首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth Control by Ethylene: Adjusting Phenotypes to the Environment   总被引:6,自引:0,他引:6  
Plants phenotypically adjust to environmental challenges, and the gaseous plant hormone ethylene modulates many of these growth adjustments. Ethylene can be involved in environmentally induced growth inhibition as well as growth stimulation. Still, ethylene has long been considered a growth inhibitory hormone. There is, however, accumulating evidence indicating that growth promotion is a common feature in ethylene responses. This is evident in environmental challenges, such as flooding and competition, where the resulting avoidance responses can help plants avoid adversity. To show how ethylene-mediated growth enhancement can facilitate plant performance under adverse conditions, we explored a number of these examples. To escape adversity, plants can optimize growth and thereby tolerate abiotic stresses such as drought, and this response can also involve ethylene. In this article we indicate how opposing effects of ethylene on plant growth can be brought about, by discussing a unifying, biphasic ethylene response model. To understand the mechanistic basis for this multitude of ethylene-mediated growth responses, the involvement of ethylene in processes that control cell expansion is also reviewed.  相似文献   

2.
Tomato seeds were inoculated with the plant growth–promoting rhizobacteria Azospirillum brasilense FT326, and changes in parameters associated with plant growth were evaluated 15 days after inoculation. Azospirilla were localized on roots and within xylematic tissue. An increase in shoot and root fresh weight, main root hair length, and root surface indicated that inoculation with A. brasilense FT 326 resulted in plant growth improvement. The levels of indole-3-acetic acid (IAA) and ethylene, two of the phytohormones related to plant growth, were higher in inoculated plants. Exogenously supplied ethylene mimicked the effect of inoculation, and the addition of an inhibitor of its synthesis or of its physiological activity completely blocked A. brasilense growth promotion. Based on our results, we propose that the process of growth promotion triggered by A. brasilense inoculation involves a signaling pathway that has ethylene as a central, positive regulator.  相似文献   

3.
Previously, it was proposed that plant growth-promoting bacteria that possess the enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, can reduce the amount of ethylene produced by a plant and thereby promote root elongation. To test this model, canola seeds were imbibed in the presence of the chemical ethylene inhibitor, 2-aminoethoxyvinyl glycine (AVG), various strains of plant growth-promoting bacteria, and a psychrophilic bacterium containing an ACC deaminase gene on a broad host range plasmid. The extent of root elongation and levels of ACC, the immediate precursor of ethylene, were measured in the canola seedling roots. A modification of the Waters AccQ.Tag Amino Acid Analysis Method was used to quantify ACC in the root extracts. It was found that, in the presence of the ethylene inhibitor, AVG, or any one of several ACC deaminase-containing strains of bacteria, the growth of canola seedling roots was enhanced and the ACC levels in these roots were lowered.  相似文献   

4.
5.
When young radish ( Raphanus sativus L. cv, Novired RS) plants were exposed to low levels of ethylene, the fresh weight and dry weight of the tubers significantly increased. This was mainly because ethylene reduced the percentage of plants that hardly or not at all formed a tuber. Decaptated seedling cultured in vitro, were supplied with several plant growth regulators in order to determine a possible correlation between the induction of radial growth and the biosynthesis of ethylene in the hypocotyl. Indole-3-acetic acid, or in combination with 6-benzylaminopurine, induced growth of the hypocotyl and markedly enhanced ethylene biosynthesis. However, the application of a precursor and an inhibitor of ethylene biosynthesis revealed that there is no direct causal relationship between radial growth and ethylene evolution. It is suggested that ethylene favoured tuber growth in intact plants by changing the partitioning of assimilates in the plant, rather than by the induction of cambial activity.  相似文献   

6.
The influence of ethylene in plant tissue culture   总被引:14,自引:0,他引:14  
Ethylene produced by plant tissues grown in vitro may accumulate in large quantities in the culture vessels, particularly from rapidly growing non-differentiated callus or suspension cultures, and hence is likely to influence growth and development in such systems. Research into this aspect of tissue culture has been sparse, although it has grown recently with the increasing importance of in vitro regeneration. This review deals with the measurement and relevance of the accumulated ethylene, and the influence of both exogenous and endogenous ethylene in the different types of tissue culture systems. The relationships between ethylene and other growth regulators in tissue culture growth and development are also discussed. Although in some cases its influence seems negligible, in many types of tissue culture ethylene may act either as a promoter or inhibitor depending on the species used. Thus ethylene has an important influence on many aspects of in vitro regeneration, but it is also clear that we cannot at present describe a specific role or roles for ethylene in tissue culture which can be applied at a general, species-wide level. If its effects are to be enhanced or diminished in order to improve the efficiency and range of plant tissue culture, then more research is needed to clarify what its fundamental role might be in in vitro growth and development.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminooxyacetic acid - ASA acetylsalicyclic acid - AVG aminoethoxyvinylglycine - BA N6 benzylaminopurine; 2,4-D, 2,4-dichlorophenoxyacetic acid - DNP 2,4-dinitrophenol - GA gibberellin - IAA indole-3-acetic acid - IBA indole-3-butyric acid - NAA naphthaleneacetic acid - SAM S-adenosylmethionine - STS silver thiosulphate - TIBA 2,3,5-triidobenzoic acid  相似文献   

7.
8.
Steffens B  Wang J  Sauter M 《Planta》2006,223(3):604-612
Growth of adventitious roots is induced in deepwater rice (Oryza sativa L.) when plants become submerged. Ethylene which accumulates in flooded plant parts is responsible for root growth induction. Gibberellin (GA) is ineffective on its own but acts in a synergistic manner together with ethylene to promote the number of penetrating roots and the growth rate of emerged roots. Studies with the GA biosynthesis inhibitor paclobutrazol revealed that root emergence was dependent on GA activity. Abscisic acid (ABA) acted as a competitive inhibitor of GA activity. Root growth rate on the other hand was dependent on GA concentration and ABA acted as a potent inhibitor possibly of GA but also of ethylene signaling. The results indicated that root emergence and elongation are distinct phases of adventitious root growth that are regulated through different networking between ethylene, GA and ABA signaling pathways. Adventitious root emergence must be coordinated with programmed death of epidermal cells which cover root primordia. Epidermal cell death is also controlled by ethylene, GA and ABA albeit with cell-type specific cross-talk. Different interactions between the same hormones may be a means to ensure proper timing of cell death and root emergence and to adjust the growth rate of emerged adventitious roots.  相似文献   

9.
10.
Madhaiyan M  Poonguzhali S  Sa T 《Planta》2007,226(4):867-876
The possible interaction of the plant hormones auxin and ethylene and the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing bacteria on ethylene production in canola (Brassica campestris) in the presence of inhibitory concentrations of growth regulators were investigated. The effects of auxin (indole-3-acetic acid and 2,4-dichlorophenoxy acetic acid), auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid, ethylene precursor 1-aminocyclopropane-1-carboxylate and ethylene synthesis inhibitor l-α-(2-aminoethoxyvinyl)glycine hydrochloride on root elongation were concentration dependent. Exogenous addition of growth regulators influences the enzyme activities of ethylene production and we have presented here evidences that support the hypothesis that inhibitory effects of auxin on root elongation are independent of ethylene. Additionally, we have proved that inoculation of ACC deaminase containing Methylobacterium oryzae sequester ACC exuded from roots and hydrolyze them lowering the concentration of ACC in root exudates. However, the inhibitory actions of exogenous additions of auxins could not be ameliorated by bacterial inoculation that reduces ethylene concentration in canola seedlings.  相似文献   

11.
The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.  相似文献   

12.
Ethylene is a gaseous plant hormone used in many physiological studies examining its role in plant growth and development. However, ethylene gas may not be conveniently available to many laboratories for occasional use, and therefore several chemicals can be used as replacements. Here we report that the kinetics of the ethylene response induced by ethylene and two widely-used ethylene replacements are different. ACC failed to efficiently replace prolonged ethylene treatments, while the decomposition products of ethephon may cause non-specific responses and the efficiency of ethephon conversion to ethylene was relatively low. A cost-effective method to prepare ethylene gas was developed. Analyzed by gas chromatography, the chemically produced ethylene exhibited an identical chromatogram to that from the commercial source. Our synthetic ethylene gave the same dose-response curve in Arabidopsis as gaseous ethylene. Our study shows that the use of the ethylene gas is essential to experiments that are sensitive to treatment duration and dosage. When ACC and ethephon are used as replacements, caution should be taken in the experimental design. For laboratories that do not have an ethylene tank, ethylene gas can be easily prepared by a chemical approach without further purification.  相似文献   

13.
14.
Responses of rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria, Pseudomonas putida Am2, Pseudomonas putida Bm3, Alcaligenes xylosoxidans Cm4, and Pseudomonas sp. Dp2, containing 1-aminocyclopropane-l-carboxylate (ACC) deaminase were studied using growth pouch and soil cultures. In growth pouch culture, the bacteria significantly increased root elongation of phosphorus-sufficient seedlings, whereas root elongation of phosphorus-deficient seedlings was not affected or was even inhibited by the bacteria. Bacterial stimulation of root elongation of phosphorus-sufficient seedlings was eliminated in the presence of a high ammonia concentration (1 mM) in the nutrient solution. Bacterial effects on root elongation of potassium-deficient and potassium-sufficient seedlings were similar. The bacteria also decreased inorganic phosphate content in shoots of potassium- and phosphorus-sufficient seedlings, reduced ethylene production by phosphorus-sufficient seedlings, and inhibited development of root hairs. The effects of treatment with Ag+, a chemical inhibitor of plant ethylene production, on root elongation, ethylene evolution, and root hair formation were similar to bacterial treatments. The number of bacteria on the roots of phosphorus-deficient seedlings was not limited by phosphorus deficiency. In pot experiments with soil culture, inoculation of seeds with bacteria and treatment with aminoethoxyvinylglycine, an inhibitor of ethylene biosynthesis in plants, increased root and (or) shoot biomass of rape plants. Stimulation of plant growth caused by the bacteria was often associated with a decrease in the content of nutrients, such as P, K, S, Mo, and Ba, in shoots, depending on the strain used. The results obtained show that the growth-promoting effects of ACC-utilizing rhizobacteria depend significantly on the nutrient status of the plant.  相似文献   

15.
? With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. ? The induction of AtPT2 was used as a marker to find novel signalling components involved in plant responses to Pi starvation. Using genetic and chemical approaches, we examined the role of ethylene in the regulation of plant responses to Pi starvation. ? hps2, an Arabidopsis mutant with enhanced sensitivity to Pi starvation, was identified and found to be a new allele of CTR1 that is a key negative regulator of ethylene responses. 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, increases plant sensitivity to Pi starvation, whereas the ethylene perception inhibitor Ag+ suppresses this response. The Pi starvation-induced gene expression and acid phosphatase activity are also enhanced in the hps2 mutant, but suppressed in the ethylene-insensitive mutant ein2-5. By contrast, we found that ethylene signalling plays a negative role in Pi starvation-induced anthocyanin production. ? These findings extend the roles of ethylene in the regulation of plant responses to Pi starvation and will help us to gain a better understanding of the molecular mechanism underlying these responses.  相似文献   

16.
Ethylene: potential key for biochar amendment impacts   总被引:8,自引:0,他引:8  
Significant increases in root density, crop growth and productivity have been observed following soil additions of biochar, which is a solid product from the pyrolysis of biomass. In addition, alterations in the soil microbial dynamics have been observed following biochar amendments, with decreased carbon dioxide (CO2) respiration, suppression of methane (CH4) oxidation and reduction of nitrous oxide (N2O) production. However, there has not been a full elucidation of the mechanisms behind these effects. Here we show data on ethylene production that was observed from biochar and biochar-amended soil. Ethylene is an important plant hormone as well as an inhibitor for soil microbial processes. Our current hypothesis is that the ethylene is biochar derived, with a majority of biochars exhibiting ethylene production even without soil or microbial inoculums. There was increased ethylene production from non-sterile compared to sterile soil (215%), indicating a role of soil microbes in the observed ethylene production. Production varied with different biomass sources and production conditions. These observations provide a tantalizing insight into a potential mechanism behind the biochar effects observed, particularly in light of the important role ethylene plays in plant and microbial processes.  相似文献   

17.
Phytohormones regulate plant development via a poorly understood signal response network. Here, we show that the phytohormone ethylene regulates plant development at least in part via alteration of the properties of DELLA protein nuclear growth repressors, a family of proteins first identified as gibberellin (GA) signaling components. This conclusion is based on the following experimental observations. First, ethylene inhibited Arabidopsis root growth in a DELLA-dependent manner. Second, ethylene delayed the GA-induced disappearance of the DELLA protein repressor of ga1-3 from root cell nuclei via a constitutive triple response-dependent signaling pathway. Third, the ethylene-promoted "apical hook" structure of etiolated seedling hypocotyls was dependent on the relief of DELLA-mediated growth restraint. Ethylene, auxin, and GA responses now can be attributed to effects on DELLA function, suggesting that DELLA plays a key integrative role in the phytohormone signal response network.  相似文献   

18.
Cancel JD  Larsen PB 《Plant physiology》2002,129(4):1557-1567
Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response.  相似文献   

19.
Interactions between plants and trace gases, especially ethylene, were investigated from two different viewpoints; ethylene is toxic for plant growth, whereas the ethylene release rate of plants can be utilized as a plant growth indicator. When lettuce plants and shiitake mushroom mycelium were cultivated in closed chambers, ethylene concentration increased with time. Ethylene was released both from lettuce plant and from shiitake mushroom mycelium. Dioctyl phthalate (DOP) and Dibutyl phthalate (DBP) were detected, and these concentrations reached 3.7 ngL-1 for DOP and 2.4 ngL-1 for DBP 4 days after closing. Organic solvents such as xylene and toluene and organic siloxane were detected with GCMS. Visible injury was observed in lettuce plants cultivated in the chambers and it seemed to result from trace contaminants such as DOP, DBP, organic solvents, dimethylsiloxane polymer, and ethylene. In order to obtain basic data of ethylene evolution from plants, ethylene concentration in a closed chamber in which the plants were cultivated under a controlled environment (25 degrees C air temperature, 60-70% relative humidity, 250-300 micromoles m-2 s-1 photosynthetic photon flux density (PPFD)) was measured. Lettuce (Lactuca sativa L. cv. Okayama) released ethylene more than Brassica rapa var. pervidis, Brassica campestris var. communis, and Brassica campestris var. narinosa. Ethylene release rate of intact lettuce plant was highly correlated with plant growth parameters such as dry weight, leaf area and photosynthetic rate. Ethylene release rates of intact lettuce plant were affected by cultivation conditions such as ambient CO2 concentration, light intensity and light/dark period. Increase in ambient ethylene level influenced lettuce growth even at the concentration of 0.1 microliter L-1. The level of ethylene inhibited leaf expansion and slightly accelerated chlorophyll degradation. It did not affect photosynthesis and transpiration, and also little affected dry matter accumulation. Thus, ethylene release characteristics were clarified and an effect of ethylene on lettuce growth was revealed. These findings are useful for determination of a threshold level of ethylene and a capacity of ethylene removal system in CELSS. On the other hand, a possibility of plant growth diagnosis by measuring ethylene concentrations was evaluated. As a result, it became clear that the measurement of ethylene concentration in CELSS is one of the useful non-destructive measurement methods for plant growth diagnosis. Further research is needed to investigate the applicability of the method to environmental stresses other than Ni and Co in nutrient solution.  相似文献   

20.
Wheat coleoptile sections were treated with a range of auxins and with compounds of related chemical structure which do not exhibit auxin properties. Methods used for measuring the rates of elongation and ethylene evolution of these sections are described. Ethylene was evolved some time after elongation in all cases and increased ethylene production occurred only with compounds showing auxin activity. The results indicate that ethylene evolution was related exponentially to growth. Simultaneous applications of mannitol and 2, 4-dichloro-phenoxyacetic acid (2, 4-D) to wheat sections markedly reduced ethylene evolution compared with the 2, 4-D controls, even though the level of 2, 4-D in the tissue apparently remained unchanged. Ethylene significantly inhibited the elongation of wheat coleoptile sections, and it is suggested that ethylene is a natural plant growth inhibitor which becomes mobilised to limit excessive growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号