首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the enzyme (Na+ + K+)-ATPase has been extensively characterized, few studies of its major role, ATP-dependent Na+ pumping, have been reported in vesicular preparations. This is because it is extremely difficult to determine fluxes of isotopic Na+ accurately in most isolated membrane systems. Using highly purified cardiac sarcolemmal vesicles, we have developed a new technique to detect relative rates of ATP-dependent Na+ transport sensitively. This technique relies on the presence of Na+-Ca2+ exchange and ATP-driven Na+ pump activities on the same inside-out sarcolemmal vesicles. ATP-dependent Na+ uptake is monitored by a subsequent Nai+-dependent Ca2+ uptake reaction (Na+-Ca2+ exchange) using 45Ca2+. We present evidence that the Na+-Ca2+ exchange will be linearly related to the prior active Na+ uptake. Although this method is indirect, it is much more sensitive than a direct approach using Na+ isotopes. Applying this method, we measure cardiac ATP-dependent Na+ transport and (Na+ + K+)-ATPase activities in identical ionic media. We find that the (Na+ + K+)-ATPase and the Na+ pump have identical dependencies on both Na+ and ATP. The dependence on [Na+] is sigmoidal, with a Hill coefficient of 2.8. Na+ pumping is half-maximal at [Na+] = 9 mM. The Km for ATP is 0.21 mM. ADP competitively inhibits ATP-dependent Na+ pumping. This approach should allow other new investigations on on ATP-dependent Na+ transport across cardiac sarcolemma.  相似文献   

2.
Plasma membranes of rabbit thymus lymphocytes accumulated Ca2+ when a Na+ gradient (intravesicular > extravesicular) was formed across the membranes. Dissipation of the Na+ gradient by the addition of Na+ to the external medium decreased Ca2+ uptake. Ca2+ preloaded into the lymphocytes was extruded when Na+ was added to the external medium. The Ca2+ uptake decreased at acidic pH but increased at alkaline pH (above 8) and the activity was saturable for Ca2+ (apparent Km for Ca2+ was 61 μM and apparent Vmax was 11.5 nmol/mg protein per min). Na+-dependent uptake of Ca2+ was inhibited by tetracaine and verapamil, and partially inhibited by La3+. The uptake was not influenced by orthovanadate.  相似文献   

3.
Human red cells (RBC) respond to moderate Ca2+-loading with increased ATP consumption and stimulation of glycolytic flux. 1. Ca2+-induced metabolite transitions at different pH-values showed a clearcut crossover at the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase (GAPDHPGK)-steps. 2. The behavior of glycolytic metabolites in iodoacetate-treated, GAPDH-inhibited, and in phosphoenolpyruvate-loaded RBC ruled out activation of hexokinase, phosphofructokinase and pyruvate kinase. 3. Glycolytic stimulation is linked to Ca2+-extrusion rate and not to the loaded Ca2+. 4. Adenine nucleotides and inorganic phosphate could be ruled out as the connecting link between glycolytic activation and Ca2+-extrusion. 5. NADH oxidation was observed at all pH-values studied when the RBC were incubated either at low or high extracellular potassium. NADH is product-inhibitor of GAPDH. The concentration (34 μM) of thermodynamically free NADH calculated from the GAPDHPGK equilibrium reactants was in the inhibitory range: any decrease in NADH is therefore followed by activation of GAPDH. NADNADH ratio seems to be the connecting link between ATP consuming ion transport and ATP generation by glycolysis.  相似文献   

4.
Human red cells (RBC) were loaded with moderate amounts of Ca2+ by the ionophore A23187. Quantitative relationships between Ca2+-loading, ATP consumption and glycolytic flux were established. 1. Ca2+-loading is accompanied by ATP depletion. A maximum ATP consumption of approximately 10 mmoles/l RBC/h was estimated. 2. There is a positive correlation between lactate formation and Ca2+-loading. This is linear from 1.4 to about 4 mmoles lactate/l RBC/h. 3. Ca2+-induced glycolytic stimulation seems not to be mediated by adenine nucleotides. A wide range of energy charges and very different adenine nucleotide patterns were associated with the same stimulation of lactate production. 4. The turnover of the (Ca2+-Mg2+)-ATPase and its share in the Ca2+-stimulated ATP consuming processes were estimated with inhibitors. 1 mM La3+ inhibited both Ca2+-outward transport and ATP consumption by 80%. The remaining 20% of the ATP consumption was accounted for by the (Na+-K+)-ATPase. 5. A Ca2+ extrusion to ATP consumption molar ratio of 2:1 was found. However, when ATP consumption was due to the breakdown of previously accumulated glycolytic intermediates, the ratio dropped to about 1.  相似文献   

5.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907–5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl?. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

6.
Beef brain microsomes bound approximately 180–220 pmoles of [3H]ouabain per mg of protein in the presence of either MgCl2 and inorganic phosphate or ATP, MgCl2 and NaCl. The ouabain-binding capacity and the ouabain-membrane complex were more stable than the (Na+,K+)-ATPase activity to treatment with agents known to affect the membrane integrity, such as, NaClO4, sodium dodecyl sulfate, p-chloromercuribenzoate, urea. ultrasonication, heating, pH and phospholinase C.The presence of binding sites that were normally inaccessible to ouabain in brain microsomes was demonstrated. These sites appeared after disruption of microsomes with 2 M NaClO4 as evidenced by increased binding of [3H]ouabain. These sites may be buried during the subcellular fractionation procedure and could be accessible in the intact cell.  相似文献   

7.
The 31 P NMR chemical shift of β-P of adenosine triphosphate (ATP) undergoes a substantial change (2̃–3 ppm) upon chelation of divalent ions such as Mg2+ or Ca2+. In the presence of nonsaturating amounts of Mg2+ or Ca2+, the lineshape of this resonance depends on the characteristic association and dissociation rates of these metal-ATP complexes. A procedure for computer simulation of this lineshape is outlined. A comparison of computer-simulated lineshapes with the experimental lineshapes obtained at 121 MHz was used to determine the following dissociation rate of Mg2+ and Ca2+ from their ATP complexes at 20°C and pH 8.0: Ca2+, > 3 × 105 s?1 (Hepes buffer); Mg2+, 1200 s-1 (no buffer), 1000 s-1 (Tris buffer) and 2100 s?1 (Hepes buffer). The limits of error are ± 10% in these values. For the Mg2+ complexes, the rates were determined as a function of temperature to obtain activation energies (with a maximum deviation of 10% in the least-squares fit): 8.1 Kcalmole (no buffer and Hepes buffer) and 6.8 kcalmole (Tris buffer). Lineshapes of the β-Presonance simulated as a function of Mg2+ concentration, using 2100 s?1 for the dissociation rate, are also presented. The computer simulation of lineshapes offers a reliable and straightforward method for the determination of exchange rates of diamagnetic cations from their ATP complexes, under a variety of sample conditions.  相似文献   

8.
Calmodulin-depleted isotonic erythrocyte ghosts contain 200 ng residual calmodulin/mg protein which is not removed by extensive washings at pCa2+ > 7. Specific activity and Ca2+-affinity of the (Ca2+ + Mg2+)ATPase increase at increasing calmodulin, with K0.5 Ca of 0.38 μM at calmodulin concentrations corresponding to that in erythrocytes. High Ca2+ concentrations inhibit the enzyme. Specific activity and Ca2+-affinity of the enzyme decrease at increasing Mg2+ concentrations. The Ca2+ ? Mg2+ antagonism is likewise observed at inhibitory Ca2+ concentrations.  相似文献   

9.
The effects of barium, strontium and magnesium upon lens permeability characteristics were studied in the presence and absence of 2 mM calcium in the bathing medium. Permeability characteristics were determined by measuring lens potential, resistance and 42K efflux rates. Barium and strontium at equimolar concentrations to calcium were able to substitute for calcium in controlling lens sodium permeability. Magnesium was ineffective in this respect.Small changes in resistance and 42K efflux rates occurred when calcium was eliminated from bathing solution containing either 2 mM barium or strontium. These changes were interpreted to be the result of an increase in lens permeability to potassium. When 2 mM strontium was added to calcium-containing solution, there was no significant change in the electrical or flux parameters of the lens. However, the addition of 2 mM barium to calcium-containing solution resulted in a 54% increase in lens resistance and a 13 mV depolarization. These observations indicated a barium-induced decrease in lens permeability to potassium, and this was confirmed by an observed decrease in 42K efflux rate constant under similar experimental conditions.The rapid time course of all the observed changes implies that they are the result of changes in the permeability characteristics of membranes lying close to the surface of the lens.  相似文献   

10.
Calmodulin stimulated 45Ca2+ uptake into a plasma membrane enriched fraction from ox neurohypophysial nerve endings and into a microsome fraction. The 45Ca2+ uptake and the (Ca2+-Mg2+) ATPase activity in the plasma membrane fraction exhibited similar pCa and calmodulin sensitivities, suggesting that the enzyme activity is the biochemical expression of a high affinity Ca2+ pump. Calmodulin thus seems to play a role in regulation of the intracellular free Ca2+ concentration in the neurohypophysis.  相似文献   

11.
The ionophore A23187 is a potent inhibitor of oxalate supported calcium uptake if added before uptake is initiated by ATP and is a much weaker inhibitor of uptake once uptake has been initiated. This observation is shown to be due to a failure of oxalate to capture the transported calcium at the beginning of uptake because the rate of calcium oxalate crystallization is initially slow, thereby allowing the ionophore to release the accumulated calcium. This hypothesis is supported by the observation that calcium oxalate crystallization shows a lag phase which is absent when calcium oxalate seeds are in the reaction system. Once calcium uptake has progressed, calcium oxalate seeds are present in the sarcoplasmic reticulum and calcium oxalate crystallization proceeds sufficiently rapidly that the ionophore cannot compete successfully for calcium. That A23187 and oxalate compete for intravesicular ionic calcium is shown by the stimulation which each produces in ATPase activity and by the dependence of ionophore activity on oxalate concentration.The failure of calcium oxalate crystallization to reach equilibrium during the early phase of calcium uptake caused us to examine whether at any time during calcium uptake, crystallization reaches equilibrium. Skeletal sarcoplasmic reticulum accumulated calcium at such a high rate that oxalate, in concentrations up to 20mM, was unable to clamp intravesicular calcium at equilibrium values. The lower rate of calcium accumulation by cardiac sarcoplasmic reticulum and/or perhaps its greater permeability to oxalate apparently allows intravesicular calcium to be clamped by oxalate.  相似文献   

12.
13.
The cardiac Na+–Ca2+ exchanger 1 (NCX1) is thought to be the major calcium extrusion mechanism and to play an important role in the regulation of intracellular calcium in the heart. The Na+–Ca2+ exchanger is particularly abundant in the heart, although it is found in a variety of other tissues. To investigate the role of NCX1, we have generated NCX1-deficient mice. Mice heterozygous for the NCX1 mutation showed no discernable phenotype, grew normally, and were fertile; however, no viable homozygote was observed among 175 offspring obtained from intercrosses of heterozygotes. All the homozygous mutant mice died in utero before E10.5. Morphological analysis indicated that homozygotes of NCX1 mutation at E9.5 died with an underdeveloped heart with a dilated pericardium. Microscopic analysis of these embryos showed myocardial cell loss due to apoptosis. The apoptosis was first observed in E8.5 mutant heart. Areas outside the heart appeared normal in the mutant embryos at E8.5. In contrast, at E9.0, various regions of mutant embryos showed extensive cell loss. These results suggest that mutant embryos die owing to cardiac abnormalities caused by apoptotic cell loss, indicating that NCX1 is essential for normal development of the heart.  相似文献   

14.
An axolemma-rich membrane vesicle fraction was prepared from the leg nerve of the lobster, Homerus americanus. In this preparation Ca2+ transport across the membrane was shown to require a Na+ gradient (Na+-Ca2+ exchange), and external K+ was found to facilitate this Na+-Ca2+ exchange activity. In addition, at high Ca2+ concentrations (20 mM) a Ca2+-Ca2+ exchange system was shown to operate, which is stimulated by Li+. The Na+-Ca2+ exchange system is capable of operating in the reverse direction, with Ca2+ uptake coupled with Na+ efflux. Such a vesicular preparation has the potential for providing useful experimental approaches to study the mechanism of this important Ca2+ extrusion system in the nervous system.  相似文献   

15.
Specific activity and Ca2+-affinity of (Ca2++Mg2+)ATPase of calmodulin-depleted ghosts progressively increase during preincubation with 0.1–2 mM Ca2+. Concomitantly, the increment in ATPase activity caused by calmodulin and the binding of calmodulin to ghosts decrease. The effects of calcium ions are abolished by the addition of calmodulin. ATP protects the enzyme from a Ca2+-dependent decrease of the maximum activity but does not seem to influence the Ca2+-dependent transformation of the low Ca2+-affinity enzyme into a high Ca2+-affinity form.  相似文献   

16.
The effects of Li+ on Na-Ca exchange in bovine cardiac sarcolemmal vesicles were examined. The initial rate of Na(+)-dependent Ca2+ uptake and efflux was inhibited by Li+ in a dose dependent manner. The initial rate of Na(+)-dependent Ca2+ uptake was inhibited 49.8 +/- 2.9% (S.E.) (n = 6) in the presence of Li+ compared to activity in external K+ or choline+. Kinetic analysis indicated that Li+ increased the Km for Ca2+ (96.3 microM) compared to K+ and choline+ (25.5 and 22.9 microM respectively) while Vmax (1.4, 1.2 and 1.1 nmol Ca2+/mg protein/sec respectively) remained unchanged. Li+ did not alter the experimentally derived stoichiometry of the exchange reaction of 3 Na+ for 1 Ca2+.  相似文献   

17.
The inetic properties of exchangeable Ca2+ in isolated guinea-pig heart mitochondria were studied at 25°C in the presence of 0.9 mM free Mg2+, ATP, phosphate ions and 0.4 – 0.5 μM free Ca2+ using a 45Ca2+ exchange technique. The simplest system which was found to be consistent with the data was one in which two kinetically-distinct compartments of exchangeable Ca2+ are present in the mitochondria. In the presence of 6 mM Na and at 0.4 μM free Ca2+, the fractional transfer rates for the transport of Ca2+ from these compartments were found to be 0.6 and 0.05 min?1 and the quantities of exchangeable Ca2+ 0.04 and 0.2 μmol/g wet wt heart, respectively. The amount of 45Ca2+ exchanged increased when the concentration of inorganic phosphate was increased, and decreased slightly when the concentration of free Mg2+ was increased from 1 mM to 3 mM. The flux of Ca2+ across the boundaries of both compartments was inhibited by an increase in the concentration of extramitochondrial Na+. The contribution of mitochondrial Ca2+ to compartments of kinetically-distinct exchangeable Ca2+ observed in intact cardiac muscle is briefly discussed.  相似文献   

18.
The kinetic characteristics of Na+ -Ca2+ exchange in isolated sarcolemma vesicles from new-borne chick heart, which contain about 70% of right-side-out vesicles, were compared with those of cultured embryonic chick heart cells. Na+ -Ca2+ exchange was monitored as Nai-dependent Ca2+ uptake. Increase in the internal concentration of Na+ ([Na+]i) in these two preparations caused increase in both the initial rate and the saturation-level of Ca2+ uptake. Plots of the rate of Ca2+ uptake against [Na+]i showed similar saturation-kinetics in these two preparations. The apparent Michaelis constant (Km) (0.35 mM) for Ca2+ uptake by the intact cells was much higher than that (0.031 mM) for Ca2+ uptake by the vesicles. The degree of inhibition by Mg2+ was also higher in the cells than in the vesicles. Some possible reasons (age of the chicks used, membrane potential, etc.), for these differences were examined and are discussed.  相似文献   

19.
The rate of calcium uptake in brown adipose tissue mitochondria is here shown to be a sensitive parameter of energisation in this tissue, as demonstrated by high susceptibility to purine nucleotides and albumin. Complete uptake of low amounts of calcium generally requires added phosphate. Bicarbonate can at least partially substitute for phosphate, whereas acetate cannot. Calcium transport in brown fat mitochondria is of interest due to recent indications of an important role of this organelle in regulation of cytosolic calcium levels.  相似文献   

20.
The antibiotic ionophore ionomycin translocates Ca from an aqueous medium into or across an organic immiscible phase. At pH 8.0, ionomycin translocates less Ca than A23187, the effects of these ionophores being additive to one another. The capacity of ionomycin to translocate Ca across the organic phase is dramatically decreased when the pH of the aqueous media is reduced from 8.0 to 7.5 or lower values. Ionomycin also mediates Ca exchange-diffusion in liposomes, the magnitude of such a process being greater in fluid than in rigid liposomes. At a physiological pH (7.4), ionomycin is unexpectedly as potent as A23187 in mediating Ca transport in fluid liposomes. These findings suggest that the capacity of ionophores to translocate Ca across model membranes depends on both the transverse and lateral mobility of the ionophoretic molecules. The relative importance of the latter phenomenon itself largely depends on the stoichiometry of the Ca-ionophore complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号