represents a prototypic ectodermal–mesodermal interaction system in which central questions of modern biology can be studied. A unique feature of these stem‐cell‐rich mini‐organs is that they undergo life‐long, cyclic transformations between stages of active regeneration (anagen), apoptotic involution (catagen), and relative proliferative quiescence (telogen). Due to the low proliferation rate and small size of the HF during telogen, this stage was conventionally thought of as a stage of dormancy. However, multiple lines of newly emerging evidence show that HFs during telogen are anything but dormant. Here, we emphasize that telogen is a highly energy‐efficient default state of the mammalian coat, whose function centres around maintenance of the hair fibre and prompt responses to its loss. While actively retaining hair fibres with minimal energy expenditure, telogen HFs can launch a new regeneration cycle in response to a variety of stimuli originating in their autonomous micro‐environment (including its stem cell niche) as well as in their external tissue macro‐environment. Regenerative responses of telogen HFs change as a function of time and can be divided into two sub‐stages: early ‘refractory’ and late ‘competent’ telogen. These changing activities are reflected in hundreds of dynamically regulated genes in telogen skin, possibly aimed at establishing a fast response‐signalling environment to trauma and other disturbances of skin homeostasis. Furthermore, telogen is an interpreter of circadian output in the timing of anagen initiation and the key stage during which the subsequent organ regeneration (anagen) is actively prepared by suppressing molecular brakes on hair growth while activating pro‐regenerative signals. Thus, telogen may serve as an excellent model system for dissecting signalling and cellular interactions that precede the active ‘regenerative mode’ of tissue remodeling. This revised understanding of telogen biology also points to intriguing new therapeutic avenues in the management of common human hair growth disorders.  相似文献   

18.
Urodele amphibians have remarkable organ regeneration capability, and their limb regeneration capability has been investigated as a representative phenomenon. In the early 19th century, nerves were reported to be an essential tissue for the successful induction of limb regeneration. Nerve substances that function in the induction of limb regeneration responses have long been sought. A new experimental system called the accessory limb model (ALM) has been established to identify the nerve factors. Skin wounding in urodele amphibians results in skin wound healing but never in limb induction. However, nerve deviation to the wounded skin induces limb formation in ALM. Thus, nerves can be considered to have the ability to transform skin wound healing to limb formation. In the present study, co-operative Bmp and Fgf application, instead of nerve deviation, to wounded skin transformed skin wound healing to limb formation in two urodele amphibians, axolotl (Ambystoma mexicanum) and newt (Pleurodeles waltl). Our findings demonstrate that defined factors can induce homeotic transformation in postembryonic bodies of urodele amphibians. The combination of Bmp and Fgf(s) may contribute to the development of novel treatments for organ regeneration.  相似文献   

19.
Certain mono- and dihydroxybenzene derivatives cause depigmentation of skin and hair, and appear to be selectively cytotoxic for melanized pigment cells. As direct physical and/or chemical interaction between depigmenter (DP) and pigment melanin may play a role in depigmentation, we have carried out preliminary studies in model systems where such interactions may easily be separated from effects due to tyrosinase, melanosomal proteins, and other components. We have used synthetic L-3,4-hydroxyphenylalanine (L-DOPA)-melanin as a protein-free model pigment and potassium ferricyanide as a model electron acceptor. Compounds studied were catechol, 4-t-butylcatechol, 4-methylcatechol, 3,4-dihydroxyphenylalanine (DOPA), 3,4-dihydroxyphenylacetic acid, hydroquinone, 4-methoxyphenol, 4-t-butylphenol, and 2,6, di-t-butyl-4-methylphenol (BHT) in 0.1 M phosphate buffer, pH 7.4. These compounds vary widely in their ability to depigment hair and skin. Ferricyanide reduction by DP in the presence and absence of melanin was monitored spectrophotometrically. The sparingly soluble BHT and 4-t-butylphenol did not reduce ferricyanide in the absence or presence of melanin. For the other compounds, kinetic analysis demonstrated direct interaction between each DP and melanin. Except for dihydroxyphenylacetic acid, reduction kinetics were consistent with a mechanism involving noninteractive binding of both DP and ferricyanide to melanin prior to coupled electron transfer through the melanin backbone. Kinetic analysis afforded KB, a thermodynamic constant (M-1) for DP-melanin binding, and k', a rate parameter (M s-1) for electron transfer. A dimensionless enhancement factor (EF) was defined as k'KB/ks, with ks a pseudo-first-order constant (s-1) for ferricyanide reduction in the absence of melanin. Depending on the reductant, melanin either retards (EF less than 1) or accelerates (EF greater than 1) the rate of ferricyanide reduction. There appears to be a direct relationship between EF and depigmenting potency. There is no relationship between depigmenting power and the ability per se of the DP to bind to melanin or to reduce ferricyanide.  相似文献   

20.
Heart failure (HF) as a result of myocardial infarction (MI) is the leading cause of death worldwide. In contrast to the adult mammalian heart, which has low regenerative capacity, newborn mammalian and zebrafish hearts can completely regenerate after injury. Cardiac regeneration is considered to be mediated by proliferation of pre-existing cardiomyocytes (CMs) mainly located in a hypoxic niche. To find new therapies to treat HF, efforts are being made to understand the molecular pathways underlying the regenerative capacity of the heart. However, the multicellularity of the heart is important during cardiac regeneration as not only CM proliferation but also the restoration of the endothelium is imperative to prevent progression to HF. It has recently come to light that signalling from non-coding RNAs (ncRNAs) and extracellular vesicles (EVs) plays a role in the healthy and the diseased heart. Multiple studies identified differentially expressed ncRNAs after MI, making them potential therapeutic targets. In this review, we highlight the molecular interactions between endothelial cells (ECs) and CMs in cardiac regeneration and when the heart loses its regenerative capacity. We specifically emphasize the role of ncRNAs and cell-cell communication via EVs during cardiac regeneration and neovascularisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号