首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Several observations indicate that the triggering event for receptor-mediated actin polymerization takes place in or close to the plasma membrane. Stimulation of human neutrophils with the chemotactic peptide formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe) causes rapid and transient changes in both chlorotetracycline (CTC) fluorescence and the cellular content of filamentous actin (F-actin), thus suggesting a regulatory role for membrane-bound calcium in actin polymerization. In the present study, tetracaine, a proposed antagonist to membrane-bound calcium, totally inhibited the rebinding of the membrane calcium released by fMet-Leu-Phe. This was accompanied by a magnified and sustained increase in the cellular content of F-actin. In agreement, N-ethylmaleimide, an inhibitor of motile functions, completely abolished the fMet-Leu-Phe-triggered changes in both CTC fluorescence and F-actin content and rapidly reversed the responses when added after the peptide. The tumor promoter phorbol-12-myristate-13-acetate, caused only small changes in CTC fluorescence and F-actin content, and reduced a subsequent fMet-Leu-Phe-induced CTC response and actin polymerization. Inhibition of the breakdown of phosphatidylinositol 4,5-bisphosphate, by calcium depletion, had no significant effects on the fMet-Leu-Phe-induced CTC response and alterations in F-actin content, whereas pretreatment with pertussis toxin totally inhibited both these responses. Consequently, the strong correlation between changes in CTC fluorescence and F-actin content, found in this study, suggests a triggering or modulating role of membrane-associated calcium on actin polymerization in human neutrophils.  相似文献   

2.
Using a digital imaging fluorescence microscope, we have detected a rapid transient increase in the free cytosolic calcium concentration in a single rat basophilic leukemia cell (RBL-2H3) after antigen stimulation. Calcium ions were transported very rapidly (within 1 s) after a lag time (about 10 s at 37 degrees C) from the external environment into the cytoplasm. On the basis of the present experimental results we conclude that the gradual changes in the overall fluorescence intensity observed for a cell suspension are due to the distribution of different lag times shown by different cells as to the calcium influx through membrane calcium channels.  相似文献   

3.
The plasma membrane and intracellular granules of human polymorphonuclear neutrophils (PMN) contain large amounts of the glycolipid, lactosylceramide (LacCer; Gal beta 1----4Glc beta 1----1Cer). Despite its abundance, novel subcellular distribution, and lineage-restricted expression, nothing of PMN LacCer function is known. We examined the relationship between LacCer and PMN activation by assessing binding of anti-LacCer mAb (T5A7; anti-CDw17) to PMN during and after cell stimulation. CDw17 expression markedly decreased after treatment with PMA, dioctanoylglycerol, calcium ionophore, FMLP (with or without cytochalasin B or added Ca2+), TNF-alpha, or lymphotoxin. Depending on the stimulus, CDw17 declined to levels ranging from 70% (TNF, lymphotoxin) to less than 5% (phorbol ester, dioctanoylglycerol) of levels detected on untreated PMN. Loss of CDw17 from PMA-treated PMN followed dose- and temperature-dependent kinetics, with loss being detected after PMA treatment for 1 min. Membrane internalization explained PMA-induced loss of CDw17, as cell-associated 125I-anti-CDw17 became inaccessible to fluorescent anti-Ig after PMA treatment. CDw17 on PMN cytoplasts or retinoic acid-induced HL-60 cells was only slightly affected by stimulation, suggesting that down-regulation of the epitope is associated with granule exocytosis rather than superoxide production. Results with PMN from a patient with chronic granulomatous disease confirmed that normal superoxide production is not required for CDw17 loss induced by PMA or FMLP treatment. The data collectively demonstrate that reduced levels of cell-surface CDw17 are associated with granule exocytosis after PMN activation.  相似文献   

4.
Thrombin stimulation of human blood platelets caused an extensive (up to 45%) and rapid (5-10 s) decline in endogenous phosphatidylinositol 4,5-bisphosphate (PI-P2). Thrombin initiated an equally rapid loss of membrane-bound Ca, as indicated by the decrease in fluorescence of chlortetracycline (CTC)-loaded platelets. PI-P2 breakdown also correlated with decreased CTC fluorescence upon use of other platelet stimuli: Arachidonate caused moderate and slow decreases in both PI-P2 and CTC fluorescence, while ionophore only induced minimal changes. Thrombin-induced decreases in PI-P2 content could account for release of sufficient membrane-bound Ca to raise cytoplasmic free [Ca2+] to 1-2 microM, supporting the hypothesis that PI-P2 represents the Ca-binding site involved in the stimulus-dependent increase in cytoplasmic Ca2+ evoked by receptor-ligand interactions.  相似文献   

5.
Human neutrophils labeled with chlortetracycline (CTC), commonly used as a probe of membrane-bound calcium, release lysosomal enzymes and exhibit a rapid decrease in fluorescence when exposed to the chemotactic peptide fMet-Leu-Phe or the lectin Con A. This decrease has been attributed to the release of calcium from a membrane-associated "trigger pool." The nature of this putative pool has been further characterized by examining the effects of various inhibitors on the CTC fluorescence response and lysosomal enzyme release from stimulated neutrophils. These agents included inhibitors of glycolysis (2-deoxyglucose and iodoacetate), an uncoupler of oxidative- phosphorylation (KCN), and a sulfhydryl inhibitor (N-ethylmaleimide). Resting neutrophils labelled with CTC demonstrated an enhanced decay of baseline fluorescence when exposed to 2-deoxyglucose or iodoacetate. This suggested that the pool of membrane-bound calcium labelled by this probe was maintained by glycolytic metabolism. Furthermore, 2-deoxyglucose and iodoacetate inhibited both the stimulated decrease in CTC fluorescence and lysosomal enzyme release induced by fMet-Leu-Phe and Con A in a time-dependent manner. KCN did not inhibit either response to stimulation, but did retard the recovery of CTC fluorescence observed when fMet-Leu-Phe was used as the stimulus. High concentrations of N-ethylmaleimide (100 microM) completely inhibited both the CTC fluorescence response and lysosomal enzyme release almost immediately; low concentrations of N-ethylmaleimide (30 microM) inhibited lysosomal enzyme release in a time-dependent manner without significantly affecting changes in CTC fluorescence. These results are consistent with the hypothesis that CTC serves as a probe of membrane-bound "trigger" calcium, the release of which is dependent upon intact glycolysis and is a requirement for lysosomal enzyme release.  相似文献   

6.
The fluorescent probe chlortetracycline (CTC) was used to investigate redistribution of intracellular Ca2+ in concanavalin A (Con A)-stimulated human peripheral blood lymphocytes. The addition of the mitogen to CTC-equilibrated lymphocytes induced (within 10 to 15 minutes) a Con A-concentration dependent decrease in CTC fluorescence indicating the release of membrane-bound Ca2+. The effect was independent of the level of extracellular Ca2+ and could be observed in the presence of EGTA; it was suppressed by the metabolic inhibitors FCCP, antimycin and sodium cyanide. Analysis of the excitation spectra of CTC fluorescence indicated that the observed effect is caused by redistribution of intracellular Ca2+ rather than Mg2+. Thus the lectin interaction with the lymphocyte plasma membrane results in Ca2+ release into the cytosol from the intracellular stores.  相似文献   

7.
The subcellular distribution of phospholipase C (PLC) activity in rabbit thymocytes was examined by measuring the enzyme's activity in different subcellular fractions. PLC activity was determined using exogenously added [3H]PIP2 as substrate. Approx. 80% of the activity of the cell homogenate was found in the cytosolic fraction. A minor portion of PLC activity was attached to the particulate fraction. This membrane-associated PLC activity was found to be predominantly bound to the plasma membrane. Both PIP2-cleaving PLCs (the PLC associated with the plasma membrane and the PLC in the cytosol) exhibited maximum activity at pH 5. GTP gamma S stimulated the cytosolic and the membrane-bound PLC. As revealed by computer analysis of the substrate dependence of both basal and GTP gamma S-stimulated PLC activity, GTP gamma S enhanced the Vmax of the enzymes. Calcium, at a concentration of 1 mM, decreased PLC activity, as compared to a calcium concentration of 100 nM. The characteristic increase in Vmax induced by GTP gamma S was observed at a concentration of 1 mM calcium and was similar to that at 100 nM. These data suggest that the stimulatory effect of GTP gamma S is not due to an increased affinity of PLCs to calcium.  相似文献   

8.
Four early events of egg fertilization, changes in intracellular calcium concentration and intracellular pH, reorientation of the surface membrane, and the elevation of the fertilization envelope, were imaged in real time and in pairs in single sea urchin eggs. The paired imaging allowed the correlation of the four events spatially and temporally. Three of them propagated as waves starting at the sperm entry site. The earliest was the calcium wave, visualized with fluorescent indicator dyes. After a delay of 10 s there followed a large decrease in the fluorescence polarization of membrane-bound dyes, which we interpret as arising from membrane reorientation as a result of cortical granule exocytosis and microvillar elongation. With a further delay of 15 s the fertilization envelope was seen to rise in transmitted light. All three waves propagated with similar velocities of approximately 10 microns/s, supporting the view that calcium triggers the latter two events. The fluorescence polarization changed in two steps with a clear pause of 10-20 s in between. The second step, which also propagated as wave, reflects either further elongation of microvilli or straightening of irregular microvilli. This second step was abolished by cytochalasin B and was coincident with an increase in cytoplasmic pH, suggesting that pH-induced actin reorganization may play a role. The cytoplasmic alkalinization, imaged with a fluorescent probe, was quite different from the other events in that it took place homogeneously throughout the egg and slowly (over 100 s). Apparently, the alkalinization is not on a direct downstream pathway of calcium origin. An opposing possibility, that the alkalinization may in fact be triggered by the traveling calcium wave, is also discussed.  相似文献   

9.
Formyl-Met-Leu-Phe (FMLP) and platelet activating factor (PAF) stimulated the synthesis of thromboxane B2 (TXB2) and leukotriene B4 (LTB4) to a small degree in human neutrophils. Calcium ionophore A-23187 enhanced synergistically both FMLP and PAF induced eicosanoid synthesis, whereas phorbol ester PMA attenuated PAF but not FMLP stimulated arachidonate metabolism. These results suggest that calcium mobilization may be a rate limiting step in FMLP and PAF induced synthesis of TXB2 and LTB4 and that protein kinase C activation may play a negative regulatory role in PAF stimulated eicosanoid synthesis.  相似文献   

10.
Thonat C  Boyer N  Penel C  Courduroux JC  Gaspar T 《Protoplasma》1993,176(3-4):133-137
Summary The distribution of membrane-bound calium, activated calmodulin, and callose synthesis was visualized inBryonia dioica internodes before and after mechanical stimulus, using fluorescent probes, respectively, chlorotetracycline, fluphenazine, and aniline blue. Bright chlorotetracycline fluorescence remains localized in the plasma membrane of control cells, 30 s after stimulation calcium left the plasmalemma. A delocalization of activated calmodulin was observed after wounding and deposition of callose, which could not be detected before, appeared in the same times in most cells. The callose formation and the decrease in membrane-associated calcium suggest a rapid influx of calcium in the cytosol and an intervention of this ion in the cascade of the early events underlyingBryonia dioica thigmomorphogenesis.Abbreviation CTC chlorotetracycline  相似文献   

11.
The Ca2+-chelator CTC binds to a specific site on both outer surfaces of all non-meristematic cells of the unistratose thallus of Riella, known to be rich in anionic wall components and calcium, and induces there the deposition of callose. Structural changes in this region during prolonged CTC treatment have been followed by light and transmission electron microscopy. With fluorescence microscopy punctate structures can be detected after 10 min, which upon longer incubation in CTC develop into large vesicular bodies, surrounded by a circular structure. The aniline blue-derived fluorescence intensity of these structures is highest in cells of the extension growth zone. At the ultrastructural level a mosaic of numerous smooth-surfaced vesicles, presumably containing callose, initially appears subjacent to the plasma membrane. These vesicles swell and fuse with each other, forming ultimately a circular fusion profile with the plasma membrane. This complex of callose-forming vesicles is thought to develop from elements of the partially coated reticulum (PCR), based on the presence of coated vesiculation profiles on the callose vesicles and numerous aggregates of coated vesicles in their immediate vicinity. After 30 min in CTC osmiophilic particles appear around these callose vesicles and at the cytoplasmic face of mitochondria. They are later (after 60 min) deposited in the periplasmic space between wall and plasma membrane and are also released into the surrounding medium. As judged by their reaction with FeCl3, the osmiophilic particles appear to be phenolic in nature. We propose that upon binding of CTC a local increase of cytoplasmic calcium triggers callose synthesis in PCR-like compartments beneath the plasma membrane. However it remains to be shown as to why callose is synthesized exclusively in these intracellular compartments and not at the plasma membrane.  相似文献   

12.
The novel calcium indicator fura red and the oxidative burst indicator dihydrorhodamine (both excited at 488 nm) were used in combination with multiparameter flow cytometry to allow simultaneous kinetic measurements of calcium fluxes and oxidative bursts in monocytes and granulocytes. Using this method it was possible to obtain direct evidence for the following cell type- and stimulus-specific differences in signal transduction pathways: 1) n-formyl-methionyl-leucyl-phenylalanine (FMLP)/cytochalasin B-induced oxidative burst is several-fold higher in granulocytes than in monocytes although the calcium fluxes have similar amplitudes in the two cell types; 2) stimulus-induced calcium fluxes in granulocytes are mainly due to release from intracellular stores, whereas monocytes mobilize calcium mainly by influx from the medium; 3) the FMLP/cytochalasin B-induced calcium flux in monocytes is less sensitive to the G-protein inhibitor pertussis toxin than the flux in granulocytes; 4) in contrast to FMLP/cytochalasin B, the protein kinase C activator phorbol myristate acetate (PMA) induces an oxidative burst that is not preceded by a cytoplasmic calcium flux; 5) the PMA-induced oxidative burst can be triggered in monocytes and granulocytes that are depleted of intracellular calcium ions, whereas that induced by FMLP/cytochalasin B can not; 6) the G-protein inhibitor pertussis toxin blocks an early event in the signal transduction pathway of FMLP/cytochalasin B, as shown by inhibition of both calcium fluxes and oxidative burst; and 7) 100 nM of the protein kinase inhibitor staurosporine blocks the FMLP/cytochalasin B-induced respiratory burst by interfering with a step downstream to cytoplasmic calcium fluxes, whereas only 10-20 nM is necessary to block PMA-induced oxidative burst.  相似文献   

13.
S Tsuruta  S Ito  H Mikawa 《FEBS letters》1990,268(1):241-244
Chlorotetracycline has been used in human polymorphonuclear leukocytes as a probe to investigate the state of membrane-bound calcium. We examined the effect of adenosine on the fluorescence responses of CTC-loaded PMNs stimulated with the synthetic chemotactic peptide, formyl-methionyl-leucyl- phenylalanine. Adenosine inhibited the decrease in CTC fluorescence in a dose-dependent fashion and its effect was reversed by theophylline, an adenosine receptor antagonist. Removal of extracellular adenosine by incubating PMNs with adenosine deaminase abolished the effect of adenosine. These data suggest that adenosine inhibits the release of membrane-bound calcium in PMNs that normally occurs in response to chemotactic stimuli, acting via PMN surface adenosine receptors.  相似文献   

14.
The method of non-enzymatic, manual microdissection was established to isolate zygotes and young embryos in Triticum aestivum L. The distribution of membrane-bound calcium and activated calmodulin in the isolated zygotes and young embryos was visualized by chlorotetracycline (CTC) and fluphenanize (FPZ) fluorescence probe respectively. The CTC fluorescence was polar distributed in the zygote protoplast. The distribution of the CFC and FPZ fluorescence from twocelled embryos to multicellular embryos was observed. In the young pear-shaped embryos the CTC and FPZ fluorescence of the embryos was slightly higher than that of the suspensor. In a pear-shaped embryo beginning with differentiation the CTC fluorescence was restricted to several-layer of cells between embryo and suspensor and the several ventral cells of the embryo. In the embryos with newly differentiated plumule the basal part of the embryo possessed a higher CTC fluorescence, while the FPZ fluorescence was only distributed in the basal part. It indicated that the distribution of CTC and FPZ fluorescence was in coincidence with the sites that plumule and radicle were beginning to differentiate. The technique of isolated zygotes and the possible function of calcium and calmodulin during embryo development are discussed.  相似文献   

15.
The subcellular distribution of phospholipase C (PLC) activity in rabbit thymocytes was examined by measuring the enzyme's activity in different subcellular fractions. PLC activity was determined using exogenously added [3H]PIP2 as substrate. Approx. 80% of the activity of the cell homogenate was found in the cytosolic fraction. A minor portion of PLC activity was attached to the particulate fraction. This membrane-associated PLC activity was found to be predominantly bound to the plasma membrane. Both PIP2-cleaving PLCs (the PLC associated with the plasma membrane and the PLC in the cytosol) exhibited maximum activity at pH 5. GTPγS stimulated the cytosolic and the membrane-bound PLC. As revealed by computer analysis of the substrate dependence of both basal and GTPγS-stimulated PLC activity, GTPγS enhanced the Vmax of the enzymes. Calcium, at a concentration of 1 mM, decreased PLC activity, as compared to a calcium concentration of 100 nM. The characteristics increase in Vmax induced by GTPγS was observed at a concentration of 1 mM calcium and was similar to that at 100 nM. These data suggest that the stimulatory effect of GTPγS is not due to an increased affinity of PLCs to calcium.  相似文献   

16.
Phospholipase C-beta (PLCbeta) isozymes play important roles in transmembrane signaling. Their activity is regulated by heterotrimeric G proteins. The PLCbeta(2) isozyme is unique in being stimulated also by Rho GTPases (Rac and Cdc42). However, the mechanism(s) of this stimulation are still unclear. Here, we employed fluorescence recovery after photobleaching to investigate the interaction of green fluorescent protein (GFP)-PLCbeta(2) with the plasma membrane. For either GFP-PLCbeta(2) or GFP-PLCbeta(2)Delta, a C-terminal deletion mutant lacking the region required for stimulation by Galpha(q), these interactions were characterized by a mixture of exchange with a cytoplasmic pool and lateral diffusion. Constitutively active Rac2(12V) stimulated the activity of both GFP-PLCbeta(2) and GFP-PLCbeta(2)Delta in live cells, and enhanced their membrane association as evidenced by the marked reduction in their fluorescence recovery rates. Both effects required the putative N-terminal pleckstrin homology (PH) domain of PLCbeta(2). Importantly, Rac2(12V) dramatically increased the contribution of exchange to the fluorescence recovery of GFP-PLCbeta(2), but had the opposite effect on GFP-PLCbeta(2)Delta, where lateral diffusion became dominant. Our results demonstrate for the first time the regulation of membrane association of a PLCbeta isozyme by a GTP-binding protein and assign a novel function to the PLCbeta(2) C-terminal region, regulating its exchange between membrane-bound and cytosolic states.  相似文献   

17.
Activated human polymorphonuclear leukocytes (PMN) isolated from peripheral blood specifically bind 125I-laminin after stimulation with phorbol 12-myristate 13-acetate (PMA) or f-Met-Leu-Phe (FMLP) at 37 degrees C. Changes in laminin receptor expression are stimulus dose dependent at both chemotactic (10(-10) M to 10(-6) M) concentrations of FMLP, and secretory (greater than 5 ng/ml) levels of PMA. In the presence of cytochalasin B (5 micrograms/ml), 10(-7) M FMLP activation stimulates specific laminin binding, with an apparent Kd = 3.9 X 10(-9) M and 6.47 X 10(5) binding sites/cell, reaching equilibrium within 10 min at 4 degrees C. This observed activation-dependent change in laminin receptor expression is not due to interference by endogenous laminin, because no fluorescein-visualized anti-laminin antibody bound to cells without added glycoprotein, regardless of the level of activation. Levels of neutrophil lysozyme release, which show a PMA dose dependence similar to that of receptor binding activity, suggest that granule-plasma membrane fusion may be significant during increases in receptor expression. A lack of receptor stimulation by PMA from a granule-deficient patient or in granule-depleted cytoplasts from normal donors additionally supports this hypothesis. Electroblot transfer and autoradiography of subcellular fractions from unstimulated PMN reveals the presence of a 68,000 dalton laminin-binding component in the secondary/tertiary granule (beta) fraction, which may represent an intracellular laminin receptor pool.  相似文献   

18.
The subcellular localization of calcium in cells of symbiotic partners located within leaf cavities of Azolla was investigated by using chlorotetracycline, ESI and EELS analysis. Loosely membrane-bound calcium was evidenced by using CTC or EGTA and CTC, in cytoplasmic regions of Azolla hair cells and in cytoplasm of the cyanobiont. Tightly membrane-bound calcium revealed by CTC, and ESI and EELS analysis, was observed in cyanophycin granules and carboxysomes of the cyanobiont. A third calcium type, revealed by ESI and EELS analysis, was localized at the level of cell walls of simple and branched Azolla hairs, in the envelope of heterocysts, and in the cell walls of the cyanobiont.  相似文献   

19.
G M Omann  J M Harter 《Cytometry》1991,12(3):252-259
Flow cytometric methods were utilized to determine N-formylpeptide-induced cytosolic calcium levels in human polymorphonuclear leukocytes (PMNs) detected with the calcium indicator Fluo-3. Fluo-3 was readily loaded into PMNs as the acetoxymethyl ester. At room temperature Fluo-3 extrusion was minimal (less than 10%) over a 2 h time period. Flow cytometric histograms yielded symmetric distributions indicating homogeneous labelling of the cells. Stimulation of the cells with N-formyl-met-leu-phe (FMLP) caused homogeneous activation of all cells as indicated by a shift of the fluorescence distribution to higher fluorescence levels while still maintaining a symmetrical distribution. Resting values or FMLP-induced cytosolic calcium levels were similar in cells loaded over a 20-fold range of Fluo-3-acetoxymethyl ester. The effect of graded pertussis toxin (PT) treatment on the calcium response was determined by incubating cells with different concentrations of pertussis toxin for a time period that yielded a range of ADP ribosolation levels inside the cells. When these cells were activated with FMLP, the fluorescence histograms showed that pertussis toxin treatment resulted in a conversion of cells from responders to nonresponders. The responding cells responded with maximum calcium elevations similar to controls. This behavior may reflect heterogeneous insertion of the A-protomer of PT or a very sharp threshold of coupled G-proteins required to transduce the responses.  相似文献   

20.
Translocation of Ca2+/phospholipid-dependent protein kinase (PKC) activity from cytosolic to membrane fractions was assessed in washed human platelet suspensions. Phorbol myristate acetate (PMA) induced a rapid loss of PKC activity from the cytosolic compartment in stirred platelets, which was not accompanied by measurable increases in membrane-associated activity, but was paralleled by a decrease in total cellular enzyme activity (cytosol plus membrane). When platelet aggregation was prevented by not stirring, (i) cytosolic activity was decreased by PMA, (ii) significant and maintained (1-15 min with PMA) increases in membrane-bound PKC were detected, and (iii) the decline in total enzyme activity was markedly slower. In stirred platelets, total and specific inhibition of PMA-induced aggregation by a fibrinogen-derived peptide (RGDS, i.e. Arg-Gly-Asp-Ser) promoted maximal increases in membrane-associated PKC in the presence of PMA and completely prevented the loss in cellular activity. Thrombin and collagen both induced a decrease in cytosolic PKC and a loss of total activity, but a significant rise in membrane activity was seen only with collagen; ADP had no detectable effect on enzyme distribution. These results demonstrate an agonist-induced redistribution of PKC and indicate that platelet aggregation may play an important role in the proteolysis, and hence persistence, of membrane-associated PKC. This observation has implications for the potency and duration of PKC-mediated responses induced by agonists and exogenous PKC activators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号