首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-culture of mouse spleen nonadherent (T-enriched cells with mitomycin C-treated unfractionated syngeneic spleen cells resulted in increased DNA synthesis in the responding T cells. The kinetics of this syngeneic mixed lymphocyte reaction (SMLR) showed that peak DNA synthesis occurred on day 5 of culture compared to day 4 for conventional mixed lymphocyte reaction (MLR). Anti-T cell antiserum plus complement treatment of the responding cell population abolished the reaction, and similar treatment of the stimulator population enhanced SMLR. These studies indicate that SMLR represents the response of T cells to non-T cells. Studies on the generation of cytotoxic T lymphocytes (CTL) in parallel cultures of T cells activated by syngeneic or allogeneic spleen cells showed no cytotoxicity of SMLR-activated cells for either PHA- or LPS-induced blasts but did show a good CTL response of allo-activated cells to both targets. Studies on the strain distribution of SMLR revealed that NZB mice manifested poor or no stimulation in SMLR whereas all other strains tested exhibited strong SMLR. This defect in NZB mice may be pathogenetically related to the autoimmune disease that develops in these mice.  相似文献   

2.
The autologous mixed lymphocyte reaction (AMLR) in mice measures the proliferative response of T cells to determinants on syngeneic non-T spleen cells. Normally, cytotoxic T lymphocytes (CTL) are not generated in this reaction. However, the addition of trinitrophenyl-modified mitomycin C-treated syngeneic T cells (TNP-Tm) to the AMLR results in the generation of TNP-specific CTL but does not alter the proliferative response. Significant cytotoxic activity is not detectable against TNP in association with Ia unless TNP is present on cells bearing those determinants. Thus, if unselected spleen cells are TNP-modified and used as stimulators in the AMLR, the proliferative response is enhanced and CTL are generated that recognize TNP in association with K, D, and I region-encoded determinants. The CTL generated in the AMLR are H-2 restricted and dependent on the presence of adherent cells in the sensitization cultures. The experiments presented here suggest that the AMLR can provide the help necessary for generating cytotoxic T cells in vitro.  相似文献   

3.
The autologous mixed lymphocyte reaction (AMLR) can be detected in older NZB mice after treatment of the responding cell population with monoclonal anti-I-Ad and complement and supplementation of the culture medium with T-cell growth factor (TCGF) from young animals. The addition of TCGF to cultures containing responding cells alone that had not been pretreated with anti-I-A plus complement resulted in high levels of background proliferation. This is indicative of a high number of preexisting I-A-positive, activated, TCGF-responsive T cells in these mice. These activated cells could also be removed by treatment with anti-I-A antibody and panning on anti-mouse Ig plates, or by BUdR and light killing of those cells proliferating in the presence of TCGF or purified IL-2. Prior treatment of the responding cells with anti-Lyt 2 and complement did not effect the AMLR. An NZB AMLR responding cell line was established using these methods. This line retained haplotype specificity in a proliferation assay. Limiting dilution analysis of the precursor frequency of AMLR responding cells in the nonautoimmune C58 and BALB/C strains in culture medium with TCGF gave a frequency of between 1 in 35,000 and 1 in 88,000. In young, AMLR-positive, NZB mice, supplementation with TCGF yielded precursor frequencies within the normal range. In older NZB mice, the addition of TCGF resulted in increased background proliferation of preactivated, IA+ T cells. After removal of these cells with anti-I-A plus complement, AMLR responding cells were found at normal frequency levels when stimulated in the presence of TCGF. In the oldest animals tested (greater than 18–20 weeks), normal precursor frequencies could not be demonstrated even after this treatment, representing a true decline in the AMLR responding cell number. AMLR deficiency in NZB mice appears therefore to be the result of the combined effects of decreased lymphokine production, excessive T-cell activation, and finally decreased numbers of AMLR responding cells.  相似文献   

4.
Previous work from this laboratory has suggested that a CD8+ T suppressor (Ts) cell network regulated the murine syngeneic mixed lymphocyte reaction (SMLR). We have attempted to disrupt this network by the inoculation of anti-CD8 monoclonal antibodies (mAb) in vivo. Intraperitoneal inoculation of three mAbs resulted in a marked increase in the proliferation of CD4+, self-Ia-reactive splenic T cells in vitro to syngeneic, but not to allogeneic, spleen cells. Suppression was not limited to a specific mouse strain as the enhanced SMLR was reproducible following anti-CD8 treatment of three strains of mice. In vivo depletion of CD8+ T cells was not a prerequisite for enhancement of the SMLR as several mAb to CD8 augmented the SMLR independent of their capacity to cause CD8 T cell depletion. Moreover, enhancement of the SMLR could be mimicked in vitro by inclusion of anti-CD8 mAb in in vitro cultures of responder T cells and irradiated Ia+ syngeneic stimulators. Since the in vitro SMLR was enhanced following mAb treatment, it was expected that the in vivo SMLR would also be increased. However, no evidence of increased in vivo autoreactivity could be detected following in vivo treatment with anti-CD8 mAb, indicating that other mechanisms in addition to CD8+ regulatory T cells acted to regulate the in vivo activity of autoreactive T cells.  相似文献   

5.
Murine syngeneic mixed leukocyte reaction (SMLR) was studied under totally autologous culture conditions using syngeneic normal mouse serum in the culture. SMLR was detected in splenic, but not in lymph node, nonadherent responding cell populations (NWNAC). In the absence of stimulator, accessory cells (AC), IL3-containing fluids also induced splenic, but not lymph node, NWNAC growth. SMLR-derived supernatants contained IL3, but not IL2, activity, and production of this IL3 activity could be prevented by adding anti-CD4 mAbs to SMLR cultures. Precursor frequencies of both SMLR and IL3 splenic responses were very low and similar, and there was a synergism between IL3 and AC in induction of NWNAC growth. Growth of responding NWNAC was further enhanced by T-cell depletion with anti-Thy1 mAb and complement. Lack of T-cell proliferation in the SMLR was confirmed by BUdR and light protection experiments. Autoradiographs indicated that the same cell type grew in both SMLR and IL3-induced NWNAC cultures. Besides blast cells, cells with the appearance of immature monocytes with 3H-labeled nuclei were found in both kinds of culture. No labeled lymphocytes could be found. Both SMLR and IL3-induced NWNAC cultures contained expanded numbers of M-CSF-responsive monocyte precursors. On the other hand, SMLR- but not IL3-induced cultures contained expanded numbers of IL3-responsive, immature precursors capable of giving rise to large colonies of monocytic-like cells. Although IL2 could not be detected in SMLR supernatants, both cell growth and IL3 production could be blocked with anti-IL2 receptor and anti-IL2 mAbs. Exogenous IL2, on the other hand, enhanced both cell growth and IL3 production in the SMLR. These results indicate that, under totally autologous conditions, CD4+ autoreactive T-cells do not proliferate in the SMLR, but rather instruct the growth of splenic hematopoietic precursors capable of differentiating along the monocytic lineage. Autoreactive T-cell activation in the SMLR seems to involve minimal IL2 production, which is critically necessary for triggering IL3 production in a markedly amplified manner. These results suggest a link between normal regulation of hematopoiesis and MHC-restricted, autoreactive T-cell activation.  相似文献   

6.
The organ distribution and surface phenotype of SMLR responder cells has been investigated. Nylon-wool-passed spleen cells, which proliferate in response to mitomycin-C-treated syngeneic spleen cells, are Thy 1.2+ Ly 1+2?3?. SMLR responder cells are not confined to the spleen since nylon-wool-nonadherent lymph node cells as well as unfractionated thoracic duct lymphocytes show activity. Responder cells have characteristics of mature T cells since cortisone-resistant thymocytes, but not thymocytes from untreated mice, are capable of SMLR response. In addition, naturally occurring thymocytotoxic antibody (NTA), which in our experiments exhibits cytotoxicity only for thymocytes, does not appear to affect the subpopulation of the T cells which respond in the SMLR.  相似文献   

7.
We have investigated the cellular and molecular requirement for optimal proliferative responses of several alloreactive T cell lines that were derived from individual soft agar colonies and were specific for guinea pig Ia antigens. Optimal proliferation of several colonies was observed in cultures containing purified allogeneic macrophages and growth factor(s) present in supernatant fluids of Con A-activated T cells (Con A-S). Significant proliferative responses of these alloreactive T cell colonies were also routinely detected in cultures only supplemented with unfractionated irradiated allogeneic peritoneal exudate cell (PEC). The T cell component of the stimulator cell population was crucial for these responses by producing necessary growth factor(s) endogenously in the culture. Thus, 2 signals, allogeneic Ia antigens and growth factor(s), were required for optimal proliferative responses of these alloreactive T cell colonies. Furthermore, macrophage-associated Ia antigen was more efficient than B cell-associated Ia for these responses. The requirement for allogeneic Ia antigen was not absolute, since the colonies could easily be expanded when the cultures were supplemented with irradiated syngeneic PEC and the T cell mitogens, Con A or PHA. The effect of the mitogen was mediated via the T cells in the irradiated PEC, since removal of the T cells from these PEC markedly reduced the responses. Thus, it is likely that a nonspecific signal(s) presumably from T cells can promote proliferation of alloreactive T cell colonies in the absence of allogeneic Ia antigen. These results suggest 2 mechanisms of activation of these alloreactive T cells.  相似文献   

8.
Suppressor T cell function in the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rats was analyzed using syngeneic mixed lymphocyte reaction (SMLR) and concanavalin A (Con A) activation. A depressed SMLR was found in adult SHR but not in adult WKY. IL-2 synthesized by SHR was 40-fold lower than that of WKY, and the suppressor T cells generated in the SMLR were incapable of suppressing IgG synthesis. Precursors of cells that can be activated by Con A to become functional suppressor cells are reduced in adult SHR. Supernatant fluids derived from Con A-activated spleen cells from adult SHR failed to significantly inhibit IgG synthesis by cultures of syngeneic spleen cells compared to supernatant fluids from young SHR or WKY Con A-activated spleen cells. However, spleen cells from both adult SHR and WKY proliferated strongly and released equivalent amounts of IL-2 in response to Con A. Addition of exogenous IL-2 to the SMLR cultures in vitro restored the ability of SHR T cells to respond in the SMLR, with generation of cells capable of suppressing IgG synthesis. Administration of SHR with IL-2 in vivo also restored the suppressor T cell function in the SMLR. These results suggest a defective suppressor T cell activation and loss of suppressor T cell activity as the SHR age.  相似文献   

9.
The in vivo activation of T cells by a variety of antigens can be inhibited by the administration of anti-I-A antibodies (Ab) at the time of antigen priming. This inhibition can partially be explained by the temporary loss of Ia molecules from Ia-bearing antigen-presenting cells (APC) in the spleen. In this study, the effects of i.p. injected monoclonal Ab specific for I-A glycoproteins of different H-2 haplotypes on Ia antigen expression and APC function of spleen cells and epidermal Langerhans cells were compared. It was found that anti-I-A Ab quickly bound to both spleen cell and Langerhans cell Ia antigens. Although spleen cell Ia antigens were modulated and thus temporarily disappeared, Ia antigen expression by epidermal Langerhans cells was not modulated. In functional studies, the capacity of spleen cells and epidermal cells from anti-I-A Ab treated vs control animals to function as APC for antigen-specific, I-A- or I-E-restricted T cell clones was tested. A single injection of anti-I-A Ab completely abolished the APC function of spleen cells as shown in several inbred mouse strains, F1 animals, and with the use of several different Ab and T cell clones. In contrast, Langerhans cell-dependent APC function of epidermal cells remained completely unaltered. Even multiple injections of high doses of Ab never caused any inhibition of Langerhans cell function. Experiments with anti-I-Ak or anti-I-Ad Ab in an (H-2k X H-2d)F1 animal showed abrogation of APC function of spleen cells, but again not of Langerhans cells. Thus in vivo anti-I-A Ab administration appears to differentially affect Ia antigen expression and APC function from spleen and epidermis: Ia antigens are modulated from spleen cells but not from epidermis, and APC function disappears in the spleen but not in the epidermis. The abrogation of splenic but not of Langerhans cell APC function with anti-I-A Ab will facilitate the dissection of the relative contributions of Langerhans cells as compared with other APC in the generation of cutaneous immune responses.  相似文献   

10.
Previously, we have demonstrated that supernatants from autologous mixed lymphocyte (AMLR) cultures contain helper factors which can mediate the development of a cytotoxic T-cell response to hapten modified self. In the current study, the effect of AMLR supernatants on the humoral response was explored. BALB/C splenic non-T cells produced a large polyclonal antibody response to lipopolysaccharide (LPS), as measured in a Protein A SRBC plaque assay. Surprisingly, syngeneic AMLR supernatants suppressed the LPS-induced generation of plaque-forming cells. The presence of T cells in the stimulated cultures did not affect suppressor activity. The decreased response was not the result of a shift in kinetics, as maximal activity was observed on Day 4, whether or not AMLR supernatants were added. The AMLR culture supernatants were most effective in suppressing the plaque-forming cell response when added at the initiation of culture. AMLR supernatants added after 24 hr of culture resulted in only about 50% of maximum suppression. Supernatants added at 48 or 72 hr had no effect. Interferon-gamma (IFN-gamma) has been detected in AMLR culture supernatant and has been reported to suppress the development of plaque-forming cells in response to LPS. However, it is unlikely the suppressive activity observed in these studies is due to IFN-gamma. Dialysis of the AMLR culture supernatant against a pH 2 buffer for 24 hr or incubation at 70, 80, or 90 degrees C for 10 min, treatments that inactivate IFN-gamma, enhanced suppression. These results suggest that in addition to cytotoxic-T-cell helper factors, the cellular interactions in the AMLR induces the production of a stable mediator(s) which is able to directly suppress B cells at an early stage of their development into plasma cells.  相似文献   

11.
A fetal thymus organ culture system has been used to monitor the influence of interleukin 1 (IL 1) on the production of functional T cells as assessed by cell recoveries and MLC assays. We had shown earlier that the addition of monoclonal anti-I-A antibody inhibited the development of functional T cells as well as the expression of Ia on nonlymphoid cells recovered from fetal thymus organ cultures. The addition of purified recombinant IL 1 to anti-I-A-treated cultures reversed the inhibition of T cell growth induced by anti-I-A. IL 1 also induced the reexpression of Ia on the surfaces of nonlymphoid cells that could be recovered from the cultures. The "rescue" effect of IL 1 on anti-I-A-treated fetal thymus lobes was manifested in spite of the fact that the addition of IL 1 to untreated cultures had little effect on T cell development. To determine if IL 1 had a physiologic role in the development of the fetal thymus in organ culture, highly specific goat antibodies to IL 1 were added to organ cultures. These antibodies inhibited the development of T cells in organ cultures as determined by cell recovery and MLC reactivity. These results are consistent with the conclusion that IL 1 is an important mediator in the growth and development of functional T cells in the fetal thymus.  相似文献   

12.
Production of BSF-1 during an in vivo, T-dependent immune response   总被引:8,自引:0,他引:8  
BSF-1, a cytokine produced by some T lymphocyte tumors, has been shown to act with anti-Ig antibodies to stimulate B lymphocyte proliferation, to independently induce resting B lymphocytes to increase their expression of surface Ia antigen, and to induce some activated B lymphocytes to differentiate into IgG1- or IgE-secreting cells. To determine whether BSF-1 might be secreted by normal lymphoid cells in the course of a physiologic immune response, BALB/c mice were injected with an affinity-purified goat antibody to mouse IgD (GaM delta), which induces the generation of a large, polyclonal T-dependent IgG1 response; 4-hr culture supernatants of spleen cells from these mice were prepared, and these supernatants were assayed for BSF-1 activity by analyzing their ability to induce BALB/c nu/nu spleen cells to increase their expression of cell surface Ia in vitro. Culture supernatants of unfractionated spleen cells removed from mice 4 to 8 days after GaM delta antibody injection induced substantial increases in B lymphocyte surface Ia expression; these increases were blocked by a monoclonal anti-BSF-1 antibody. Culture supernatants of spleen cells from untreated BALB/c mice or from untreated or GaM delta antibody-treated BALB/c nu/nu mice induced small to moderate increases in B cell surface Ia expression, and GaM delta antibody itself induced large increases in B cell surface Ia expression; however, these increases were not significantly blocked by a monoclonal anti-BSF-1 antibody. A culture supernatant of T cell-enriched spleen cells from untreated mice induced small increases in B cell surface Ia expression that were inhibited by anti-BSF-1 antibody, as was the larger increase in B cell Ia expression induced by a culture supernatant of T cell-enriched spleen cells from mice sacrificed 3 days after GaM delta injection. On the other hand, T cell-depleted spleen cells from BALB/c mice injected with GaM delta antibody 7 days before sacrifice failed to generate culture supernatants with BSF-1 activity. Supernatants prepared from spleen cells taken from untreated mice or mice treated with GaM delta antibody 1 to 3 days before sacrifice did not block the ability of purified BSF-1 to induce an increase in B cell surface Ia expression, and thus did not contain inhibitors of BSF-1 activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The characteristics of the non-T cell(s) which stimulate T-lymphocyte proliferation in the autologous mixed leukocyte reaction (AMLR) have been at issue since this in vitro reaction was first described. Dendritic cells have been shown to be the most potent stimulator cells, but B cells, null cells, and macrophages have also been demonstrated to have the capacity to stimulate autologous T-cell proliferation. A cell preparation obtained from human peripheral blood was highly enriched for surface immunoglobulin-positive B cells. These cells were activated by brief culture with various B-cell mitogens and then compared to untreated B cells with regard to stimulatory activity in the AMLR. Mitogen-activated B cells were markedly augmented in their capacity to stimulate autologous T-cell proliferation when compared with untreated B cells. Fractionation of the B-cell preparation into high- and low-density subpopulations demonstrated that the high-density cells, enriched in resting B cells, had minimal stimulatory activity but could be activated to have increased AMLR-stimulatory capacity. Proliferation of the activated B lymphocytes was not required for the generation of the augmented AMLR. Response to both untreated and mitogen-activated B cells was a property of T4-positive T lymphocytes. The increase in stimulatory capacity was associated with a decrease in cell surface immunoglobulin, but no significant alteration in the percentage or fluorescence intensity of anti-Ia staining cells was detected. Activated B cells which are generated in vivo may acquire the capacity to generate T effector cells or factors important in the regulation of B-cell function.  相似文献   

14.
The proliferation of murine T lymphocytes in response to syngeneic Ia bearing non-T cells (syngeneic mixed lymphocyte reaction, SMLR) has been shown to generate regulatory T cells in vitro. An in vivo regulatory role has therefore been proposed for the SMLR. To study this role more directly, we examined the effects of repeated iv injection of mice with activated syngeneic B cells. Three such weekly injections induced a suppression of the plaque forming cell response to a subsequent injection of trinitrophenylated keyhole limpet hemocyanin (TNP-KLH). The suppression was transient and could not be maintained by additional injections of activated syngeneic B cells. The suppression was transferable to syngeneic recipients with splenic lymphocytes. Continued weekly iv injections of LPS induced blasts, as well as weekly intraperitoneal injections, caused enhancement rather than inhibition of the response to iv injected TNP-KLH. The enhancement was prevented by injection of anti-L3T4. Spleen cells from mice which had received three iv injections of activated syngeneic cells suppressed an in vitro secondary response to TNP-KLH by normal immune spleen cells. The cells responsible for the immune suppression were Thy 1.2+. The results indicate that repeated exposure to activated B cells causes activation of suppressor pathways but does not bring about a chronic state of immune suppression.  相似文献   

15.
Supernatants from Day 3 cultures of T cells stimulated with syngeneic non-T cells in the autologous mixed lymphocyte reaction (AMLR) contained a T-cell factor distinct from interleukin 2 (IL-2). The AMLR factor could mediate the cytotoxic response of T cells to hapten-modified nonstimulatory syngeneic cells. The activity of this helper factor was H-2 unrestricted. However, the cytotoxic cells which developed in the presence of this factor were H-2 restricted and hapten specific.  相似文献   

16.
T cells are stimulated by autologous non-T cells and interleukin 2 (IL-2) is produced in the conventional autologous mixed lymphocyte reaction (AMLR) in young healthy controls. The role of cells with natural killer (NK) cell markers (OKM1+ cells or Leu 7+ cells) in the AMLR was studied. There were significant inverse correlations between the percentage of input OKM1+ cells minus monocyte (OKM1+ NK cells) and either AMLR proliferation (gamma = -0.9, P less than 0.001) or IL-2 production (gamma = -0.75, P less than 0.01) in the AMLR cultures after 7 days measured at 7 days. A statistically significant correlation was observed between the percentage of input Leu 7+ cells and AMLR proliferation (gamma = -0.64, P less than 0.05), but not IL-2 production. These results suggest that the AMLR is controlled by OKM1+ NK, perhaps acting through IL-2 regulation.  相似文献   

17.
Cellular requirements for induction of primary proliferative responses by human T cells to trinitrophenylated autologous stimulators have been characterized. Substantial proliferative responses were observed with each of the Ia+ stimulator populations tested. Nevertheless, major differences in the hapten specificity of such responses were observed. Thus purified macrophages/monocytes (M phi) when TNP-modified induced responses that were relatively modest in absolute magnitude, but were highly hapten specific. This reflected the very limited capacity of purified M phi to induce proliferation when unmodified, i.e., an autologous mixed leukocyte response (AMLR). In contrast, unmodified M phi-depleted B plus null cells were potent stimulators of AMLR, but hapten modification did not significantly enhance the responses induced by these cells. Moreover, when M phi were added to B plus null cell stimulators AMLR responses were reduced and, with TNP-modified stimulators, hapten-specific responses were restored. The data thus suggest that M phi may have important roles in induction of primary T cell responses to conventional antigens but function largely as regulators rather than stimulators of AMLR. Finally, we have introduced a novel antigen-presenting cell population, the irradiated Ia+ TNP-specific cloned T cell. The possibility that such cells may utilize autostimulatory positive feedback circuits for activation of naive T cells and in interactions between subpopulations of hapten-reactive T cells is discussed.  相似文献   

18.
Guinea pig basic protein (GPBP)-sensitized murine lymph node cell cultures depleted of macrophages-monocytes (MO) are no longer able to proliferate in response to specific antigen in vitro. The addition of MO reconstitutes the response that can be blocked by the addition of syngeneic anti-I-A antisera. Freshly isolated murine central nervous system endothelial cells (CNS-EC) cannot replace MO for the presentation of GPBP antigen to specifically sensitized lymph node lymphocytes. The pretreatment of CNS-EC with concanavalin A-conditioned media resulted in the expression of Ia molecules and the consequent ability to present GPBP. Antigen presentation by CNS-EC could be blocked by anti-I-A antisera for the CNS-EC donor haplotype.  相似文献   

19.
The normally weak murine T-cell proliferative response against autologous non-T stimulator cells (the autologous mixed lymphocyte culture (MLC) was enhanced markedly by inclusion of the hydrophilic polymer, polyethylene glycol (PEG), into the culture medium. Potentiation of the autologous MLC was indicated on the basis of increased [3H]TdR incorporation by responding cells, as well as by the numbers of viable cells recovered from mixed cell cultures. PEG is not a polyclonal activator of T and/or B lymphocytes, since nylon wool nonadherent lymphoid cells (T cell-enriched fraction), nylon wool adherent cells (B cell-enriched fraction) and T cell-deficient “nude” spleen cells were not stimulated into DNA synthesis when cultured separately with PEG. Inclusion of 4% PEG into the culture medium was found to optimally enhance autologous MLC, although concentrations between 2 and 5% also significantly elevated responsiveness. At a responder/stimulator ratio of 1:2, autologous MLC yielded peak [3H]TdR incorporation after 5 days of culture. At lower ratios (1:1 and 2:1), however, Δ cpm of autologous MLC continued to increase over a culture period of 7 days. Enhanced responsiveness in the presence of PEG was observed in strains of mice representing a variety of H-2 haplotypes, indicating that at least the potential for autoreactivity of this type is a naturally occurring and widespread characteristic of murine species. An absolute requirement for purified T responder cells was necessary in the autologous MLC, since unseparated lymphoid cell responder LN or spleen cells demonstrated marked proliferation when cultured alone in medium containing PEG. The proliferation of T cells to autologous non-T cells within the same unseparated lymphoid cell preparation appears to be responsible for this phenomenon. Ia antigens expressed by the stimulator cells are involved in the induction of T-cell response, since anti-Ia sera added directly to the cultures inhibited the autologous MLC, but did not affect other T-cell responses to alloantigens or mitogens. Despite the marked proliferation observed in the autologous MLC performed in the presence of PEG, there was no generation of cytotoxic effector cells. Thus, PEG does not appear to add, or alter determinants on stimulator cells to an extent that they are recognized as foreign by precursor cytotoxic T cells. Although the mechanism of enhancement of autologous MLC by PEG is not totally defined, it appears, at least functionally, to promote cellular interactions that occur normally between T cells, B cells, and macrophages. In this respect, PEG will be a powerful and useful probe to dissect the cellular interactions that take place in autologous responses.  相似文献   

20.
A fetal thymus organ culture system has been developed to study the differentiation of murine thymus-derived immunocompetent cells (T cells) such that cell yields can be easily monitored. This system has been used to study the effects of monoclonal anti-I-A antibodies on the growth of T cells. The addition of anti-I-A antibodies, but not anti-H2K monoclonal antibodies, to fetal thymus organ cultures resulted in a decreased yield of lymphoid cells. Anti-I-A-treated cultures did not produce cells that gave an immune response in MLC assays. Anti-I-A antibodies stained a small subpopulation of nonlymphoid cells in untreated cultures by indirect immunofluorescence that were no longer detectable in cultures that had been pretreated with anti-I-A antibody. Culture of fetal thymus lobes at low temperature (20 degrees C) for 1 wk resulted in a decrease in lymphocyte production, as well as a concomitant increase in the frequency of Ia-positive nonlymphoid cells. Co-culture of fetal liver or anti-thy-1 plus complement-treated adult bone marrow with such Ia-positive cell-enriched fetal thymus lobes at 37 degrees C resulted in the production of T cells. Anti-Thy-1.1 or -1.2 staining by indirect immunofluorescence of cells obtained from co-cultures that differed at the Thy-1 locus showed that the T cells produced were derived from the bone marrow or fetal liver. T cell production occurred in both syngeneic and allogeneic cocultures. However, if co-cultures were made by using 14-day gestation fetal thymus instead of fetal liver or bone marrow as donors of T cell precursors, T cell growth was observed only in syngeneic combinations. These results suggest that Ia-positive nonlymphoid cells play a role in the development of T cells in the fetal thymus, and that "thymus processed" T cell progenitors (but not the more immature progenitors in the fetal liver or bone marrow) are self-Ia restricted in their differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号