首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A purified enzyme system isolated from vaccinia virus cores has been shown to modify the 5' termini of viral mRNA and synthetic poly(A) and poly(G) to form the structures m7G(5')pppA- and m7G(5')pppG-. The enzyme system has both guanylyltransferase and methyltransferase activities. The GTP:mRNA guanylyltransferase activity incorporates GMP into the 5' terminus via a 5'-5' triphosphate bond. The properties of this reaction are: (a) of the four nucleoside triphosphates only GTP is a donor, (b) mRNA with two phosphates at the 5' terminus is an acceptor while RNA with a single 5'-terminal phosphate is not, (c) Mg2+ is required, (d) the pH optimum is 7.8, (e) PP1 is a strong inhibitor, and (f) the reverse reaction, namely the formation of GTP from PP1 and RNA containing the 5'-terminal structure G(5')pppN-, readily occurs. The S-adenosylmethionine:mRNA(guanine-7-)methyltransferase activity catalyzes the methylation of the 5'-terminal guanosine. This reaction exhibits the following characteristics: (a) mRNA with the 5'-terminal sequences G(5')pppA- and G(5')pppG- are acceptors, (b) only position 7 of the terminal guanosine is methylated; internal or conventional 5'-terminal guanosine residues are not methylated, (c) the reaction is not dependent upon GTP or divalent cations, (d) optimal activity is observed in a broad pH range around neutrality, (e) the reaction is inhibited by S-adenosylhomocysteine. Both the guanylyltransferase and methyltransferase reactions exhibit bisubstrate kinetics and proceed via a sequential mechanism. The reactions may be summarized: (see article).  相似文献   

2.
GTP:mRNA guanylyltransferase, an enzyme that catalyzes the transfer of the GMP moiety from GTP to the 5' end of the RNA to form a cap structure (G(5')pppN-), has been purified to an apparent homogeneity from Saccharomyces cerevisiae. The mRNA 5'-triphosphatase activity hydrolyzing the gamma-phosphoryl group from pppN-RNA was co-purified with mRNA guanylyltransferase activity through column chromatographies on CM-Sephadex and poly(U)-Sepharose, and centrifugation through glycerol gradients, suggesting that these two activities are physically associated. An 820,w value of 7.3, and Mr = 140,000 were estimated from the sedimentation behavior in glycerol gradients. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two major polypeptides, Mr = 45,000 (alpha) and 39,000 (beta), were detected with the purified enzyme preparation. Their molar ratios were close to unity when estimated by the relative density of silver staining. These results suggest that the yeast mRNA-capping enzyme is an oligomeric protein which may consist of two alpha and two beta chains (alpha 2 beta 2).  相似文献   

3.
As a tool for the study of the capping-methylation process of yeast mRNA, we developed a procedure for the purification of the mRNA (guanine-7-)methyltransferase using the commercial cap analog guanosine(5')triphospho(5')guanosine as a substrate and radioactive S-adenosylmethionine (AdoMet) as the methyl group donor. The osmotic-sensitive yeast strain VY 1160 was used as the enzyme source. Little methyltransferase activity was detectable in a crude lysate obtained after osmotic shock. We showed that this was due to the presence of a low-molecular-weight inhibitor which could easily be eliminated by Sephadex G-25 gel filtration. The 10000 X g supernatant from the crude lysate was submitted to DEAE-cellulose and DNA-agarose chromatography. The resulting preparation was enriched about 450-fold in specific activity. Under standard assay conditions, the incorporation rate remained constant for at least 6 h at 30 degrees C. Transmethylation was not stimulated by KCl nor NaCl. Divalent cations were strong inhibitors. The partially purified enzyme was able to methylate undermethylated poly(A)-rich mRNA isolated from an AdoMet auxotrophic yeast strain briefly exposed to AdoMet-free medium.  相似文献   

4.
The mRNA coding for the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) was partially purified from the liver of cyclic-AMP-treated rats by a procedure involving multiple oligo(dT)-cellulose chromatographies and sucrose gradient fractionations. The purification was monitored by translational assay using a wheat germ extract. Relative to RNA bound once to oligo(dT)-cellulose, the final material was enriched 20-fold in template activity for phosphoenolpyruvate carboxykinase synthesis. With this RNA preparation, cell-free enzyme synthesis amounted to 5% of total mRNA-directed protein synthesis. The apparent sedimentation coefficient of phosphoenolpyruvate carboxykinase mRNA in sucrose gradients was between 20 and 22 S, corresponding to an average molecular weight of 0.93 X 10(6). By formamide/polyacrylamide gel electrophoresis the molecular weight of the enzyme mRNA was estimated at between 0.91 X 10(6) and 1.12 X 10(6). From these estimates, it was concluded that considerable non-coding sequence(s) are present in the mRNA. Approximately 20% of the enzyme mRNA in rat liver failed to bind to oligo(dT)-cellulose, presumably because of the absence of a poly(A) segment. The translation of phosphoenolpyruvate carboxykinase mRNA by the wheat germ extract was inhibited in the presence of 7-methylguanosine 5'-phosphate. The enzyme mRNA appears therefore to have a 'cap' at the 5' end.  相似文献   

5.
The ability of methylated vaccinia virus mRNA to bind to ribosomes derived from wheat germ of rabbit reticulocyte lysates has been studied after beta elimination, to remove the 5'-terminal m7G, and after "recapping" of beta-eliminated mRNA molecules using guanylyltransferase.guanine-7-methyltransferase complex from vaccinia virions. Removal of m7G from the mRNA results in significant loss of ability to bind to ribosomes and to simulate protein synthesis in vitro. Readdition of m7G, but not of unmethylated guanosine to the 5' end results in recovery of both of these functions. To evaluate the role of 2'-O-methylation of the penultimate ribonucleoside, mRNAs containing m7G-(5')pppA- and m7G(5')pppG- as well as m7G(5')pppAm- and m7G(5')pppGm- ends were synthesized in vitro at limiting S-adenosylmethionine concentrations by vaccinia virus cores. By comparing the cap sequences of ribosome-bound and unbound mRNAs, we concluded that 2'-O-methylation has at most a minor effect compared to that of m7G upon ribosome binding under in vitro conditions. Only at high input mRNA concentrations, at which competition might occur, was there some ribodomal enrichment of mRNAs containing a specific terminal structure, namely m7G(5')pppAm-.  相似文献   

6.
A core-associated enzyme, which catalyzes a nucleotide-pyrophosphate exchange with GTP, has been purified from vaccinia virions. The enzyme requires MgCl2 for activity, has an alkaline pH optimum, and specifically utilizes GTP as the exchanging nucleotide. The enzyme does not catalyze exchange of GMP with GTP. The GTP-PPi exchange enzyme co-purifies with vaccinia capping enzyme (RNA guanylyltransferase and RNA (guanine-7-)methyltransferase) through successive chromatography steps on DEAE-cellulose, DNA-cellulose, and phosphocellulose. GTP-PPi exchange and capping activities remain physically associated during sedimentation in a glycerol gradient. Under high salt conditions (1 M NaCl), GTP-PPi exchange, capping, and methylating activities co-sediment with an RNA triphosphatase activity and a nucleoside triphosphate phosphohydrolase activity as a 6.5 S multifunctional enzyme complex which contains two major polypeptides of 96,000 and 26,000 molecular weight. The characteristics of the various enzymatic reactions catalyzed by this complex are described. The GTP-PPi exchange reaction of vaccinia guanylyltransferase affords a simple, sensitive assay for capping enzyme function. The relevance of the GTP-PPi exchange reaction to the mechanism of transguanylylation is considered.  相似文献   

7.
Prorennin-specific messenger ribonucleic acid (mRNA) has been purified by a combination of sizing techniques, including Sepharose 2B chromatography and sucrose density gradient centrifugation, and affinity chromatography with poly (U)-Sepharose, from total nucleic acid extracted from dry ice-pulverized, fourth stomach of a calf. This mRNA bound to poly (U)-Sepharose, indicating that it contained a poly (A) sequence. The total translation product in the mRNA-dependent wheat germ system, upon addition of this mRNA, was identified as authentic prorennin by gel electrophoresis. The molecular weight of this mRNA was about 3.5 × 105 as determined by gel electrophoresis. These results indicate that the synthesis of prorennin is directed by this mRNA 1,020 nucleotides in length and requires the full coding capacity of the molecule.  相似文献   

8.
Isolation of rat liver albumin messenger RNA.   总被引:4,自引:0,他引:4  
Rat liver albumin messenger RNA has been purified to apparent homogeneity by means of polysome immunoprecipitation and poly(U)-Sepharose affinity chromatography. Specific polysomes synthesizing albumin were separated from total liver polysomes through a double antibody technique which allowed isolation of a specific immunoprecipitate. The albumin-polysome immunoprecipitate was dissolved in detergent and the polysomal RNA was separated from protein by sucrose gradient centrifugation. Albumin mRNA was then separated from ribosomal RNA by affinity chromatography through the binding of poly(U)-Sepharose to the polyadenylate 3' terminus of the mRNA. Pure albumin mRNA migrated as an 18 S peak on 85% formamide-containing linear sucrose gradients and as a 22 S peak on 2.5% polyacrylamide gels in sodium dodecyl sulfate. It coded for the translation of authentic liver albumin when added to a heterologous protein-synthesizing cell-free system derived from either rabbit reticulocyte lysates or wheat germ extracts. Translation analysis in reticulocyte lysates indicated that albumin polysomes were purified approximately 9-fold from total liver polysomes, and that albumin mRNA was purified approximately 74-fold from albumin polysomal RNA. The total translation product in the mRNA-dependent wheat germ system, upon addition of the pure mRNA, was identified as authentic albumin by means of gel electrophoresis and tryptic peptide chromatography.  相似文献   

9.
Purification of mRNA guanylyltransferase from calf thymus.   总被引:5,自引:2,他引:3       下载免费PDF全文
mRNA guanylyltransferase has been extensively purified from calf thymus. A GTP-binding assay was used based on the observations by Shuman and Hurwitz (1981) and Venkatesan and Moss (1982) that vaccinia virus and HeLa cell mRNA guanylyltransferases bind the GMP moiety from GTP in the absence of an acceptor RNA. The mol. wt. of the purified enzyme from calf thymus, estimated by polyacrylamide gel electrophoresis in the presence of SDS, is 65 000. The major protein in the purified enzyme fraction comigrates with the peptide labelled with GMP. Based on scans of silver-stained polyacrylamide gels, mRNA guanylyltransferase constitutes greater than 50% of the protein in these fractions. The enzyme catalyzed the guanylylation at the 5' end of poly(A) with a mixture of diphosphate and triphosphate ends. No evidence was obtained for a direct interaction between mRNA guanylyltransferase and RNA polymerase B (II).  相似文献   

10.
RNA (guanine-7-)methyltransferase, the enzyme responsible for methylating the 5' cap structure of eukaryotic mRNA, was isolated from extracts of Saccharomyces cerevisiae. The yeast enzyme catalyzed methyl group transfer from S-adenosyl-L-methionine to the guanosine base of capped, unmethylated poly(A). Cap methylation was stimulated by low concentrations of salt and was inhibited by S-adenosyl-L-homocysteine, a presumptive product of the reaction, but not by S-adenosyl-D-homocysteine. The methyltransferase sedimented in a glycerol gradient as a single discrete component of 3.2S. A likely candidate for the gene encoding yeast cap methyltransferase was singled out on phylogenetic grounds. The ABD1 gene, located on yeast chromosome II, encodes a 436-amino-acid (50-kDa) polypeptide that displays regional similarity to the catalytic domain of the vaccinia virus cap methyltransferase. That the ABD1 gene product is indeed RNA (guanine-7-)methyltransferase was established by expressing the ABD1 protein in bacteria, purifying the protein to homogeneity, and characterizing the cap methyltransferase activity intrinsic to recombinant ABD1. The physical and biochemical properties of recombinant ABD1 methyltransferase were indistinguishable from those of the cap methyltransferase isolated and partially purified from whole-cell yeast extracts. Our finding that the ABD1 gene is required for yeast growth provides the first genetic evidence that a cap methyltransferase (and, by inference, the cap methyl group) plays an essential role in cellular function in vivo.  相似文献   

11.
In addition to an RNA-dependent RNA polymerase, purified vesicular stomatitis virus contains a methyltransferase activity which transfers the methyl group from the methyl donor, S-adenosyl-L-methionine, to two positions in the 5'-terminal capped structure of the nascent mRNA's synthesized in vitro as 7mG-(5)'ppp(5')Apm... In the present study it is shown that two distinct methyltransferase activities are discernible in the purified virus. The in vitro concentrations of the methyl donor specify the number and location of the methyl groups transferred to the capped 5'-termini of VSV mRNA's. Limited concentrations of the methyl donor result in a single methylation of the penultimate base in the 2'-hydroxyl position, that is, G(5')ppp(5')Apm..., whereas saturating concentrations of the methyl donor methylate the blocking guanosine residue at the 7-position, resulting in the dimethylated cap, 7mG(5')ppp(5')Apm... Pulse-chase experiments demonstrate that the monomethylated cap structure is the precursor substrate for the dimethylated cap. In this respect, vesicular stomatitis virus system is quite distinct from the vaccinia and reovirus systems. Virus purified from different host cells including hamster, mouse, and human contain both methyltransferase activities. The mRNA's containing monomethylated capped structures are poor templates for protein synthesis in vitro.  相似文献   

12.
The Encephalitozoon cuniculi mRNA cap (guanine N-7) methyltransferase Ecm1 has been characterized structurally but not biochemically. Here we show that purified Ecm1 is a monomeric protein that catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to GTP. The reaction is cofactor-independent and optimal at pH 7.5. Ecm1 also methylates GpppA, GDP, and dGTP but not ATP, CTP, UTP, ITP, or m(7)GTP. The affinity of Ecm1 for the cap dinucleotide GpppA (K 0.1 mm) is higher than that for GTP (K(m) 1 mm) or GDP (K(m) 2.4 mm). Methylation of GTP by Ecm1 in the presence of 5 microm AdoMet is inhibited by the reaction product AdoHcy (IC(50) 4 microm) and by substrate analogs sinefungin (IC(50) 1.5 microm), aza-AdoMet (IC(50) 100 microm), and carbocyclic aza-AdoMet (IC(50) 35 microm). The crystal structure of an Ecm1.aza-AdoMet binary complex reveals that the inhibitor occupies the same site as AdoMet. Structure-function analysis of Ecm1 by alanine scanning and conservative substitutions identified functional groups necessary for methyltransferase activity in vivo. Amino acids Lys-54, Asp-70, Asp-78, and Asp-94, which comprise the AdoMet-binding site, and Phe-141, which contacts the cap guanosine, are essential for cap methyltransferase activity in vitro.  相似文献   

13.
Open reading frame 1 of Bamboo mosaic virus (BaMV), a Potexvirus in the alphavirus-like superfamily, encodes a 155-kDa replicase responsible for the formation of the 5' cap structure and replication of the viral RNA genome. The N-terminal domain of the viral replicase functions as an mRNA capping enzyme, which exhibits both GTP methyltransferase and S-adenosylmethionine (AdoMet)-dependent guanylyltransferase activities. We mutated each of the four conserved amino acids among the capping enzymes of members within alphavirus-like superfamily and a dozen of other residues to gain insight into the structure-function relationship of the viral enzyme. The mutant enzymes were purified and subsequently characterized. H68A, the mutant enzyme bearing a substitution at the conserved histidine residue, has an approximately 10-fold increase in GTP methyltransferase activity but completely loses the ability to form the covalent m(7)GMP-enzyme intermediate. High-pressure liquid chromatography analysis confirmed the production of m(7)GTP by the GTP methyltransferase activity of H68A. Furthermore, the produced m(7)GTP sustained the formation of the m(7)GMP-enzyme intermediate for the wild-type enzyme in the presence of S-adenosylhomocysteine (AdoHcy), suggesting that the previously observed AdoMet-dependent guanylation of the enzyme using GTP results from reactions of GTP methylation and subsequently guanylation of the enzyme using m(7)GTP. Mutations occurred at the other three conserved residues (D122, R125, and Y213), and H66 resulted in abolition of activities for both GTP methylation and formation of the covalent m(7)GMP-enzyme intermediate. Mutations of amino acids such as K121, C234, D310, W312, R316, K344, W406, and K409 decreased both activities by various degrees, and the extents of mutational effects follow similar trends. The affinity to AdoMet of the various BaMV capping enzymes, except H68A, was found in good correlations with not only the magnitude of GTP methyltransferase activity but also the capability of forming the m(7)GMP-enzyme intermediate. Taken together with the AdoHcy dependence of guanylation of the enzyme using m(7)GTP, a basic working mechanism, with the contents of critical roles played by the binding of AdoMet/AdoHcy, of the BaMV capping enzyme is proposed and discussed.  相似文献   

14.
15.
Cap-dependent deadenylation of mRNA   总被引:17,自引:0,他引:17       下载免费PDF全文
Poly(A) tail removal is often the initial and rate-limiting step in mRNA decay and is also responsible for translational silencing of maternal mRNAs during oocyte maturation and early development. Here we report that deadenylation in HeLa cell extracts and by a purified mammalian poly(A)-specific exoribonuclease, PARN (previously designated deadenylating nuclease, DAN), is stimulated by the presence of an m(7)-guanosine cap on substrate RNAs. Known cap-binding proteins, such as eIF4E and the nuclear cap-binding complex, are not detectable in the enzyme preparation, and PARN itself binds to m(7)GTP-Sepharose and is eluted specifically with the cap analog m(7)GTP. Xenopus PARN is known to catalyze mRNA deadenylation during oocyte maturation. The enzyme is depleted from oocyte extract with m(7)GTP-Sepharose, can be photocross-linked to the m(7)GpppG cap and deadenylates m(7)GpppG-capped RNAs more efficiently than ApppG-capped RNAs both in vitro and in vivo. These data provide additional evidence that PARN is responsible for deadenylation during oocyte maturation and suggest that interactions between 5' cap and 3' poly(A) tail may integrate translational efficiency with mRNA stability.  相似文献   

16.
在创新霉素产生菌济南游动披线菌的无细胞提取物中检测到吲哚丙酮酸甲基转移酶活性,并进行了分离提取。该酶能利用S-腺苷-L-甲硫氨酸对吲哚丙酮酸进行甲基化,它可能作用于创新霉素中间体的甲基化。经过硫酸铵分部盐析和DEA F一纤维素柱层析,得到了纯化60倍的甲基转移酶,比活0.66mu/ms。酶的最适底物是吲哚丙酮酸,最适pH7.5,对于底物s一腺苷一L一甲硫氨酸和吲哚丙酮酸的米氏常数(KⅢ)分别是4×10-,mol/L和1.8×10-7moI/L。用Sephadcx G-150凝胶过滤测得分子量是55000士5000道尔顿。  相似文献   

17.
Characterization of the donor and acceptor specificities of mRNA guanylyltransferase and mRNA (guanine-7-)-methyltransferase isolated from vaccinia virus cores has enabled us to discriminate between alternative reaction sequences leading to the formation of the 5'-terminal m7G(5')pppN-structure. The mRNA guanylyltransferase catalyzes the transfer of a residue of GMP from GTP to acceptors which possess a 5'-terminal diphosphate. A diphosphate-terminated polyribonucleotide is preferred to a mononucleoside diphosphate as an acceptor suggesting that the guanylyltransferase reaction occurs after initiation of RNA synthesis. Although all of the homopolyribonucleotides tested (pp(A)n, pp(G)n, pp(I)n, pp(U)n, and pp(C)n) are acceptors for the mRNA guanylyltransferase indicating lack of strict sequence specificity, those containing purines are preferred. Only GTP and dGTP are donors in the reaction; 7-methylguanosine (m7G) triphosphate specifically is not a donor indicating that guanylylation must precede guanine-7-methylation. The preferred acceptor of the mRNA (guanine-7-)-methyltransferase is the product of the guanylyltransferase reaction, a polyribonucleotide with the 5'-terminal sequence G(5')pppN-. The enzyme can also catalyze, but less efficiently methylation of the following: dinucleoside triphosphates with the structure G(5')pppN, GTP, dGTP, ITP, GDP, GMP, and guanosine. The enzyme will not catalyze the transfer of methyl groups to ATP, XTP, CTP, UTP, or to guanosine-containing compounds with phosphate groups in either positions 2' or 3' or in 3'-5' phosphodiester linkages. The latter specificity provides an explanation for the absence of internal 7-methylguanosine in mRNA. In the presence of PPi, the mRNA guanylyltransferase catalyzes the pyrophosphorolysis of the dinucleoside triphosphate G(5')pppA, but not of m7G(5')pppA. Since PPi is generated in the process of RNA chain elongation, stabilization of the 5'-terminal sequences of mRNA is afforded by guanine-7-methylation.  相似文献   

18.
The DNA methyltransferase M-BsuE that recognizes the sequence 5'-CGCG-3' has been isolated from Bacillus subtilis strain ISE15. A 1600-fold purification of M-BsuE was achieved by column chromatography on phosphocellulose, heparin-Sepharose, and DEAE-Sepharose. DNA methyltransferase activity was monitored in the column eluants radiochemically by the transfer of tritiated methyl groups from radiolabeled S-adenosylmethionine to poly(dGdC)-poly(dGdC) DNA, a sensitive and specific substrate for M-BsuE activity. The DNA sequence specificity of this methyltransferase activity was confirmed enzymatically by demonstrating that M-BsuE-methylated DNA was selectively protected from cleavage by the restriction enzyme isoschizomers, ThaI and FnuDII. Purified M-BsuE has an apparent molecular size of 41,000-43,000 as determined by gel filtration and migrates as a 41-kDa protein in a sodium dodecyl sulfate-polyacrylamide gel. DNA methylation by M-BsuE is dependent upon the presence of S-adenosylmethionine and 2-mercaptoethanol. M-BsuE methyltransferase activity is optimal at 37 degrees C in the presence of 50 mM Tris-HCl, pH 7.8, 25 mM KCl, 6 microM S-adenosylmethionine, 5 mM 2-mercaptoethanol, and 10 mM EDTA. M-BsuE methylates the external cytidine in its recognition sequence in both linear and supercoiled DNA. A unique property of M-BsuE is its ability to methylate 5'-CGCG-3' in Z-DNA.  相似文献   

19.
Total polysomal RNA from yellow lupin root nodules was fractionated by double oligo(dT)-cellulose chromatography. Poly(A)-containing and poly(A)-lacking RNA fractions showed considerable messenger activity in wheat germ and rabbit reticulocyte cell-free systems. The sizing of poly(A)-lacking RNA on sucrose-density gradient gives rise to separation of 14S mRNA from 22-24S mRNA species. A single polypeptide with molecular weight of 22,000 was coded for by 14S mRNA, while two polypeptides with an apparent mol. wt. of 90,000 and 87,000 were the main products of 22-24S mRNA fraction. High concentrations of unfractionated poly(A)-lacking RNA as well as the addition of poly(A) led to preferential synthesis of the 22,000 product. Preliminary results suggest the presence of m7GpppX cap structure at 5' terminus of the separated 14S and 22-24S mRNA species. This comes from the competition experiments with m7GMP and m7GTP as well as from the fact that the poly(A)-lacking RNA preparation was susceptible to methylation by methyl-transferase from vaccinia virus (methylated is the 2'-O-nucleotide adjacent to 7-methylguanosine). Digestion by T1 RNAase of methylated poly(A)-lacking RNA produced two short 5'-terminal oligonucleotides 10 and 17 nucleotides in length.  相似文献   

20.
We have expressed the Semliki Forest virus (SFV)-specific nonstructural protein nsP1 both in insect cells and in Escherichia coli in the absence of other viral proteins. A substantial amount of nsP1 was synthesized in Sf9 cells infected with the recombinant Autographa californica nuclear polyhedrosis virus (AcNPV) AcNPV-nsP1. These cells had a high level of guanine-7-methyltransferase activity compared with that of wild-type AcNPV-infected cells. The methyltransferase activity and nsP1 were mostly in the mitochondrial pellet fraction (P15). The enzymatic activity was increased by treatment with deoxycholate (DOC), as in the case of SFV-infected BHK cells. The material released by DOC treatment from P15 of the AcNPV-nsP1-infected cells was analyzed by gel filtration and sucrose gradient centrifugation. Both the methyltransferase activity and nsP1 were in aggregates. nsP1 expressed in E. coli at 37 degrees C sedimented at 15,000 x g, whereas after expression at 15 degrees C, both nsP1 and methyltransferase activity were in the supernatant fraction. Paradoxically, the activity from E. coli was completely inhibited by Triton X-100 and DOC. Sucrose gradient analysis showed that even the "soluble" nsP1-methyltransferase was in aggregates. The methyltransferase activities in the P15 fractions of SFV-infected BHK cells and AcNPV-nsP1-infected Sf9 cells and in E. coli catalyzed linear incorporation of the [3H]methyl group from S-adenosylmethionine to GTP for a 60-min period. The enzymes from the three sources had similar substrate specificities and Km values for S-adenosylmethionine. In addition to GTP, they all methylated dGTP and GpppG, but not m7GTP or GpppA, or in vitro-transcribed RNAs with GpppA and GpppG caps. The unique properties of SFV-specific nsP1 methyltransferase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号