首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular characteristics for pullulan, a polysaccharide produced by a fungus Aureobasidium pullulans, were measured by light scattering, viscometry, and gel-permeation chromatography. From the experimental data the Mark-Houwink-Sakurada viscosity equation in water at 25°C was determined for samples having the molecular weight M ranging from 48 × 103 to 2.18 × 106 g mol?1 as [η] = (1.91 ± 0.02) × 10?2Mw0.67±0.01 (in cm3 g?1); and as molecular weight decreased, the slope of the viscosity equation decreased, although the molecular weight values below 30 × 103 g mol?1 evaluated by gel-permeation chromatography were somewhat unreliable. The unperturbed dimensions 〈R201/2 of pullulan were estimated by determining the expansion factor αs, from the theoretical combination of theories for the interpenetration function Ψ and those for αs. The 〈R20/M value estimated from this procedure in 6.7 × 10?17 cm2 mol g?1. We concluded that the polysaccharide chain that is linked by the α-1,6-glucosidic linkage behaves like a flexible chain in aqueous solution.  相似文献   

2.
Sonicated calf thymus DNA was fractionated by rate zonal centrifugation into seven fractions with weight average molecular weights ranging from 0.28 to 1.3 × 106 daltons, as determined by sedimentation equilibrium and light scattering measurements (the latter are described in the accompanying paper). Electron microscopy and sedimentation equilibrium analysis revealed these fractions to be narrowly disperse with Mw/Mn ratios averaging about 1.06. Intrinsic viscosities and sedimentation rates were measured and found to vary linearly with molecular weight in double-logarithmic plots in fair agreement with previously published functions relating these parameters for low molecular weight DNA. The average value for β from the Mandelkern— Flory equation was 2.59 × l06, also agreeing with reported estimates of this parameter for short DNA. These data will be used in the second paper of this series to calculate the persistence length of the DNA fragments in each of the seven fractions by light scattering and hydrodynamic theories for the Kratky—Porod worm-like coil.  相似文献   

3.
A water soluble acidic heteropolysaccharide named WAF was isolated from Auricularia auricula‐judae by extracting with 0.9% NaCl solution. By using gas chromatography, gas chromatography‐mass spectrometry, and NMR, its chemical structure was determined to be composed of a backbone of α‐(1→3)‐linked D ‐mannopyranose residues with pendant side groups of β‐D ‐xylose, β‐D ‐glucose, or β‐D ‐glucuronic acid at position O6 or O2. Six fractions prepared from WAF with a weight‐average molecular mass (Mw) between 5.9 × 104 and 64.7 × 104 g/mol were characterized with laser light scattering and viscometry in 0.1M NaCl at 25°C. The dependence of intrinsic viscosity ([η]) and radius of gyration (Rg) on Mw for this polysaccharide were found to be [η] = 1.79 × 10?3Mw0.96 cm3 g?1 and Rg = 6.99 × 10?2 Mw0.54 nm. The molar mass per unit contour length (ML) and the persistence length (Lp) were estimated to be 1124 nm?1 and 11 nm, respectively. The WAF exhibited a semirigid character typical of linear polysaccharides. Molecular modeling was then used to predict the ordered and disordered states of WAF; the simulated ML and Lp were however much smaller than the experimental values. Taken altogether, the results suggested that WAF formed a duplex in solution. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 217–227, 2011.  相似文献   

4.
A procedure to determine the absolute weight-average molecular weight (Mw) and molecular weight distribution (MWD) of guar by aqueous size exclusion chromatography coupled with low angle laser scattering is described. It is shown that for a rigorously purified sample of guar solution the values for Mw and MWD are 2·2×106 and 1·9 respectively. The effect of sample preparation and purification on these molecular parameters are discussed. Limitations and challenges in the aqueous size exclusion chromatography of complex water soluble polymers such as guar are also explored.  相似文献   

5.
The myosin molecule was extracted from the smooth muscle parts of horse esophagus and purified by ammonium sulfate fractionation. The schlieren pattern of the sedimentation velocity run showed a very sharp single peak of.5.9. S (s20,w). Molecular weight of the protein was measured by means of the Archibald and sedimentation equilibrium methods, both in 0.5M KCI buffered by 1/150 M phosphate at pH 7.5 and at 5°C. The values obtained were 6.25 × 105 and 5.81 × 105respectively, for the two methods. The second virial coefficients were 1.1 × 104 and 1.2 × 10?4 ml/g. Denatured smooth muscle myosin was prepared in a solution of 5M guanidine HC1 containing 0.4 M KC1 and 0.2 M β-mercaptoet hanol buffered at pH 8.0. The weight-average molecular weight of the denatured smooth muscle myosin was 2.24 × 105 and the second virial coefficient was 7.6 × 10?4 ml/g. The values described above are in good agreement with those reported for rabbit skeletal myosin with ammonium sulfate fractionation. The molecular dimension of the molecule is estimated as the value for an axial ratio of 100, assuming a rigid rod molecular model for this molecule, both the thermodynamical and hydrodynamical treatment being in a good agreement with this estimation.  相似文献   

6.
Native calf thymus DNA was sheared by sonication in a viscous solvent to the molecular-weight range from 3 × 104 to 3 × 105 daltons, and fractionated by gel chromatography. Number and weight average molecular weights (M?n and M?w) were determined for individual fractions by electron microscopy; the ratio M?w/M?n for the peak fraction is approximately 1.1. Sedimentation coefficients (s020,w) of these fractionated samples show an approximately linear dependence on the logarithm of the molecular weight M?w. This behavior is that expected for rodlike molecules, and is in quantitative agreement with the theory of Yamakawa and Fujii [(1973) Macromolecules 6 , 407–415] for the sedimentation coefficient of a wormlike chain with a persistence length of 625 Å, a diameter of 25 Å, and a mass per unit length of 195 daltons/Å. It appears that the wormlike coil model, without excluded volume, can represent the sedimentation behavior of DNA over the entire conformational range from rigid rod to flexible coil, using the above parameters. Equilibrium melting curves were determined for various fractions in aqueous 2.4 M tetraethylammonium bromide. A substantial broadening of the transition and decrease of the melting temperature were observed with decreasing molecular weight. Empirical expressions have been obtained relating both the transition temperature and breadth in this solvent to molecular weight.  相似文献   

7.
Light scattering has been used to investigate the structure of human tracheobronchial mucin glycoproteins (HTBM) from the sputum of cystic fibrosis patients. The specimen was extracted using 6M guanidinium hydrochloride solution and fractionated by gel exclusion chromatography on Sephacryl S-1000. The fractionated HTBM was purified by density gradient ultracentrifugation. Purity of the resulting material was confirmed by SDS polyacrylamide gel electrophoresis and uv spectroscopy. Light scattering measurements on the fractionated mucins yield weight-average molecular weights Mw, and z-average radii of gyration Rg, z. The native cystic fibrosis HTBM consisted of a high molecular weight fraction with Mw = 9.3 × 106 daltons and a lower molecular weight fraction contanining partly degraded mucins. After reduction and carboxymethylation of the high molecular weight native fraction, the resulting material was separated into three pools with Mw values of 5.1 × 106, 1.6 × 106, and 400,000. The derived molecular weights for the protein cores Mp,w, and the experimental radii of gyration are found to be consistent with the Mp,wRg relation established previously for submaxillary, cervical, and gastric mucins. These results imply that HTBM has the same extended-coil conformation reported for other mucins and has a molecular structure consisting of subunits, linked into linear chains via covalent (disulfide) bonds.  相似文献   

8.
Heparin fractions of different molecular weights and anticoagulant activities were prepared by chromatography on protamine-Sepharose, and the association constants and stoichiometry for binding to antithrombin III were determined by measurement of enhancement of tryptophan fluorescence. A 7,900 molecular weight heparin preparation bound to antithrombin III with a stoichiometry of close to 2:1, whereas 14,300 and 21,600 molecular weight fractions bound at approximately 1:1 with the protein. Apparent association constants were 0.66 × 106 M?1 for the low molecular weight preparation and 2.89 × 106 M?1 for the high molecular weight material. Maximal fluorescence enhancement was greater with the higher molecular weight heparin. These results suggest a model of heparin-antithrombin III binding in which two sites on antithrombin III can accommodate one large heparin molecule with high affinity or two smaller molecules with low affinity.  相似文献   

9.
A water‐soluble α‐(1→4)‐D ‐glucan heteropolysaccharide with 37% degree of branch extracted by base from Rhizoma Panacis Japonici, coded as RPS3, was fractionated into six fractions by the method of nonsolvent addition. Their weight‐average molecular mass (Mw), polydispersity index (Mw/Mn), and radius of gyration (〈s2z1/2) were determined with laser light scattering (LLS) and size exclusion chromatography combined with LLS. The structure of the fraction was determined by methylation analyses and 13C NMR. The dependences of intrinsic viscosity ([η]) and 〈s2z1/2 on Mw were established as [η] = 0.71 Mw0.27 ± 0.01 (cm3/g) and 〈s2z1/2 = 1.53 Mw0.27 ± 0.02 (nm) in the Mw range from 5.62 × 104 to 3.05 × 106 (g/mol) for RPS3 in 0.15M NaCl aqueous solution at 25°C. On the basis of the current theory of the polymer solution, the fractal dimension (df), unperturbed chain dimension (A), and characteristic ratio (C) were calculated to be 3.0, 1.48 Å, and 15.1, respectively. The results revealed that the RPS3 chains existed as spherical conformation in the aqueous solution. Transmission electron microscope further provided the evidence of the sphere shape of the RPS3 and its fractionated molecules in water. In vitro cytotoxicity assay indicated that the fractions could inhibit the tumor cells and showed no harm to normal cells at low dose. The bioactivity was relative with molecular mass of the samples. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 383–390, 2010. This article was originally published online as an acceptedpreprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office atbiopolymers@wiley.com  相似文献   

10.
Four fractions of a water-insoluble α-(1→3)-D-glucan GL extracted from fruiting bodies of Ganoderma lucidum were dissolved in 0.25 M LiCl/DMSO, and then reacted with sulfur trioxide-pyridine complex at 80°C to synthesize a series of water-soluble sulfated derivatives S-GL. The degree of substitution of DS was measured by using IR infrared spectra, elemental analysis, and 13C NMR to be 1.2-1.6 in the non-selective sulfation. Weight-average molecular weight Mw and intrinsic viscosity [η] of the sulfated derivatives S-GL were measured by multi-angle laser light scattering and viscometry. The Mw value (2.4×104) of sulfated glucan S-GL-1 was much lower than that (44.5×104) of original α-(1→3)-D-glucan GL-1. The Mark-Houwink equation and average value of characteristic ratio C for the S-GL in 0.2 M NaCl aqueous solution at 25°C were found to be: [η]=1.32×10-3Mw1.06 (cm3 g-1) and 16, respectively, in the Mw range from 1.1×104 to 2.4×104. It indicated that the sulfated derivatives of the α-(1→3)-D-glucan in the aqueous solution behave as an expanded chain, owing to intramolecular hydrogen bonding or interaction between charge groups. Interestingly, two sulfated derivatives synthesized from the α-(1→3)-D-glucan and curdlan, a β-(1→3)-D-glucan, all had significant higher antitumor activity against Ehrlich ascites carcinoma (EAC) than the originals. The effect of expanded chains of the sulfated glucan in the aqueous solution on the improvement of the antitumor activity could not be negligible.  相似文献   

11.
Quasi-elastic light scattering measurements have been carried out for (i) human and bovine fibrinogens under identical conditions, (ii) for a large number of fractionated and unfractionated fibrin intermediates at various pH (10.0 to 10.5), (iii) for three intermediates polymerized at pH 7.4 and stabilized at pH 10.5 and (iv) for a gelled clot. Human and bovine fibrinogen proved to have noticeably different diffusion coefficients (same Mw) indicating a longer rod on the average for the human than for the bovine fibrinogen. This finding is in agreement with measurements of the integrated light scattering from these fibrinogens where a mass per unit length MwLw of 3860 and 5460 g mol?1 nm?1 were found, respectively. No angular dependence of the apparent diffusion coefficient Dapp = Γ/q2 was found for the monomers and the fibrin clot; all other samples from (ii) showed an angular dependence if Mw ? 1.76 × 106, were Γ is the first cumulant of the time correlation function and q = (4π/λ) sin?/2. A plot of Dapp/D versus q2〈S2〉 gave curves which, for the low molecular weight samples, correspond to ellipsoids. For the longer fibrils a dynamic behaviour in between that of a long rigid rod and random coil was found and indicates a certain flexibility of the fibrils. The diffusion coefficients from (ii) decay with increasing molecular weight and can be described by Perrin's theory for ellipsoids when M2 < 2 × 106 while a beter agreement with Kirkwood's theory of long rods is obtained for the longer fibrils. The hydrodynamic behaviour of (iii) indicates short and unbranched rods of considerable thickness.  相似文献   

12.
Laser light-scattering has been used to investigate the size of native proteoglycan aggregates (PGA-aA1) from day-8 chick limb-bud chondrocyte cultures isolated under associative extraction and purification conditions in 0.4M guanidinium chloride (GdnHCl) solution. Dynamic light-scattering measurements yielded a hydrodynamic radius, Rs, of 244 ± 10 nm for PGA-aA1 in 0.4M GdnHCl, and a weight-average molecular weight (M w) of 150 ± 50 × 106 was obtained from a Zimm plot. Disaggregation in 4.0M GdnHCl aqueous solution yielded proteoglycan subunits (PGS) with Rs = 39 ± 2 nm, M w = 1.6 ± 0.3 × 106, which reassembled in 0.4M GdnHCl to form “reconstituted native” aggregates (PGA-raA1) with Rs = 121 ± 6 nm, M w = 17 ± 3 × 106. A second specimen of PGA-aA1 had Rs = 192 ± 10 nm, M w = 100 ± 10 × 106. The latter value was estimated from an empirical relationship between M w and Rs. After dissociation, this specimen reassembled to form PGA-raA1 with Rs = 85 ± 5 nm, M w = 12 ± 1 × 106. These data are compared with those for a specimen of reconstituted aggregate (PGA-A1) that had been extracted under dissociative conditions and then reaggregated by dialysis to 0.4M GdnHCl aqueous solution, for which Rs = 138 ± 9 nm, M w = 45 ± 8 × 106. From these values, we have calculated the weight-average number of subunits per aggregate Nw: 111 for PGA-aA1 and 12 for raA1 (70 and 7 for the second PGA-aA1 and PGA-raA1 specimen, respectively) as compared to 32 for PGA-A1. The numbers of subunits per aggregate were also determined from electron micrographs of spread specimens. The latter results show the same trends as those obtained by light scattering, but lead in each case to lower numbers of subunits per aggregate. These data demonstrate conclusively that PGA samples exhibit a higher degree of aggregation in solution than visualized in typical electron microscopy (EM) preparations, probably due to disaggregation during EM specimen preparation. Since Nw determined both by light scattering (LS) and by EM are larger for native versus reconstituted aggregate samples, our data point to a more compact aggregation of subunits along the hyaluronic acid (HA) chains in the former.  相似文献   

13.
A water-insoluble (1→3)-β-d-glucan isolated from the fresh fruiting bodies of Russula virescens was sulfated using sulfur trioxide-pyridine complex as reagent in dimethyl sulfoxide. Depending on the reaction conditions, the products showed different degrees of sulfation (DS) ranging from 0.17 to 1.17 and different weight average molecular weights (Mws) ranging from 2.5 × 104 to 1.2 × 105 Da. Moreover, the antitumor activities of the five sulfated derivatives against Sarcoma 180 tumor cell were tested both in vitro and in vivo. The results indicated that the native (1→3)-β-d-glucan did not show antitumor activity, while the sulfated derivatives exhibited enhanced antitumor activities. This study demonstrated that DS and Mw could influence the antitumor activities of the sulfated derivatives.  相似文献   

14.
Conformation of mucous glycoproteins in aqueous solvents   总被引:5,自引:0,他引:5  
Light-scattering techniques have been used to measure the z-average radius of gyration Rg z-average translational diffusion coefficient Dt and weight–average molecular weight Mw of porcine submaxillary mucin (PSM) in solution. PSM isolated at low shear in the presence of protease inhibitors has a Mw about twice as large as a sample prepared without these precautions. The former sample has a Mw of 17 × 106 in 0.1M NaCl, which decreases to 8 × 106 in 6M guanidine hydrochloride (GdnHCl) and then to 2 × 106 on addition of 0.1M mercaptoethanol to the 6M GdnHCl solution. The Rg or D values obtained for PSM in this work superimpose with those of other authors for different mucin glycoproteins, leading to linear log–log relationships to the molecular weight of the protein core. Comparison of these results with those in the literature for denatured proteins suggest that mucins are linear random coils in which the protein core is stiffened by the presence of the oligosaccharide side chains. The length of the oligosaccharides and the nature of the solvent have little effect on the extension of the protein core. This suggests that the stiffness of the protein core is maintained by steric repulsion of the residues at the beginning of the oligosaccharide chains.  相似文献   

15.
The molecular weight (Mw) and molecular-weight distribution of the extracellular polysaccharide xanthan, synthesized by the bacterium Xanthomonas campestris, have been determined from measurements of the sedimentation coefficient, s20,itw, and the intrinsic viscosity, [η], with the aid of the Mandelkern-Flory-Scheraga equation. The sedimentation coefficient of native xanthan was measured by band-sedimentation of polysaccharide molecules that had been tagged with a fluorescent group; the fluorescent label permits the use of very low concentrations of polymer. A typical, native-xanthan sample has Mw  15 x 106; the polydispersity index Mw/Mn is 2.8. Measurement of s and [η] for a homologous series of five xanthan samples having Mw ranging from 0.40 to 15 X 106, prepared by sonication of native xanthan, shows that, for low molecular weight, the intrinsic viscosity [η] obeys the relation [η]  KM1.35. The high value of the Staudinger exponent in this relation demonstrates that xanthan is a rod-like molecule having stiffness similar to that of native DNA, which has a Staudinger exponent of 1.32. Moreover, the absolute values of [η] suggest that xanthan has a mass per unit length of about 1900 daltons/nm, which is twice the mass per unit length of the single-stranded structure proposed from X-ray work.  相似文献   

16.
Four species of brown seaweeds, namely Sargassum baccularia, Sargassum binderi, Sargassum siliquosum and Turbinaria conoides, harvested from Port Dickson, Negeri Sembilan, Malaysia were analysed for ash content, alginate yield and alginate properties. Seaweeds calcined at 450°C were found to have low amount of non-combustible residue as these were not contaminated by calcareous animals. Alginate was extracted from these seaweeds by two methods: hot and cold. In the hot method, the storing time was 3 h and the processing temperature was 50°C, whilst in the cold method, the sample was stored overnight at room temperature. Higher yield of alginate was obtained by the hot method compared to the cold method, but alginate extracted by the cold method gave higher molecular weight. In the hot method, 49.9% of alginate was extracted from S. siliquosum, followed by T. conoides (41.4%), S. binderi (38.9%) and S. baccularia (26.7%). Alginate extracted from T. conoides has an average molecular weight, M w, of 8.06 × 105 g mol−1, whereas alginate from S. siliquosum was the lowest in M w (4.81 × 105 g mol−1) when the extraction was done at room temperature. Alginate extracted from S. baccularia was found to be very heat-sensitive. Its M w has dropped more than 83%, from 7.52 × 105 to 1.23 × 105 g mol−1, when the extraction temperature was raised. The effect of heat on the extent of depolymerisation of the alginate molecule of the other three brown seaweed species was less significant, with decrease in molecular weight ranging between 13% and 16%.  相似文献   

17.
The molecular weight distribution of sinistrin (Inutest ®, Laevosan Ges., Linz, Austria), determined by analytical gel-permeation chromatography, using narrow fractions (MwMn< 1.07) obtained by preparative gel-permeation chromatography, covered the range 800–16,000 with Mn  2,500 and Mw  3,500. From viscosity measurements on dilute, aqueous solutions, the relation [η]  0.28 X M0.3 was obtained, indicating a branched molecular structure; the largest molecules can be described by a sphere with r  23 Å. Comparison of the content of glucose and reducing sugars in the fractions with the molecular weight determined by vapour-pressure osmometry indicated that a glucose end-group is present in the majority of the molecules. The percentage of glucose end-groups is higher in the fractions of lower molecular weight. From this finding, speculations on the biosynthesis of sinistrin are made. The specific optical rotation of sinistrin fractions decreases linearly with 1/Mn.  相似文献   

18.
In the preceding paper are described the isolation and physical characterization of seven narrowly disperse fractions of calf thymus DNA in the molecular weight range 0.3 to 1.3 × 106 daltons. Herein, we have determined by light scattering the molecular weights and root mean square radii of these fractions in a solvent comprising 0.2 M NaCl, 2 mM EDTA, 2m MNa-PO4, pH 7. Measurements were made in a modified Wippler—Scheibling photometer to a 20° lower limit of scattering angle on solutions rendered virtually dust-free by procedures described. The optical aniso tropics of the DNA fractions were measured permitting the experimental molecular weights and root mean square radii to be corrected to their true values. From these values, with appropriate polydispersity corrections, we calculate a Kratky—Porod persistence length, a, of 54.0 ± 5.6 nm which is invariant over the molecular weight range examined. From the sedimentation coefficients (preceding paper) and the theory of Yamakawa and Fujii, we calculate a to be 66 nm, a value found to apply equally well to several DNA samples of various origins whose sedimentation rates are known in the molecular weight range from about 4 × 104 to 108 daltons. Similarly, from the intrinsic viscosities and the theory of Yamakawa and Fujii, we calculate a to be 59 nm, which again adequately applies to a number of DNA samples whose viscosities have been measured by other workers in the molecular weight range 3 × 105 to 108 daltons. The Flory—Mandelkern parameter, β, was found to vary with molecular weight in the manner predicted by the theory of Yamakawa and Fujii. The average value of a from the three sets of measurements is 60 ± 6 nm, which we believe applies to double-stranded DNA molecules, independent of chain length, over the whole range of molecular weights for which reliable data exist.  相似文献   

19.
Wang X  Zhang X  Xu X  Zhang L 《Biopolymers》2012,97(10):840-845
Lentinan (β‐(1→3)‐D ‐glucan) was found to be successfully fractionated by the mixture of dimethyl sulfoxide (DMSO) and lithium chloride (LiCl) as a solvent and acetone as a precipitant. Light scattering and viscosity measurements were made on solutions of fractionated samples in pure DMSO and 0.2M LiCl/DMSO in the range of the molecular weight Mw from 21.7 × 104 to 84.7 × 104. The values of Mw in both solvents were almost the same, but the remarkable difference between the values of intrinsic viscosity [η] demonstrated that the LiCl/DMSO solvent greatly enhances the stiffness of the lentinan backbone. The observed intrinsic viscosity [η] was analyzed by the Yoshizaki‐Nitta‐Yamakawa theory of a worm‐like chain, and the persistence length q and molecular weight per unit contour length ML were determined roughly as 6.0 nm and 890 g nm?1 in 0.2M LiCl/DMSO, and 5.1 nm and 890 g nm?1 in pure DMSO, respectively. This slightly larger persistent length in 0.2M LiCl/DMSO also confirmed the higher stiffness of lentinan enhanced by the LiCl/DMSO solvent. The enhancement of the chain stiffness was ascribed to the electrostatic repulsion because of the hydrogen bonding of the hydroxyl protons of lentinan with the chloride ion, which is in turn associated with the Li+(DMSO)n macrocation complex. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 840–845, 2012.  相似文献   

20.
Two different peptides have been purified from human liver, similar to those previously reported (Schoenenberger, G.A., and Wacker, W.E.C. (1966) Biochemistry 5, 1375–1379) to be present in human urine, which may serve as metabolic regulators of lactate dehydrogenase (EC 1.1 1.27) isoenzymes (LDH-M4 = muscle type; LDH-H4 = heart type). By trichloroacetic acid precipitation, ultrafiltration, Sephadex G-25 and Bio-Gel P-2 columns, affinity chromatography on immobilized LDH-isozymes and HPLC two peptides which differed with respect to molecular weight, retention on the affinity columns and amino acid composition were isolated. No effect was observed when native, tetrameric lactate dehydrogenase was incubated with these peptides. However, when lactate dehydrogenase was dissociated to monomers at low pH and allowed to reassociate by adjusting the pH to 7.5 complete inhibition of the reactivation occurred when the inhibitors were incubated together with respective reassociating monomeric isozymes. The two peptides showed no cross-specificity, i.e. each peptide exhibited inhibitory activity only on one of the two isozymes LDH-M4 or LDH-H4. From the amino acid analyses, gel-filtration and PAGE + SDS, molecular weight of 1800 for the M4 and ≈2700 for the H4 inhibitor were calculated. An apparent Ki of ≈3 × 10?5 mM for the H4 and ≈7 × 10?5 mM for the H4 inhibitor was estimated. The interaction of the inhibitors with the enzyme system showed strong cooperativity with Hill coefficients of 2.9 (LDH-M4-specific) and 2.4 (LDH-H4-specific). Mathematical modelling of the reassociation and reactivation of lactate dehydrogenase and its specific inhibition by the peptides led to the conclusion that the peptides reacts with monomers, dimers or a transition state during the tetramerisation process. k1 for the dimerisation step of M4 = 2.0 × 105 M?1 · s?1 and of H4 = 8.2 × 104 M?1 · s?1; k2 for the tetramerisation step of M4 = 2.8 × 105 M?1 · s?1 and of H4 = 1.2 × 105 · M?1 · s?1, were calculated, the second step still being the faster one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号