首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A thermodynamic characterization of the Na+-H+ exchange system in Halobacterium halobium was carried out by evaluating the relevant phenomenological parameters derived from potential-jump measurements. The experiments were performed with sub-bacterial particles devoid of the purple membrane, in 1 M NaCl, 2 M KCl, and at pH 6.5–7.0. Jumps in either pH or pNa were brought about in the external medium, at zero electric potential difference across the membrane, and the resulting relaxation kinetics of protons and sodium flows were measured. It was found that the relaxation kinetics of the proton flow caused by a pH-jump follow a single exponential decay, and that the relaxation kinetics of both the proton and the sodium flows caused by a pNa-jump also follow single exponential decay patterns. In addition, it was found that the decay constants for the proton flow caused by a pH-jump and a pNa-jump have the same numerical value. The physical meaning of the decay constants has been elucidated in terms of the phenomenological coefficients (mobilities) and the buffering capacities of the system. The phenomenological coefficients for the Na+-H+ flows were determined as differential quantities. The value obtained for the total proton permeability through the particle membrane via all available channels, LH = (?JH +pH)Δψ,ΔpNa, was in the range of 850–1150 nmol H+·(mg protein)?1·h?1·(pH unit)?1 for four different preparations; for the total Na+ permeability, LNa = (?JNa+pNa)Δψ,ΔpH, it was 1620–2500 nmol Na+·(mg protein)?1·h?1·(pNa unit)?1; and for the proton ‘cross-permeability’, LHNa = (?JH+pNa)Δψ,ΔpH, it was 220–580 nmol H+·(mg protein)?1·h?1·(pNa unit)?1, for different preparations. From the above phenomenological parameters, the following quantities have been calculated: the degree of coupling (q), the maximal efficiency of Na+-H+ exchange (ηmax), the flow and force efficacies (?) of the above exchange, and the admissible range for the values of the molecular stoichiometry parameter (r). We found q ? 0.4; ηmax ? 5%; 0.36 ? r ? 2; ?JNa+ ? 1.3 · 105μmol · (RT unit)?1 at JNa = 1 μmolNa+ · (mgprotein)?1 · h?1; and ?ΔpNa ? 5 · 104 ΔpNa · (mg protein) · h · (RT unit)?1 at ΔpNa = 1 unit, for different preparations.  相似文献   

4.
Quantitative structure-activity relationships have been formulated for the inhibition of dihydrofolate reductase from bovine and rat liver by 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(3-X-phenyl)-s-triazines. The best correlations are: bovine, log1C = 1.05π3 ? 1.21 log (β·10π3 + 1) + 6.64, where log β = ?0.736 and r = 0.955 for 28 congeners; rat, log1C = 1.12π3 ? 1.34 log (β·10π3 + 1) + 6.29, where log β = ?0.978 and r = 0.977 for 18 congeners. In these expressons C is the molar concentration of inhibitor producing 50% inhibition of the enzyme, π3 is the octanol/water hydrophobic parameter for the 3-X-phenyl substituent, β is an iteratively derived coefficient, and r is the multiple least squares correlation coefficient. The implications of these bilinear models are discussed and compared with earlier work by B. R. Baker.  相似文献   

5.
A quantitative structure-activity relationship has been formulated for 53 alkyl phosphonates [R2OPO(CH3)SR3] inhibiting chymotrypsin: log ki = 1.47MROR2 + 0.34MRSR3 + 1.25σ31 ? 1.06I ? 3.43 log (β·10MROR2 + 1) ? 5.26; log β = ?3.85. In this so-called bilinear model, ki is the bimolecular rate constant (m?1 s?1), β is a disposable parameter evaluated by a computerized iterative procedure, MR is the molar refractivity of a substituent, σ31 is Taft's polar parameter, and I is an indicator variable for substituents containing a sulfonium group. The correlation coefficient for this equation is 0.985. This quantitative structure-activity relationship is compared with those previously formulated for the action of chymotrypsin on acylamino acid ester substrates.  相似文献   

6.
In hyaluronate solutions, the polysaccharide chains behave as random coils with minor but important deviations; (1) there is an extra degree of stiffening that could have its origin in inter-residue hydrogen bonding, (2) chain-chain contact induces the transient development of tertiary and higher levels of structure, which are enhanced by suppression of electrostatic repulsions on increasing ionic strength or lowering pH, melted out on heating, and inhibited by competition with short chain segments. The deviations are important because they account for viscoelastic properties that are believed to be relevant to the role in biological fluids and the intercellular matrix; thus the chain-chain interactions are favoured entropically by the inherent stiffness of isolated segments and contribute appreciably to the dynamic network structure.Viscoelastic and flow properties have been measured over a wide range of conditions using both oscillatory and steady shear techniques, and systematised in terms of recent rheological theory. The onset of intermolecular coupling occurs at an unusually low degree of coil overlap, and shows no systematic variation with pH, molecular weight or ionic strength. At higher concentrations, however, dynamic intermolecular interactions are enhanced by increasing ionic strength and suppression of molecular charge on lowering pH. Breakdown of the resulting transient intermolecular network on shearing is systematised in terms of the generalised shear parameter β = γ(η0 ? ηsolvent) × McRT. The large anomalous decrease in intrinsic viscosity under alkaline conditions that parallels similar effects seen in nuclear magnetic resonance relaxation, small-angle X-ray scattering and viscoelastic behaviour, is ascribed to an increase in chain flexibility, which may result in part from the ionisation of hydroxy groups involved in hydrogen bonding.  相似文献   

7.
The activity coefficient of sodium ions in the presence of acidic polysaccharides (alginates, pectins and κ-carrageenan) has been measured potentiometrically. The activity determined in limit-dilute solutions normally exceeded the values calculated from the Manning theory. The difference (ΔγNa+) was regarded as a measure of the chain flexibility. The change in ΔγNa+ when a polysaccharide is transferred from water to 8 m urea solution gave information about the contribution of hydrogen bonds to the stabilisation of the polysaccharide conformation in aqueous solutions. The function n is independent of polymer concentration at high concentration. n = 1 ? Na+exp)Na+NaCl) where γNa+exp is the experimentally determined value of the activity coefficient of the counterions and γNa+NaCl is the activity coefficient of sodium ions in a NaCl solution of the same equivalent concentration as the polymer solution.This suggests that the polysaccharide solution has a microheterogeneous structure. The results of the viscosity measurements suggest that there is agreement between equilibrium thermodynamic and rheological evaluation criteria for the structure of polymer solutions.  相似文献   

8.
The osmotic permeability coefficient (Pf) for water movement across Novikoff hepatoma cells was found to be 82 ± 3 (S.E.) · 10?5 cm · s?1 at 20°C. The corresponding diffusional permeability coefficient for 3HHO (Pd) was 97 ± 10 (S.E.) · 10?5 cm · s?1, therefore the ratio PfPd is close to unity. The apparent activation energy for water filtration was 10.4 ± 0.4 (S.E.) kcal · mol?1. This value is significantly greater than the activation energy for the self diffusion of water. The product of the hydraulic permeability coefficient and the viscosity coefficient for water was temperature-dependent. However, the product of the hydraulic permeability coefficient and the viscosity coefficient for membrane lipid did not vary with temperature. These data are interpreted as evidence for water movement across a lipid membrane barrier rather than through aqueous channels.  相似文献   

9.
The polyelectrolytic behaviour of high-methoxyl pectins (degree of esterification = 72·9) was studied in the presence of sucrose. Potentiometric measurements were carried out on the acidic form by titration with NaOH. Variations of the apparent dissociation constant pKa as a function of the degree of dissociation α were studied in salt-free solutions on a range of sucrose contents (0–60% w/v). Experimental plots could be described by Lifson-Katchalsky's (LK) treatment up to a 20% sucrose content. The intrinsic apparent dissociation constant pK0 value was 3·1 ± 0·1 in agreement with previous data on pectinic acid. Above the 20% sucrose content, the LK theory was not appropriate owing to aggregation phenomena of macromolecular chains. Viscometric measurement were performed on the sodium form (α = 1) and for three sucrose contents (0%, 40% and 60%). By carrying out isoionic dilutions, the effect of ionic strength (It) on the intrinsic viscosity [η] was studied. The same infinite limit value [η] was obtained for each sucrose content and linear variations of [η] as a function of It?12 allowed an estimate of the relative stiffness of the macromolecular chain. This stiffness was slightly increased by sucrose addition.From these data, it could be concluded that a high sucrose content did not significantly change the macromolecular size (for α = 1), as shown by viscometry. However, when α decreased, potentiometric investigations with sucrose showed a higher value of pKa and a down-curvature of pKa(α) which could be interpreted by assuming aggregation. These occurred at about 40% sucrose and above which was a much lower concentration than the gelling conditions (about 60%). Therefore aggregation phenomena could be present for relatively low sucrose contents if α < 0·5. It was postulated that interchain associations could occur progressively (from 40 to 60%) and involve aggregate formation with a critical size for gelation.  相似文献   

10.
Sunflower pectin has been fractionated on Sepharose 2B/Sepharose 4B. Molecular weights were measured within the eluate by light scattering and intrinsic viscosities to establish a universal calibration line, e.g. a plot of the logarithm of the product of the weight-average molecular weight and the intrinsic viscosity against the elution volume. It was found that the universal calibration line of pectin differs, if only modestly, from those of dextran and dextran sulphate. Intrinsic viscosities and molecular weights do not correlate in the region of high molecular weights concerning about 15% of the sample. In most instances with molecular weights below 100 000 a Mark-Houwink relation of [η] = 0·0851Mw0·68 is valid.  相似文献   

11.
Hemoglobin Cranston has an elongated β subunit owing to a frame shift mutation. Oxygen equilibrium measurements of stripped Hb Cranston3 at 20 °C in the absence of phosphate revealed a high affinity (P50 = 0·2 mm Hg at pH 7), non-co-operative hemoglobin variant with markedly reduced Böhr effect (logP50Δ pH7–8 = 0·2). The addition of inositol hexaphosphate resulted in an overall decrease in oxygen affinity (P50 = 0·7 mm Hg at pH 7), as well as an increase in co-operativity and Böhr effect (logP50Δ pH7–8 = 0·2). Rapid mixing and flash photolysis experiments reflected the equilibrium results. Over a pH range from 6 to 9 in the absence of phosphate, the rate of combination of carbon monoxide with Hb Cranston measured by a stopped-flow technique and following full or partial flash photolysis was extremely rapid (l′, l4, of ~ 6 × 106m?1s?1). In rapid kinetic experiments the addition of inositol hexaphosphate lowered the value of l′ to ~ 0·5 × 106m?1s?1 only after prior incubation with the deoxygenated protein. Inositol hexaphosphate had no effect on the rate of recombination of carbon monoxide following either full or partial flash photolysis. Overall oxygen dissociation and oxygen dissociation with carbon monoxide replacement, were measured and found to be slow (k, k4~ 11 s?1), consistent with a high affinity hemoglobin. Sedimentation equilibrium experiments revealed that Hb Cranston, at concentrations used in the functional studies, is somewhat less tetrameric than Hb A but nonetheless does not exist solely as a non-co-operative dimer. These kinetic and centrifugational findings in conjunction with X-ray diffraction evidence suggested that a high affinity tetramer of Hb Cranston exists which may equilibrate slowly with inositol hexaphosphate. Oxygen equilibrium measurements, ligand binding kinetics and X-ray diffraction studies on equivalent mixtures of Hb Cranston and Hb A revealed an interaction between these two hemoglobins in vitro that most probably exists in vivo. The presence of asymmetric hybrid molecules, α2βAβCranston, in the difference Fourier maps indicated that the hydrophobic tail of Hb Cranston is accommodated in the central cavity of the hybrid molecule between the two β chains and is relatively protected from the water environment, thus aiding in the stability of Hb Cranston in the red cell.  相似文献   

12.
The transport of sucrose by selected mutant and wild-type cells of Streptococcus mutans was studied using washed cocci harvested at appropriate phases of growth, incubated in the presence of fluoride and appropriately labelled substrates. The rapid sucrose uptake observed cannot be ascribed to possible extracellular formation of hexoses from sucrose and their subsequent transport, formation of intracellular glycogen-like polysaccharide, or binding of sucrose or extracellular glucans to the cocci. Rather, there are at least three discrete transport systems for sucrose, two of which are phosphoenolpyruvate-dependent phosphotransferases with relatively low apparent Km values and the other a non-phosphotransferase (non-PTS) third transport system (termed TTS) with a relatively high apparent Km. For strain 6715-13 mutant 33, the Km values are 6.25·10?5 M, 2.4·10?4 M, and 3.0·10?3 M, respectively; for strain NCTC-10449, the Km values are 7.1·10?5 M, 2.5·10?4 M and 3.3·10?3 M, respectively. The two lower Km systems could not be demonstrated in mid-log phase glucose-adapted cocci, a condition known to repress sucrose-specific phosphotransferase activity, but under these conditions the highest Km system persists. Also, a mutant devoid of sucrose-specific phosphotransferase activity fails to evidence the two high affinity (low apparent Km) systems, but still has the lowest affinity (highest Km) system. There was essentially no uptake at 4°C indicating these processes are energy dependent. The third transport system, whose nature is unknown, appears to function under conditions of sucrose abundance and rapid growth which are known to repress phosphoenolpyruvate-dependent sucrose-specific phosphotransferase activity in S. mutans. These multiple transport systems seem well-adapted to S. mutans which is faced with fluctuating supplies of sucrose in its natural habitat on the surfaces of teeth.  相似文献   

13.
14.
A method for calculating the rate constant (KA1A2) for the oxidation of the primary electron acceptor (A1) by the secondary one (A2) in the photosynthetic electron transport chain of purple bacteria is proposed.The method is based on the analysis of the dark recovery kinetics of reaction centre bacteriochlorophyll (P) following its oxidation by a short single laser pulse at a high oxidation-reduction potential of the medium. It is shown that in Ectothiorhodospira shaposhnikovii there is little difference in the value of KA1A2 obtained by this method from that measured by the method of Parson ((1969) Biochim. Biophys. Acta 189, 384–396), namely: (4.5±1.4) · 103s?1 and (6.9±1.2) · 103 s?1, respectively.The proposed method has also been used for the estimation of the KA1A2 value in chromatophores of Rhodospirillum rubrum deprived of constitutive electron donors which are capable of reducing P+ at a rate exceeding this for the transfer of electron from A1 to A2. The method of Parson cannot be used in this case. The value of KA1A2 has been found to be (2.7±0.8) · 103 s?1.The activation energies for the A1 to A2 electron transfer have also been determined. They are 12.4 kcal/mol and 9.9 kcal/mol for E. shaposhnikovii and R. rubrum, respectively.  相似文献   

15.
Hemoglobins of three baboons, Theropithecus gelada, Papio hamadryas- and Papio anubis, were purified and their oxygen equilibrium characteristics were studied. (a) Oxygen affinity, as expressed by P50, oxygen partial pressure for 50% oxygen binding, was in the order of gelada hemoglobin > anubis hemoglobin > hamadryas hemoglobin although the differences were small. (b) The presence of 2,3-diphosphoglycerate reduced their oxygen affinity in a similar manner. The effect on baboon hemoglobins was greater than that on human and Japanese monkey hemoglobins. (c) The intensity of the Bohr effect, as expressed by ?ΔlogP50ΔpH, at pH 7·4 agreed well with each other and the value was 0·62 in the presence of 2 mm diphosphoglycerate and 0·52 in its absence. These results indicate that phenotypic adaptation (acclimatory) may play an important role in the adaptation of gelada baboon to high altitudes.  相似文献   

16.
Two sonicated samples of schizophyllan in aqueous solution at temperatures from 20 to 160°C were investigated by viscometry. The temperature dependence of the viscosity coefficient η showed that schizophyllan in water undergoes an irreversible thermal transition at about 135°C. The values of (ln ηr)c (ηr is the relative viscosity and c is the polymer concentration (w/v)) at 25°C determined after preheating aqueous schizophyllan indicated that the major conformations of schizophyllan in water at 120 and 150°C are triple helix and single random coil, respectively. Thus, it was concluded that the change in η at about 135°C with an increase in temperature is due to the melting of triple helices to single chains. Schizophyllan denatured to single chains at about 150°C did not restore the intact triple helix, but formed aggregates, when the solution was cooled to 25°C. It was also found that the aggregates form a gel when c is higher than a certain value.  相似文献   

17.
Presteady-state kinetic studies of α-chymotrypsin-catalyzed hydrolysis of a specific chromophoric substrate, N-(2-furyl)acryloyl-l-tryptophan methyl ester, were performed by using a stopped-flow apparatus both under [E]0 ? [S]0 and [S]0 ? [E]0 conditions in the pH range of 5–9, at 25 °C. The results were accounted for in terms of the three-step mechanism involving enzyme-substrate complex (E · S) and acylated enzyme (ES′); no other intermediate was observed. This substrate was shown to react very efficiently, i.e., the maximum of the second-order acylation rate constant (k2Ks)max = 4.2 × 107 M?1 s?1. The limiting values of Ks′ (dissociation constant of E · S), K2 (acylation rate) and k3 (deacylation rate) were obtained from the pH profiles of these parameters to be 0.6 ± 0.2 × 10?5 m, 360 ± 15 s?1 and 29.3 ± 0.8 s?1, respectively. Likewise small values were observed for Ki of N-(2-furyl)-acryloyl-l-tryptophan and N-(2-furyl)acryloyl-d-tryptophan methyl ester and Km of N-(2-furyl)acryloyl-l-tryptophan amide. The strong affinities observed may be due to intense interaction of β-(2-furyl)acryloyl group with a secondary binding site of the enzyme. This interaction led to a k?1k2 value lower than unity, i.e., the rate-limiting process of the acylation was the association, even with the relatively low k2 value of this methyl ester substrate, compared to those proposed for labile p-nitrophenyl esters.  相似文献   

18.
The changes in polymer-solvent interactions that occur when native calf thymus DNA is dialyzed against Na2SO4 solutions of a given ionic strength and buffer concentration but of varying concentrations in methylmercuric hydroxide have been investigated with the help of solution density measurements at 25 °C and pH 6.8–7.0. From measurements executed under equilibrium dialysis conditions at the three salt levels 5 mm, 0.05 m, and 0.5 m Na2SO4 (m refers to molality) and in the presence of 5 mm cacodylic acid buffer, the density increments (???c2)μ0 for native calf thymus DNA were determined as a function of CH3HgOH concentration. (???c2)μ0 was found not to vary with organomercurial concentration, irrespective of the concentration of supporting electrolyte, until a certain CH3HgOH concentration level has been reached, viz., pM1 ? 3.5 (pM1 = ?log mCH3HgOH), beyond which (???c2)μ0 increases strongly with increasing concentration of CH3HgOH. As is shown by optical melting, (???c2)μ0 becomes a function of organomercurial concentration the moment DNA undergoes denaturation brought about by the complexing of CH3HgOH with the various N-binding sites of the base residues in the DNA double helix.Polymer-solvent interactions, expressed in terms of preferential water interactions (“net hydration”) and preferential salt interactions (“salt solvation”), were derived from the (???c2)μ0 data in combination with data obtained on the preferential interaction of CH3HgOH with denatured DNA and data on the partial specific volumes of all major solution components, gathered from density measurements on solutions with fixed concentrations of diffusible components. Evidence is presented which shows that denaturation in general decreases the net hydration while salt becomes preferentially associated with the polyelectrolyte. This process is further amplified by the interaction of CH3HgOH with denatured DNA: Methylmercurated DNA alters the redistribution of diffusible components at dialysis equilibrium to such an extent that in a formal sense large amounts of water are rejected from the immediate vicinity of the polymer. The molecular implications of these findings are explored. The results are further discussed in the light of previous findings where the methylmercury-induced denaturation of DNA had been studied with the help of buoyant density measurements in a Cs2SO4 density gradient and by velocity-sedimentation in a variety of sulfate media.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号