首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We have purified a calmodulin-dependent glycogen synthase kinase from livers of normal and phosphorylase kinase-deficient (gsd/gsd) rats. No differences between normal and gsd/gsd rats were apparent in either (a) the ability of liver extracts to phosphorylate exogenous glycogen synthase in a Ca2+- and calmodulin-dependent manner or (b) the purification of the calmodulin-dependent synthase kinase. Although extracts from rat liver, when compared to rabbit liver extracts, had a significantly reduced ability to phosphorylate exogenous synthase, the calmodulin-dependent synthase kinase could be purified from rat liver using a protocol identical to that described for rabbit liver. Moreover, the synthase kinase purified from rat liver had properties very similar to those of the rabbit liver enzyme. The enzyme was completely dependent on calmodulin for activity against glycogen synthase, was unable to phosphorylate phosphorylase b, catalyzed the rapid incorporation of 0.4 mol phosphate/mol of glycogen synthase subunit, selectively phosphorylated sites 1b and 2 in the glycogen synthase molecule, had a Stokes' radius of about 70 Å, and appeared to be composed of subunits of Mr 56,000 and 57,000. These observations led us to conclude that (1) calmodulin-dependent glycogen synthase kinase is distinct from other kinases previously described and (2) the rat liver kinase and the rabbit liver kinase are very similar enzymes.  相似文献   

2.
The Ca2+- and phospholipid-dependent protein kinase (protein kinase C) has been found to phosphorylate and inactivate glycogen synthase. With muscle glycogen synthase as a substrate, the reaction was stimulated by Ca2+ and by phosphatidylserine. The tumor-promoting phorbol esters 12-O-tetradecanoyl phorbol 13-acetate was also a positive effector, half-maximal activation occurring at 6 nM. Phosphorylation of glycogen synthase, but not histone, was partially inhibited by glycogen, half-maximally at 0.05 mg/ml, probably via a substrate-directed mechanism. The rate of glycogen synthase phosphorylation was approximately half that for histone; the apparent Km for glycogen synthase was 0.25 mg/ml. Protein kinase C also phosphorylated casein, the preferred substrate among the individual caseins being alpha s1-casein. Glycogen synthase was phosphorylated to greater than 1 phosphate/subunit with an accompanying reduction in the -glucose-6-P/+glucose-6-P activity ratio from 0.9 to 0.5. Phosphate was introduced into serine residues in both the NH2-terminal and COOH-terminal CNBr fragments of the enzyme subunit. The two main tryptic phosphopeptides mapped in correspondence with the peptides that contain site 1a and site 2. Lesser phosphorylation in an unidentified peptide was also observed. Rabbit liver and muscle glycogen synthases were phosphorylated at similar rates by protein kinase C. The above results are compatible with a role for protein kinase C in the regulation of glycogen synthase as was suggested by a recent study of intact hepatocytes.  相似文献   

3.
Glycogen synthase from skeletal muscle was phosphorylated by a Ca2+, calmodulin-dependent protein kinase from brain, with concomitant inactivation. About 0.7 mol phosphate/mol subunit was sufficient for a maximal inactivation of glycogen synthase. Further phosphorylation of the enzyme had no effect on the activity. The concentrations required to give half-maximal phosphorylation and inactivation of glycogen synthase were 1.1 and 0.5 microM for Ca2+, and 22 and 11 nM for calmodulin, respectively. The molar ratio of the subunit of the protein kinase to calmodulin was 2-3:1 for half-maximal phosphorylation and inactivation of glycogen synthase. The Km values for glycogen synthase and ATP were 3.6 and 114 microM, respectively, for phosphorylation. Phosphate was incorporated into sites Ia, Ib, and 2 on glycogen synthase, and site 2 was the most rapidly phosphorylated. These results indicate that the brain Ca2+, calmodulin-dependent protein kinase is probably involved in glycogen metabolism in the brain as a glycogen synthase kinase.  相似文献   

4.
A calmodulin-dependent glycogen synthase kinase distinct from phosphorylase kinase has been purified approximately equal to 5000-fold from rabbit skeletal muscle by a procedure involving fractionation with ammonium sulphate (0-33%), and chromatographies on phosphocellulose, calmodulin-Sepharose and DEAE-Sepharose. 0.75 mg of protein was obtained from 5000 g of muscle within 4 days, corresponding to a yield of approximately equal to 3%. The Km for glycogen synthase was 3.0 microM and the V 1.6-2.0 mumol min-1 mg-1. The purified enzyme showed a major protein staining band (Mr 58 000) and a minor component (Mr 54 000) when examined by dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weight of the native enzyme was determined to be 696 000 by sedimentation equilibrium centrifugation, indicating a dodecameric structure. Electron microscopy suggested that the 12 subunits were arranged as two hexameric rings stacked one upon the other. Following incubation with Mg-ATP and Ca2+-calmodulin, the purified protein kinase underwent an 'autophosphorylation reaction'. The reaction reached a plateau when approximately equal to 5 mol of phosphate had been incorporated per 58 000-Mr subunit. Both the 58 000-Mr and 54 000-Mr species were phosphorylated to a similar extent. Autophosphorylation did not affect the catalytic activity. The calmodulin-dependent protein kinase initially phosphorylated glycogen synthase at site-2, followed by a slower phosphorylation of site-1 b. The protein kinase also phosphorylated smooth muscle myosin light chains, histone H1, acetyl-CoA carboxylase and ATP-citrate lyase. These findings suggest that the calmodulin-dependent glycogen synthase kinase may be a enzyme of broad specificity in vivo. Glycogen synthase kinase-4 is an enzyme that resembles the calmodulin-dependent glycogen synthase kinase in phosphorylating glycogen synthase (at site-2), but not glycogen phosphorylase. Glycogen synthase kinase-4 was unable to phosphorylate any of the other proteins phosphorylated by the calmodulin-dependent glycogen synthase kinase, nor could it phosphorylate site 1 b of glycogen synthase. The results demonstrate that glycogen synthase kinase-4 is not a proteolytic fragment of the calmodulin-dependent glycogen synthase kinase, that has lost its ability to be regulated by Ca2+-calmodulin.  相似文献   

5.
Purified rabbit liver glycogen synthase was found to be a substrate for six different protein kinases: (i) cyclic AMP-dependent protein kinase, (ii) two Ca2+-stimulated protein kinases, phosphorylase kinase (from muscle) and a calmodulin-dependent glycogen synthase kinase, and (iii) three members of a Ca2+ and cyclic nucleotide independent class, PC0.7, FA/GSK-3, and casein kinase-1. Greatest inactivation accompanied phosphorylation by cyclic AMP-dependent protein kinase (to 0.5-0.7 phosphate/subunit, +/- glucose-6-P activity ratio reduced from approximately 1 to 0.6) or FA/GSK-3 (to approximately 1 phosphate/subunit, activity ratio, 0.46). Phosphorylation by the combination FA/GSK-3 plus PC0.7 was synergistic, and more extensive inactivation was achieved. The phosphorylation reactions just described caused significant reductions in the Vmax of the glycogen synthase with little effect on the S0.5 (substrate concentration corresponding to Vmax/2). Phosphorylase kinase achieved a lesser inactivation, to an activity ratio of 0.75 at 0.6 phosphate/subunit. PC0.7 acting alone, casein kinase-1, and the calmodulin-dependent protein kinase did not cause inactivation of liver glycogen synthase with the conditions used. Analysis of CNBr fragments of phosphorylated glycogen synthase indicated that the phosphate was distributed primarily between two polypeptides, with apparent Mr = 12,300 (CB-I) and 16,000-17,000 (CB-II). PC0.7 and casein kinase-1 displayed a decided specificity for CB-II, and the calmodulin-dependent protein kinase was specific for CB-I. The other protein kinases were able, to some extent, to introduce phosphate into both CB-I and CB-II. Studies using limited proteolysis indicated that CB-II was located at a terminal region of the subunit. CB-I contains a minimum of one phosphorylation site and CB-II at least three sites. Liver glycogen synthase is therefore potentially subject to the same type of multisite regulation as skeletal muscle glycogen synthase although the muscle and liver enzymes display significant differences in both structural and kinetic properties.  相似文献   

6.
In previous studies, we described a soluble Ca2+/calmodulin-dependent protein kinase which is the major Ca2+/calmodulin-dependent microtubule-associated protein 2 (MAP-2) kinase in rat brain [Schulman, H. (1984) J. Cell Biol. 99, 11-19; Kuret, J. A., & Schulman, H. (1984) Biochemistry 23, 5495-5504]. We now demonstrate that this protein kinase has broad substrate specificity. Consistent with a multifunctional role in cellular physiology, we show that in vitro the enzyme can phosphorylate numerous substrates of both neuronal and nonneuronal origin including vimentin, ribosomal protein S6, synapsin I, glycogen synthase, and myosin light chains. We have used MAP-2 to purify the enzyme from rat lung and show that the brain and lung kinases have nearly indistinguishable physical and biochemical properties. A Ca2+/calmodulin-dependent protein kinase was also detected in rat heart, rat spleen, and in the ring ganglia of the marine mollusk Aplysia californica. Partially purified MAP-2 kinase from each of these three sources displayed endogenous phosphorylation of a 54 000-dalton protein. Phosphopeptide analysis reveals a striking homology between this phosphoprotein and the 53 000-dalton autophosphorylated subunit of the major rat brain Ca2+/calmodulin-dependent protein kinase. The enzymes phosphorylated MAP-2, synapsin I, and vimentin at peptides that are identical with those phosphorylated by the rat brain kinase. This enzyme may be a multifunctional Ca2+/calmodulin-dependent protein kinase with a widespread distribution in nature which mediates some of the effects of Ca2+ on microtubules, intermediate filaments, and other cellular constituents in brain and other tissues.  相似文献   

7.
Phospholamban, the putative regulatory proteolipid of the Ca2+/Mg2+ ATPase in cardiac sarcoplasmic reticulum, was selectively phosphorylated by a Ca2+/calmodulin (CaM)-dependent protein kinase associated with a cardiac membrane preparation. This kinase also catalyzed the phosphorylation of two exogenous proteins known to be phosphorylated by the multifunctional Ca2+/CaM-dependent protein kinase II (Ca2+/CaM-kinase II), i.e., smooth muscle myosin light chains and glycogen synthase a. The latter protein was phosphorylated at sites previously shown to be phosphorylated by the purified multifunctional Ca2+/CaM-kinase II from liver and brain. The membrane-bound kinase did not phosphorylate phosphorylase b or cardiac myosin light chains, although these proteins were phosphorylated by appropriate, specific calmodulin-dependent protein kinases added exogenously. In addition to phospholamban, several other membrane-associated proteins were phosphorylated in a calmodulin-dependent manner. The principal one exhibited a Mr of approximately 56,000, a value similar to that of the major protein (57,000) in a partially purified preparation of Ca2+/CaM-kinase II from the soluble fraction of canine heart that was autophosphorylated in a calmodulin-dependent manner. These data indicate that the membrane-bound, calmodulin-dependent protein kinase that phosphorylates phospholamban in cardiac membranes is not a specific calmodulin-dependent kinase, but resembles the multifunctional Ca2+/CaM-kinase II. Our data indicate that this kinase may be present in both the particulate and soluble fractions of canine heart.  相似文献   

8.
A novel calmodulin-dependent protein kinase has been isolated from bovine cardiac muscle by successive chromatography on DEAE-Sepharose 6B, Calmodulin-Sepharose 4B affinity and Sepharose 6B chromatography columns. The protein kinase was shown by gel filtration chromatography to have a molecular mass of 36,000 daltons. The highly purified protein kinase stoichiometrically phosphorylated the high molecular weight calmodulin-binding protein from cardiac muscle [Sharma RK (1990) J Biol Chem 265, 1152-1157] in a Ca2+/calmodulin-dependent manner. The phosphorylation resulted in the maximal incorporation of 1 mol of phosphate/mol of the high molecular weight calmodulin-binding protein. Other Ca2+/calmodulin-dependent protein kinases failed to phosphorylate the high molecular weight calmodulin-binding protein. The distinct substrate specificity of this protein kinase indicates that it is not related to the known calmodulin-dependent protein kinases and therefore constitutes a novel protein kinase.  相似文献   

9.
A Molla  J G Demaille 《Biochemistry》1986,25(11):3415-3424
Phospholamban, the cardiac sarcoplasmic reticulum proteolipid, is phosphorylated by cAMP-dependent protein kinase, by Ca2+/phospholipid-dependent protein kinase, and by an endogenous Ca2+/calmodulin-dependent protein kinase, the identity of which remains to be defined. The aim of this study was therefore to characterize the latter kinase, called phospholamban kinase. Phospholamban kinase was purified approximately 42-fold with a yield of 11%. The purified fraction exhibits a specific activity of 6.5 nmol of phosphate incorporated into exogenous phospholamban per minute per milligram of protein. Phospholamban kinase appears to be a high molecular weight enzyme and presents a broad substrate specificity, synapsin-1, glycogen synthase, and smooth muscle myosin regulatory light chain being the best substrates. Phospholamban kinase phosphorylates synapsin-1 on a Mr 30 000 peptide. The enzyme exhibits an optimum pH of 8.6, a Km for ATP of 9 microM, and a requirement for Mg2+ ions. These data suggest that phospholamban kinase might be an isoenzyme of the multifunctional Ca2+/calmodulin-dependent protein kinase. Consequently we have searched for Mr 50 000-60 000 phosphorylatable subunits among cardiac sarcoplasmic reticulum proteins. A Mr 56 000 protein was found to be phosphorylated in the presence of Ca2+/calmodulin. Such phosphorylation alters the electrophoretic migration velocity of the protein. In addition, this protein that binds calmodulin was always found to be present in fractions containing phospholamban kinase activity. This Mr 56 000 protein is therefore a good candidate for being a subunit of phospholamban kinase. However, the Mr 56 000 calmodulin-binding protein and the Mr 53 000 intrinsic glycoprotein which binds ATP are two distinct entities.  相似文献   

10.
Calmodulin-dependent glycogen synthase kinase   总被引:9,自引:0,他引:9  
A cAMP-independent glycogen synthase kinase has been purified from rabbit liver. This kinase is completely dependent on the presence of calmodulin and Ca2+ for activity. Half-maximal activation required about 0.1 microM calmodulin. Complete inhibition was obtained in the presence of ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid or trifluoperazine. This calmodulin-dependent synthase kinase does not phosphorylate phosphorylase, myosin light chain, casein, or histone. It rapidly incorporates 0.4 to 0.5 mol of 32P/mol of synthase subunit into the NH2-terminal domain, resulting in partial inactivation of glycogen synthase. These results indicate the existence of a calmodulin-dependent kinase which may be specific for glycogen synthase.  相似文献   

11.
A calmodulin-dependent protein kinase has been purified extensively from a Rous sarcoma virus-transformed rat cell line (RR1022) and from normal rat liver. The calmodulin-dependent protein kinase activity was manifested by in vitro phosphorylation of a single Mr 57 000 endogenous phosphoprotein (pp57) present in both the virally transformed cells and normal rat liver. The calmodulin-dependent protein kinase from transformed cells fractionated with the viral src gene product, pp60v-src, through a 650-fold purification of the oncogene product. However, purification of the calmodulin-dependent protein kinase from normal liver demonstrated that the calmodulin-dependent kinase was distinct from pp60v-src. Phosphorylation of pp57 by the kinase purified from the transformed cell line required Ca2+ and calmodulin, was inhibited by EDTA and was unaffected by cAMP or the heat- and acid-stable protein inhibitor of cAMP-dependent protein kinase. Troponin C did not substitute for calmodulin. A virtually identical calmodulin-dependent protein kinase activity was purified from rat liver by affinity chromatography on calmodulin-Sepharose. Phosphorylation of pp57 by the affinity-purified liver protein kinase was also observed, and required Ca2+ and calmodulin. EGTA and trifluoroperazine inhibited pp57 phosphorylation. The calmodulin-dependent protein kinase reported here did not phosphorylate substrates of known calmodulin-dependent protein kinases in vitro (myosin light chain, phosphorylase b, glycogen synthase, microtubule-associated proteins, tubulin, alpha-casein). Because none of these proteins served as substrates in vitro and pp57 was the only endogenous substrate found, the properties of this enzyme appear to be different from any previously described calmodulin-dependent protein kinase.  相似文献   

12.
A protein kinase, able to phosphorylate casein, phosvitin, and glycogen synthase, was purified approximately 9000-fold from rabbit liver, and appeared analogous to an enzyme studied by Itarte and Huang (Itarte, E., and Huang, K.-P. (1979) J. Biol. Chem. 254, 4052-4057). This enzyme, designated here casein kinase-1, was shown to be a distinct glycogen synthase kinase and in particular to be different from the protein kinase GSK-3 (Hemmings, B.A., Yellowlees, D., Kernohan, J.C., and Cohen, P. (1981) Eur. J. Biochem. 119, 443-451). Casein kinase-1 had native molecular weight of 30,000 as judged by gel filtration. The enzyme phosphorylated beta-casein A or B better than kappa-casein or alpha s1-casein, and modified only serine residues in beta-casein B and phosvitin. The apparent Km for ATP was 11 microM, and GTP was ineffective as a phosphoryl donor. The phosphorylation of glycogen synthase by casein kinase-1 was inhibited by glycogen, half-maximally at 2 mg/ml, and by heparin, half-maximally at 0.5-1.0 microgram/ml, but was unaffected by Ca2+ and/or calmodulin, or by cyclic AMP. Phosphorylation of muscle glycogen synthase proceeded to a stoichiometry of at least 6 phosphates/subunit with reduction in the +/- glucose-6-P activity ratio to less than 0.4. Phosphate was introduced into both a COOH-terminal CNBr fragment (CB-2) as well as a NH2-terminal fragment (CB-1). At a phosphorylation stoichiometry of 6 phosphates/subunit, 84% of the phosphate was associated with CB-2 and 6.5% with CB-1. The remainder of the phosphate was introduced into another CNBr fragment of apparent molecular weight 16,500. Phosphorylation by casein kinase-1 correlated with reduced electrophoretic mobilities, as analyzed on polyacrylamide gels in the presence of sodium dodecyl sulfate, of the intact glycogen synthase subunit, as well as the CNBr fragments CB-1 and CB-2.  相似文献   

13.
Casein kinase-2 from rabbit skeletal muscle was found to phosphorylate, in addition to glycogen synthase, troponin from skeletal muscle, and myosin light chain from smooth muscle. Troponin T and the 20,000 Mr myosin light chain are phosphorylated by casein kinase-2 at much greater rates than glycogen synthase. The V values for the phosphorylation of troponin and myosin light chain are nearly an order of magnitude greater than that of glycogen synthase; however, the Km values for these two substrates are greater than that for glycogen synthase. The kinase activities with the various protein substrates are stimulated approximately three- and fivefold by 5 mm spermidine and 3 mm spermine, respectively. Heparin is a potent inhibitor of the kinase when casein, glycogen synthase, or myosin light chain is the substrate. However, with troponin as substrate the kinase is relatively insensitive to inhibition by heparin. The amount of heparin required for 50% inhibition with troponin as substrate is at least 10 times greater than with casein as substrate. The phosphorylation of troponin by casein kinase-2 results in the incorporation of phosphate into two major tryptic peptides, which are different from those phosphorylated by casein kinase-1. The site in myosin light chain phosphorylated by casein kinase-2 is different from that phosphorylated by myosin light chain kinase.  相似文献   

14.
A calmodulin-dependent protein kinase from canine myocardial cytosol was purified 1150-fold to apparent homogeneity with a 1.5% yield. The purified enzyme had a Mr of 550,000 with a sedimentation coefficient of 16.6 S, and showed a single protein band with a Mr of 55,000 (55K protein), determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 1.6 μmol/mg protein/min, and Ka values of 67 nM and 1.1 μM for calmodulin and Ca2+, respectively, using chicken gizzard myosin light chain as substrate. Calmodulin bound to the 55K protein. The purified enzyme had a broad substrate specificity. Endogenous proteins including glycogen synthase, phospholamban, and troponin I from the canine heart were phosphorylated by the enzyme. These results suggest that the purified enzyme works as a multifunctional protein kinase in the Ca2+, calmodulin-dependent cellular functions of the canine myocardium, and that the enzyme resembles enzymes detected in the brain, liver, and skeletal muscle.  相似文献   

15.
Summary Glycogen synthase I in a homogenate of human polymorphonuclear leukocytes was phosphorylated under imitated physiological conditions utilizing the endogenous protein kinases. At subsequent steps of phosphorylation the32P-labelled synthase was purified and characterized. Limited tryptic hydrolysis of the32P-labelled synthase released four phosphopeptides (t-A, t-B, t-C, t-D) and subsequent chymotrypsinization of the trypsin resistant core released three phosphopeptides (c-A, c-B, c-C). One Pi/subunit was incorporated within 8–10 min and 2.2 Pi/subunit within 60 min increasing the Kc for Gle-6-P to 4–6 mM. The initial phosphorylation up to 0.8 Pi/subunit occurred mainly in peptide c-A and a linear relation between ratio of independence (RI) of glycogen synthase in the interval RI 0.85 to RI 0.05 and phosphorylation of this peptide to 0.5 Pi was observed. Phosphorylation of this peptide is responsible for the decrease in ratio of independence. From experiments with inhibitors and activators, the initial phosphorylation was found predominantly catalysed by the endogenous cAMP independent synthase kinase, however, the endogenous cAMP dependent protein kinase and phosphorylase kinase also phosphorylate endogenous glycogen synthase I to a minor degree. Circumstantial evidence for a Ca-dependent synthase kinase different from phosphorylase kinase is presented. The endogenous Gle-6-P dependent glycogen synthase occurring in a homogenate of leukocytes disrupted in the presence of NaF incorporated 1.07 Pi/subunit and Kc for Glc-6-P was increased from 6–8 mM to 20 mM. From the present and previous experiments [7] a total of 8 major phosphorylatable sites have been defined, one on each of the peptides t-A, t-B, t-C, c-B and c-C and two on peptide c-A, which in addition may contain a third site for phosphorylase kinase. Assuming identical subunits, only 13 out of 32 sites are thus covalently modified at maximum phosphorylation. The operational defined synthase R (Kc for Glc-6-P 0.5 mM) and D (Kc for Glc-6-P 2–8 mM) activities correspond to synthase with about 0.8 Pi and 1.8–2.3 Pi/subunit, respectively.  相似文献   

16.
A calmodulin-dependent protein kinase was purified from rat brain by the same protocol used previously for a rabbit liver calmodulin-dependent glycogen synthase kinase. The rat brain kinase readily phosphorylated rabbit skeletal muscle glycogen synthase at sites 1b and 2, the same sites phosphorylated by rabbit liver calmodulin-dependent kinase. The two kinases have other similarities: substrate specificity, potent inhibition by sodium fluoride, and nearly equal Ka's (10-20 nM) for calmodulin. Also, both enzymes have similar Stokes radii, 70 A (rabbit liver) and 75 A (rat brain), but quite different sedimentation coefficients, 10.6 S and 17.4 S, respectively. Consequently, the calculated molecular weights are also different: 560,000 for the brain enzyme and 300,000 for the liver enzyme. The major subunit of the rat brain kinase appears to be a single 51-kDa peptide, not a doublet pattern of 51- and 53-kDa subunits that is characteristic of the rabbit liver enzyme. Our findings are consistent with the hypothesis that the rat brain and rabbit liver enzymes belong to a class of closely related calmodulin-dependent protein kinases, possibly isozymes. This class of enzymes may be responsible for regulating several of the known calcium-dependent physiological functions.  相似文献   

17.
A rabbit liver cAMP-independent glycogen synthase kinase has been purified 4500-fold to a specific activity of 2.23 mumol of 32P incorporated per min per mg of protein using ion exchange chromatography on DEAE-Sephacel and phosphocellulose, gel filtration chromatography on Sepharose 6B, and affinity chromatography on calmodulin-Sepharose. This synthase kinase, which was completely dependent on the presence of calmodulin (apparent K0.5 = 0.1 microM) and calcium for activity, also catalyzed the phosphorylation of purified smooth muscle myosin light chain but not of smooth muscle myosin. Using 0.5 mM ATP, a maximal rate of phosphorylation of glycogen synthase was achieved in the presence of 10 mM magnesium acetate with a pH optimum of 7.8. Gel filtration experiments indicated a Stokes radius of about 70 A and sucrose density gradient centrifugation data gave a sedimentation coefficient of 10.6 S. A molecular weight of approximately 300,000 was calculated. A definitive subunit structure was not determined, but major bands observed after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate corresponded to a doublet at 50,000 to 53,000. The calmodulin-dependent glycogen synthase kinase incorporated about 1 mol of 32P per mol of synthase subunit into sites 2 and 1b associated with a decrease in the synthase activity ratio from 0.8 to about 0.4. The calmodulin-dependent glycogen synthase kinase may mediate the effects of alpha-adrenergic agonists, vasopressin, and/or angiotensin II on glycogen synthase in liver.  相似文献   

18.
D I Stewart  N Crawford 《FEBS letters》1983,156(2):329-334
Calmodulin-dependent glycogen synthase kinase isolated from skeletal muscle and synapsin I kinase II isolated from brain have several properties that are very similar. These properties include: substrate and site-specificities, immunological cross-reactivity, and phosphopeptide maps following limited proteolysis. Both enzymes phosphorylate a wide variety of substrate proteins. The two kinases may represent different isozymes of a multifunctional calmodulin-dependent protein kinase that mediates many of the actions of Ca2+ in various tissues. Therefore, we propose the name 'calmodulin-dependent multi-protein kinase' for this broad specificity enzyme.  相似文献   

19.
A rat liver cAMP-independent protein kinase that phosphorylates peptide b of ATP-citrate lyase (Ramakrishna, S., Pucci, D. L., and Benjamin, W. B. (1983) J. Biol. Chem. 258, 4950-4956) has been purified to apparent homogeneity. The molecular weight, determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, sucrose density gradient, and by gel filtration, was found to be 36,000. This protein kinase phosphorylates in vitro ATP-citrate lyase, acetyl-CoA carboxylase, and glycogen synthase and does not phosphorylate phosphorylase, phosphorylase kinase, histone, phosvitin, and casein. It has Fa (activity factor) activity stimulating the ATP X Mg-dependent phosphatase and is therefore named a multifunctional protein kinase. This kinase differs from glycogen synthase kinase-3 with regard to substrate specificity, kinetic parameters, and physicochemical properties.  相似文献   

20.
Microtubule-associated protein tau from Alzheimer brain has been shown to be phosphorylated at several ser/thr-pro and ser/thr-X sites (Hasegawa, M. et al., J. Biol. Chem, 267, 17047–17054, 1992). Several proline-dependent protein kinases (PDPKs) (MAP kinase, cdc2 kinase, glycogen synthase kinase-3, tubulin-activated protein kinase, and 40 kDa neurofilament kinase) are implicated in the phosphorylation of the ser-thr-pro sites. The identity of the kinase(s) that phosphorylate that ser/thr-X sites are unknown. To identify the latter kinase(s) we have compared the phosphorylation of bovine tau by several brain protein kinases. Stoichiometric phosphorylation of tau was achieved by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, protein kinase C and cyclic AMP-dependent protein kinase, but not with casein kinase-2 or phosphorylase kinase. Casein kinase-1 and calmodulin-dependent protein kinase II were the best tau kinases, with greater than 4 mol and 3 mol32P incorporated, respectively, into each mol of tau. With the sequential addition of these two kinases,32P incorporation approached 6 mol. Peptide mapping revealed that the different kinases largely phosphorylate different sites on tau. After phosphorylation by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, cyclic AMP-dependent protein kinase and casein kinase-2, the mobility of tau isoforms as detected by SDS-PAGE was decreased. Protein kinase C phosphorylation did not produce such a mobility shift. Our results suggest that one or more of the kinases studied here may participate in the hyperphosphorylation of tau in Alzheimer disease. Such phosphorylation may serve to modulate the activaties of other tau kinases such as the PDPKs.Abbreviations PHF paired helical filaments - A-kinase cyclic AMP-dependent protein kinase - CaM kinase II calcium/calmodulin-dependent protein kinase II - C-kinase calcium-phospholipid-dependent protein kinase - CK-1 casein kinase-1 - CK-2 casein kinase-2 - Gr kinase calcium/calmodulin-dependent protein kinase from rat cerebellum - GSK-3 glycogen synthase kinase-3 - MAP kinase mitogen-activated protein kinase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号