首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have cloned the B breakpoint in Drosophila melanogaster using DNA from a P-M-induced revertant of B, which has a P element inserted at the B breakpoint. The analysis of the B DNA reveals that there is a transposable element, B104, right at the breakpoint. This suggests that this element may have been involved in the generation of the B breakpoint and the associated tandem duplication. One possible mechanism to generate the B duplication is a recombination event between two B104 elements, one at 16A1 and the other at 16A7. DNA sequencing data of the junctions of the B104 element support this model. Four partial revertants of B are the result of insertions of transposable elements very close to the B breakpoint. This supports the hypothesis that the breakpoint is the cause of the B mutation. The clones from B were used to isolate wild-type clones from 16A1, the location of the Bar gene. Four rearrangement breakpoints associated with various Bar mutations map within a 37-kb region, suggesting that the Bar gene is very large.  相似文献   

2.
Transposable-element-mediated fusion of the conjugal plasmid pOX38::Tn9 with pBR322 results in the appearance of cointegrates composed of a single copy of each plasmid, and cointegrates which carry a single copy of pOX38 but multiple tandem copies of pBR322. These plasmids are separated by directly repeated copies of the transposable element. We demonstrate here that such multimers can be generated from monomeric cointegrates, probably by unequal crossing over between the flanking Tn9(IS1) elements. Their appearance is thus not necessarily associated with the original transposition (fusion) event. Our study demonstrates that the process of duplication is strongly dependent on the homologous recombination system of Escherichia coli, since it is undetectable by our methods in recA- strains. It is also strongly dependent on the presence of a functional DNA polymerase I in the cell. The major pathway(s) for this duplication thus appears to rely on both the homologous recombination system and the replication of the duplicated segment.  相似文献   

3.
R E Karess  G M Rubin 《Cell》1982,30(1):63-69
The white-ivory (wi) mutation, an unstable allele of the white locus in Drosophila, reverts to wild-type at frequencies of 5 X 10(-5) in homozygous females, and 5 X 10(-6) in males and deletion heterozygous females. We show by molecular cloning and Southern blot analysis of DNA from wi flies that a 2.9 kilobase tandem duplication within the white locus is responsible for the mutation. Phenotypic reversion appears, in most cases, to be due to an exact excision of the extra copy of the sequence. Two derivative alleles of wi, one phenotypically wild-type, the other a partial revertant, carry insertions of moderately repetitive DNA from outside the locus, in addition to suffering deletions of some white locus DNA. Earlier genetic data preclude unequal crossing-over between homologs as an explanation for the precise reversions. Rather, an intrachromosomal meiotic event seems to be responsible. Our results suggest that intrachromosomal recombination may be responsible in other systems for a larger number of rearrangements than has been suspected, and that interallelic recombination frequencies in Drosophila do not always correlate in a simple way with DNA length or extent of homology.  相似文献   

4.
Unequal crossing-over is involved in genetic duplication and deletion in such diverse genetic systems as Drosophila, bacteria, and animal viruses. It is proposed to be involved in the form of unequal sister chromatid exchange in gene amplification in cultured animal cells and during carcinogenesis. Studies of the process of unequal crossing-over have been hampered by the lack of genetic systems allowing specific selection for cells that have undergone such unequal crossing-over. We report here on the construction of plasmids designed to provide specific selection of unequal crossing-over. One such plasmid was studied in Escherichia coli. We show that kanamycin resistance is generated, as predicted, by the expected unequal crossover event.  相似文献   

5.
Genome regions containing multiple copies of homologous genes, such as the immunoglobulin (Ig) heavy-chain constant-region (IGHC) locus, are often unstable and give rise to duplicated and deleted haplotypes. Analysis of such processes is fundamental to understanding the mechanisms of evolution of multigene families. In the IGHC region, a number of single and multiple gene deletions, derived from either unequal crossing-over or looping-out excision, have been described. To study these haplotypes at the population level, a simple and efficient method for preparing large numbers of DNA samples suitable for pulsed-field gel electrophoresis (PFGE) analysis was set up, and a sample of 110 blood donors was screened. Deletions were found to be frequent, as expected on the basis of previous serological surveys for homozygotes. Furthermore, a number of multigene duplications, never identified before, were detected. The total frequency of individuals bearing rearranged IGHC haplotypes was 10%. The genes involved in these deletions and duplications were assessed by densitometric analysis of standard Southern blots hybridized with several IGHC probes; two types of deletion and two types of duplication could thus be characterized. These data provide further evidence of the instability of the IGHC locus and demonstrate that unequal crossing-over is the most likely origin of rearranged IGHC haplotypes; they also suggest that such recombination events may be relatively frequent. Moreover, the simplicity and effectiveness of the large-scale PFGE screening approach will be of great help in the study of multigene families and of other loci involved in aberrant recombinations.  相似文献   

6.
Mutational mechanisms of Williams-Beuren syndrome deletions   总被引:6,自引:0,他引:6       下载免费PDF全文
Williams-Beuren syndrome (WBS) is a segmental aneusomy syndrome that results from a heterozygous deletion of contiguous genes at 7q11.23. Three large region-specific low-copy repeat elements (LCRs), composed of different blocks (A, B, and C), flank the WBS deletion interval and are thought to predispose to misalignment and unequal crossing-over, causing the deletions. In this study, we have determined the exact deletion size and LCR copy number in 74 patients with WBS, as well as precisely defined deletion breakpoints in 30 of them, using LCR-specific nucleotide differences. Most patients (95%) exhibit a 1.55-Mb deletion caused by recombination between centromeric and medial block B copies, which share approximately 99.6% sequence identity along 105-143 kb. In these cases, deletion breakpoints were mapped at several sites within the recombinant block B, with a cluster (>27%) occurring at a 12 kb region within the GTF2I/GTF2IP1 gene. Almost one-third (28%) of the transmitting progenitors were found to be heterozygous for an inversion between centromeric and telomeric LCRs. All deletion breakpoints in the patients with the inversion occurred in the distal 38-kb block B region only present in the telomeric and medial copies. Finally, only four patients (5%) displayed a larger deletion ( approximately 1.84 Mb) caused by recombination between centromeric and medial block A copies. We propose models for the specific pairing and precise aberrant recombination leading to each of the different germline rearrangements that occur in this region, including inversions and deletions associated with WBS. Chromosomal instability at 7q11.23 is directly related to the genomic structure of the region.  相似文献   

7.
Rp1 is a complex disease resistance locus in maize that is exceptional in both allelic variability and meiotic instability. Genomic sequence analysis of three maize BACs from the Rp1 region of the B73 inbred line revealed 4 Rp1 homologs and 18 other gene-homologous sequences, of which at least 16 are truncated. Thirteen of the truncated genes are found in three clusters, suggesting that they arose from multiple illegitimate break repairs at the same sites or from complex repairs of each of these sites with multiple unlinked DNA templates. A 43-kb region that contains an Rp1 homolog, six truncated genes, and three Opie retrotransposons was found to be duplicated in this region. This duplication is relatively recent, occurring after the insertion of the three Opie elements. The breakpoints of the duplication are outside of any genes or identified repeat sequence, suggesting a duplication mechanism that did not involve unequal recombination. A physical map and partial sequencing of the Rp1 complex indicate the presence of 15 Rp1 homologs in regions of approximately 250 and 300 kb in the B73 inbred line. Comparison of fully sequenced Rp1-homologous sequences in the region demonstrates a history of unequal recombination and diversifying selection within the Leu-rich repeat 2 region, resulting in chimeric gene structures.  相似文献   

8.
A model of evolution for accumulating genetic information   总被引:3,自引:0,他引:3  
By taking into account recent knowledge of multigene families and other repetitive DNA sequences, a model of evolution by gene duplication for accumulating genetic information is studied. Genetic information is defined as the sum of distinct functions that the gene family can perform. A coefficient, "genetic diversity" is defined and used in this study, that is highly correlated with genetic information. Initially, a multigene family with a few gene copies is assumed, and natural selection starts to work on this gene family to increase genetic diversity contained in the gene family. As an important mechanism, unequal crossing-over is incorporated. Together with mutation, it is responsible for supplying genetic variability among individuals for selection to work. A specific model, in which individuals with less genetic diversity are selectively disadvantageous, has been studied in detail. Through approximate theoretical analysis and extensive Monte Carlo studies, it has been shown that the system is an extremely efficient way to accumulate genetic information. For attaining one gene, the genetic load is much smaller under this model than under the traditional model of natural selection. The model may be applied to the process of origin of multigene families with diverse copy members such as those of immunoglobulin or cytochrome P450. In general, the process of creating new genes by duplication might be somewhere between the present and the traditional models.  相似文献   

9.
Tandem-repetitive noncoding DNA: forms and forces   总被引:8,自引:1,他引:7  
A model of sequence-dependent, unequal crossing-over and gene amplification (slippage replication) has been stimulated in order to account for various structural features of tandemly repeated DNA sequences. It is shown that DNA whose sequence is not maintained by natural selection will exhibit repetitive patterns over a wide range of recombination rates as a result of the interaction of unequal crossing-over and slippage replication, processes that depend on sequence similarity. At high crossing-over frequencies, the nucleotide patterns generated in the simulations are simple and highly regular, with short, nearly identical sequences repeated in tandem. Decreasing recombination rates increase the tendency to longer and more-complex repeat units. Periodicities have been observed down to very low recombination rates (one or more orders of magnitude lower than mutation rate). At such low rates, most of the sequences contain repeats which have an extensive substructure and a high degree of heterogeneity among each other; often higher-order structures are superimposed on a tandem array. These results are compared with various structural properties of tandemly repeated DNAs known from eukaryotes, the spectrum ranging from simple-sequence DNAs, particularly the hypervariable mini-satellites, to the classical satellite DNAs, located in chromosomal regions of low recombination, e.g., heterochromatin.  相似文献   

10.
K. G. Golic 《Genetics》1994,137(2):551-563
The transposase source Δ2-3(99B) was used to mobilize a P element located at sites on chromosomes X, 2 and 3. The transposition event most frequently recovered was a chromosome with two copies of the P element at or near the original site of insertion. These were easily recognized because the P element carried a hypomorphic while gene with a dosage dependent phenotype; flies with two copies of the gene have darker eyes than flies with one copy. The P element also carried direct repeats of the recombination target (FRT) for the FLP site-specific recombinase. The synthesis of FLP in these flies caused excision of the FRT-flanked white gene. Because the two white copies excised independently, patches of eye tissue with different levels of pigmentation were produced. Thus, the presence of two copies of the FRT-flanked white gene could be verified. When the P elements lay in the same orientation, FLP-mediated recombination between the FRTs on separated elements produced deficiencies and duplications of the flanked region. When P elements were inverted, the predominant consequence of FLP-catalyzed recombination between the inverted elements was the formation of dicentric chromosomes and acentric fragments as a result of unequal sister chromatid exchange.  相似文献   

11.
Role of gene duplication in evolution   总被引:7,自引:0,他引:7  
T Ohta 《Génome》1989,31(1):304-310
It is now known that many multigene and supergene families exist in eukaryote genomes: multigene families with uniform copy members like genes for ribosomal RNA, those with variable members like immunoglobulin genes, and supergene families such as those for various growth factor and hormone receptors. Many such examples indicate that gene duplication and subsequent differentiation are extremely important for organismal evolution. In particular, gene duplication could well have been the primary mechanism for the evolution of complexity in higher organisms. Population genetic models for the origin of gene families with diverse functions are presented, in which natural selection favors those genomes with more useful mutants in duplicated genes. Since any gene has a certain probability of degenerating by mutation, success versus failure in acquiring a new gene by duplication may be expressed as the ratio of probabilities of spreading of useful versus detrimental mutations in redundant gene copies. Also examined are the effects of gene duplication on evolution by compensatory advantageous mutations. Results of the analyses show that both natural selection and random drift are important for the origin of gene families. In addition, interaction between molecular mechanisms such as unequal crossing-over and gene conversion, and selection or drift is found to have a large effect on evolution by gene duplication.  相似文献   

12.
A defective LDL receptor gene in a child with familial hypercholesterolemia produces a receptor precursor that is 50,000 daltons larger than normal (apparent Mr 170,000 vs. 120,000). The elongated protein resulted from a 14 kilobase duplication that encompasses exons 2 through 8. The duplication arose from an unequal crossing-over between homologous repetitive elements (Alu sequences) in intron 1 and intron 8. The mutant receptor has 18 contiguous cysteine-rich repeat sequences instead of the normal nine. Seven of these duplicated repeats are derived from the ligand-binding domain, and two repeats are part of the epidermal growth factor precursor homology region. The elongated receptor undergoes normal carbohydrate processing, its apparent molecular weight increases to 210,000, and the receptor reaches the cell surface where it binds reduced amounts of LDL but undergoes efficient internalization and recycling. The current findings support an evolutionary model in which homologous recombination between repetitive elements in introns leads to exon duplication during evolution of proteins.  相似文献   

13.
Current models for the evolution of plant disease resistance (R) genes are based on mechanisms such as unequal crossing-over, gene conversion and point mutations as sources for genetic variability and the generation of new specificities. Size variation in leucine-rich repeat (LRR) domains was previously mainly attributed to unequal crossing-over or template slippage between LRR units. Our analysis of 112 R genes and R gene analogs (RGAs) from 16 different gene lineages from monocots and dicots showed that individual LRR units are mostly too divergent to allow unequal crossing-over. We found that illegitimate recombination (IR) is the major mechanism that generates quasi-random duplications within the LRR domain. These initial duplications are required as seeds for subsequent unequal crossing-over events which cause the observed rapid increase or decrease in LRR repeat numbers. Ten of the 16 gene lineages studied contained such duplications, and in four of them the duplications served as a template for subsequent repeat amplification. Our analysis of Pm3-like genes from rice and three wheat species showed that such events can be traced back more than 50 million years. Thus, IR represents a major new evolutionary mechanism that is essential for the generation of molecular diversity in evolution of RGAs.  相似文献   

14.
E M Simpson  D C Page 《Genomics》1991,11(3):601-608
The small portion of the mouse Y chromosome retained in the Sxra transposition is thought to carry at least five genes including, as demonstrated here, the entirety of the zinc-finger genes Zfy-1 and Zfy-2. Sxrb, a derivative of Sxra, was previously thought to retain Zfy-1 but to be deleted for Zfy-2. Here we show that Sxrb differs from Sxra as the result of unequal crossing-over between Zfy-1 and Zfy-2. This unequal crossing-over created a transcribed Zfy-2/1 fusion gene and an interstitial deletion. Our data and previous results together suggest that this deletion encompassed the 3' portion of Zfy-2, the histocompatibility gene Hya, the spermatogenesis factor Spy, and the 5' portion of Zfy-1. We suggest that not only Zfy but also other neighboring genes such as Spy and Hya may exist in two copies on the Y as the result of a large tandem duplication during rodent evolution.  相似文献   

15.
Evolutionary changes during the process of sex chromosome differentiation in Drosophila miranda are associated with massive DNA rearrangements. Comparing the DNA structure of the larval cuticle protein (Lcp) region from the X2 and neo-Y chromosome pair, we observed insertions, deletions and a large duplication at the neo-Y chromosomal locus. The duplication encompasses a complete copy of the neo-Y allele of Lcp2, and the ISY3 and the ISY4 insertion sequences. The latter was identified as a retrotransposon, termed TRIM. ISY3 shows DNA sequence similarity to P element homologs identified in the Drosophila obscura species group. We were interested in mechanistic aspects generating the duplication. We cannot exclude unequivocally that unequal sister-chromatid exchange could give rise to the observed duplication; however, recombination is a rare event in Drosophila males. Location and sequence of the retrotransposon TRIM served as molecular markers allowing us to reconstruct two intrachromosomal transposition events that could lead to the observed duplication.  相似文献   

16.
Species differences in the size or membership composition of multigene families can be attributed to lineage-specific additions of new genes via duplication, losses of genes via deletion or inactivation, and the creation of chimeric genes via domain shuffling or gene fusion. In principle, it should be possible to infer the recombinational pathways responsible for each of these different types of genomic change by conducting detailed comparative analyses of genomic sequence data. Here, we report an attempt to unravel the complex evolutionary history of the beta-globin gene family in a taxonomically diverse set of rodent species. The main objectives were: 1) to characterize the genomic structure of the beta-globin gene cluster of rodents; 2) to assign orthologous and paralogous relationships among duplicate copies of beta-like globin genes; and 3) to infer the specific recombinational pathways responsible for gene duplications, gene deletions, and the creation of chimeric fusion genes. Results of our comparative genomic analyses revealed that variation in gene family size among rodent species is mainly attributable to the differential gain and loss of later expressed beta-globin genes via unequal crossing-over. However, two distinct recombinational mechanisms were implicated in the creation of chimeric fusion genes. In muroid rodents, a chimeric gamma/epsilon fusion gene was created by unequal crossing-over between the embryonic epsilon- and gamma-globin genes. Interestingly, this gamma/epsilon fusion gene was generated in the same fashion as the "anti-Lepore" 5'-delta-(beta/delta)-beta-3' duplication mutant in humans (the reciprocal exchange product of the pathological hemoglobin Lepore deletion mutant). By contrast, in the house mouse, Mus musculus, a chimeric beta/delta fusion pseudogene was created by a beta-globin --> delta-globin gene conversion event. Although the gamma/epsilon and beta/delta fusion genes share a similar chimeric gene structure, they originated via completely different recombinational pathways.  相似文献   

17.
Human glycophorin Sta (HGpSta), one of the structural variants of erythrocyte membrane sialoglycoproteins, is encoded by a delta-alpha hybrid gene that arose from a single unequal crossover between the parent HGpB(delta) and HGpA(alpha) genes. We report here the identification of two new HGpSta genes (type A and type B) in four unrelated Sta heterozygotes from two ethnic groups. These Sta genes represent distinct genetic isoforms that differ from the previously reported Sta gene (type C) in the location of crossing-over sites. Comparison of nucleotide sequences among HGpB(delta), HGpA(alpha), and HGpSta type A genes revealed that the delta-alpha unequal crossover for the Sta type A gene occurred 110-246 base pairs downstream from pseudoexon III. In the crossing-over site of this Sta gene, an AT-rich sequence lying 3' to a nonameric palindrome was found to be highly similar to the lambda phage attachment site, att B, in inverted orientation. In the Sta type B gene, the delta-alpha crossing-over point was localized to an AG-rich sequence that is 302-490 base pairs downstream from pseudoexon III. Multiple lambda chi-like elements were identified at the crossover boundaries and within the breakpoint of this Sta gene. These results suggest strongly that recurrent and independent unequal recombination events have occurred in the formation of multiple Sta genes and that particular genomic sequences are important in defining the recombination sites for these homology-driven processes.  相似文献   

18.
Bov-A2 is a retroposon that is widely distributed among the genomes of ruminants (e.g., cow, deer, giraffe, pronghorn, musk deer, and chevrotain). This retroposon is composed of two monomers, called Bov-A units, which are joined by a linker sequence. The structure and origin of Bov-A2 has been well characterized but a genome-level exploration of this retroposon has not been implemented. In this study we performed an extensive search for Bov-A2 using all available genome sequence data on Bos taurus. We found unique Bov-A2-derived sequences that were longer than Bov-A2 due to amplification of three to six Bov-A units arranged in tandem. Detailed analysis of these elongated Bov-A2-derived sequences revealed that they originated through unequal crossing-over of Bov-A2. We found a large number of these elongated Bov-A2-derived sequences in cattle genomes, indicating that unequal crossing-over of Bov-A2 occurred very frequently. We found that this type of elongation is not observed in wild bovine and is therefore specific to the domesticated cattle genome. Furthermore, at specific loci, the number of Bov-A units was also polymorphic between alleles, implying that the elongation of Bov-A units might have occurred very recently. For these reasons, we speculate that genomic instability in bovine genomes can lead to extensive unequal crossing-over of Bov-A2 and levels of polymorphism might be generated in part by repeated outbreeding.  相似文献   

19.
Mutations in KIT encoding the mast/stem cell growth factor receptor (MGF) are responsible for coat color variation in domestic pigs. The dominant white phenotype is caused by two mutations, a gene duplication and a splice mutation in one of the copies leading to skipping of exon 17. Here we applied minisequencing and pyrosequencing for quantitative analysis of the number of copies with the splice form. An unexpectedly high genetic diversity was revealed in white pigs. We found four different KIT alleles in a small sample of eight Large White females used as founder animals in a wild boar intercross. A similar number of KIT alleles was found in commercial populations of white Landrace and Large White pigs. We provide evidence for at least two new KIT alleles in pigs, both with a triplication of the gene. The results imply that KIT alleles with the duplication are genetically unstable and new alleles are most likely generated by unequal crossing over. This study provides an improved method for genotyping the complicated Dominant white/KIT locus in pigs. The results also suggest that some alleles may be associated with negative pleiotropic effects on other traits.  相似文献   

20.
Alpha satellite DNA, a diverse family of tandemly repeated DNA sequences located at the centromeric region of each human chromosome, is organized in a highly chromosome-specific manner and is characterized by a high frequency of restriction-fragment-length polymorphism. To examine events underlying the formation and spread of these polymorphisms within a tandem array, we have cloned and sequenced a representative copy of a polymorphic array from the X chromosome and compared this polymorphic copy with the predominant higher-order repeat form of X-linked alpha satellite. Sequence data indicate that the polymorphism arose by a single base mutation that created a new restriction site (for HindIII) in the sequence of the predominant repeat unit. This variant repeat unit, marked by the new HindIII site, was subsequently amplified in copy number to create a polymorphic domain consisting of approximately 500 copies of the variant repeat unit within the X-linked array of alpha satellite. We propose that a series of intrachromosomal recombination events between misaligned tandem arrays, involving multiple rounds of either unequal crossing-over or sequence conversion, facilitated the spread and fixation of this variant HindIII repeat unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号