首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrin-mediated signal transduction pathways.   总被引:19,自引:0,他引:19  
Integrins serve as adhesion receptors for extracellular matrix proteins and also transduce biochemical signals into the cell. They regulate a variety of cellular functions, including spreading, migration, proliferation and apoptosis. Many signaling pathways downstream of integrins have been identified and characterized and are discussed here. In particular, integrins regulate many protein tyrosine kinases and phosphatases, such as FAK and Src, to coordinate many of the cell processes mentioned above. The regulation of MAP kinases by integrins is important for cell growth or other functions, and the putative roles of Ras and FAK in these pathways are discussed. Phosphatidylinositol lipids and their modifying enzymes, particularly PI 3-kinase, are strongly implicated as mediators of integrin-regulated cytoskeletal changes and cell migration. Similarly, actin cytoskeleton regulation by the Rho family of GTPases is coordinated with integrin signaling to regulate cell spreading and migration, although the exact relationship between these pathways is not clear. Finally, intracellular pH and calcium fluxes by integrins are suggested to affect a variety of cellular proteins and functions.  相似文献   

2.
PKNbeta is a novel isoform of PKNalpha, which is one of the target protein kinases for the small GTPase Rho. By yeast two-hybrid screening of a human embryonic kidney 293 cell cDNA library with the PKNbeta linker region containing proline-rich motifs as a bait, clones encoding Graf (GAP for Rho Associated with Focal adhesion kinase) and a novel Graf-related protein, termed Graf2, were isolated. The full length of Graf2 contains a putative PH domain, a RhoGAP domain, and an SH3 domain as well as Graf. Northern and Western blot analyses demonstrated that Graf2 is expressed in several tissues, with the highest expression in skeletal muscle. Recombinant Graf2 exhibited GTPase-activating activity toward the small GTPase RhoA and Cdc42Hs, but not toward Rac1, in vitro. The SH3 domains of Graf and Graf2 purified from Escherichia coli bound directly to PKNbeta. Graf or Graf2 was co-immunoprecipitated with PKNbeta in COS-7 cells transiently transfected with Graf or Graf2 and PKNbeta expression constructs. The catalytically active form of PKNbeta phosphorylated Graf and Graf2 in vitro. The interplay of PKNbeta and the GTPase-activating proteins, Graf and Graf2, may offer a novel mechanism regulating the Rho-mediated signaling.  相似文献   

3.
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. Among these are the focal adhesion proteins p130cas (Cas) and focal adhesion kinase (FAK). Here we identify the kinase(s) mediating integrin-induced Cas phosphorylation and characterize protein-protein interactions mediated by phosphorylated Cas. We found that expression of a constitutively active FAK in fibroblasts results in a consecutive tyrosine phosphorylation of Cas. This effect required the autophosphorylation site of FAK, which is a binding site for Src family kinases. Integrin-mediated phosphorylation of Cas was not, however, compromised in fibroblasts lacking FAK. In contrast, adhesion-induced tyrosine phosphorylation of Cas was reduced in cells lacking Src, whereas enhanced phosphorylation of Cas was observed Csk- cells, in which Src kinases are activated. These results suggest that Src kinases are responsible for the integrin-mediated tyrosine phosphorylation of Cas. FAK seems not to be necessary for phosphorylation of Cas, but when autophosphorylated, FAK may recruit Src family kinases to phosphorylate Cas. Cas was found to form complexes with Src homology 2 (SH2) domain-containing signaling molecules, such as the SH2/SH3 adapter protein Crk, following integrin-induced tyrosine phosphorylation. Guanine nucleotide exchange factors C3G and Sos were found in the Cas-Crk complex upon integrin ligand binding. These observations suggest that Cas serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion.  相似文献   

4.
Stimulation of a number of cell surface receptors, including integrins and G protein-coupled receptors, results in the activation of a non-receptor tyrosine kinase known as focal adhesion kinase (FAK). In turn, this kinase is believed to play a critical role in signaling to intracellular kinase cascades controlling gene expression such as extracellular signal-regulated kinases (ERKs), by a yet poorly defined mechanism. Furthermore, whether this tyrosine kinase also mediates the activation of other mitogen-activated protein kinase family members, such as c-Jun NH(2)-terminal kinases (JNKs), is still unclear. We show here that the activation of FAK by anchoring to the cell membrane is itself sufficient to stimulate potently both ERK and JNK. These effects were found to be phosphatidylinositol 3-kinase-independent, as FAK effectively stimulated Akt, and wortmannin suppressed Akt but not ERK or JNK activation. As previously reported by others, activation of ERK correlated with the ability of FAK to induce tyrosine phosphorylation of Shc. Surprisingly, however, stimulation of JNK was not dependent on the kinase activity of FAK or on the ability to induce tyrosine phosphorylation of FAK substrates. Instead, we provide evidence that FAK may stimulate JNK through a novel pathway involving the recruitment of paxillin to the plasma membrane and the subsequent activation of a biochemical route dependent on small GTP-binding proteins of the Rho family.  相似文献   

5.
The precise biological role of Thy-1, a glycophosphatidyl-inositol (GPI)-linked cell surface glycoprotein in non-caveolar lipid raft microdomains, remains enigmatic. Evidence suggests that Thy-1 affects intracellular signaling through src-family protein kinases, and modulates adhesive and migratory events, such as thymocyte adhesion and neurite extension. Primary fibroblasts sorted based on presence or absence of cell surface Thy-1 display strikingly distinct morphologies and differ with respect to production of and response to cytokines and growth factors. It is unclear the extent to which Thy-1 mediates these differences. Findings reported here indicate a novel role for Thy-1 in regulating the activity of Rho GTPase, a critical regulator of cellular adhesion and cytoskeletal organization. Endogenous or heterologous Thy-1 expression promotes focal adhesion and stress fiber formation, characteristic of increased Rho GTPase activity, and inhibits migration. Immunoblotting following transfection of RFL6 fibroblasts with Thy-1 demonstrates that Thy-1 expression inhibits src-family protein tyrosine kinase (SFK) activation, resulting in decreased phosphorylation of p190 Rho GTPase-activating protein (GAP). This results in a net increase in active Rho, and increased stress fibers and focal adhesions. We therefore conclude that Thy-1 surface expression regulates fibroblast focal adhesions, cytoskeletal organization and migration by modulating the activity of p190 RhoGAP and Rho GTPase.  相似文献   

6.
Integrin-mediated cell adhesion causes activation of MAP kinases and increased tyrosine phosphorylation of focal adhesion kinase (FAK). Autophosphorylation of FAK leads to the binding of SH2-domain proteins including Src-family kinases and the Grb2–Sos complex. Since Grb2–Sos is a key regulator of the Ras signal transduction pathway, one plausible hypothesis has been that integrin-mediated tyrosine phosphorylation of FAK leads to activation of the Ras cascade and ultimately to mitogen activated protein (MAP) kinase activation. Thus, in this scenario FAK would serve as an upstream regulator of MAP kinase activity. However, in this report we present several lines of evidence showing that integrin-mediated MAP kinase activity in fibroblasts is independent of FAK. First, a β1 integrin subunit deletion mutant affecting the putative FAK binding site supports activation of MAP kinase in adhering fibroblasts but not tyrosine phosphorylation of FAK. Second, fibroblast adhesion to bacterially expressed fragments of fibronectin demonstrates that robust activation of MAP kinase can precede tyrosine phosphorylation of FAK. Finally, we have used FRNK, the noncatalytic COOH-terminal domain of FAK, as a dominant negative inhibitor of FAK autophosphorylation and of tyrosine phosphorylation of focal contacts. Using retroviral infection, we demonstrate that levels of FRNK expression sufficient to completely block FAK tyrosine phosphorylation were without effect on integrin-mediated activation of MAP kinase. These results strongly suggest that integrin-mediated activation of MAP kinase is independent of FAK and indicate the probable existence of at least two distinct integrin signaling pathways in fibroblasts.  相似文献   

7.
Crk-associated substrate (CAS) is a tyrosine kinase substrate implicated in integrin control of cell behavior. Phosphorylation, by Src family kinases, of multiple tyrosine residues in the CAS substrate domain (SD) is a major integrin signaling event that promotes cell motility. In this study, novel phosphospecific antibodies directed against CAS SD phosphotyrosine sites ("pCAS" antibodies) were characterized and employed to investigate the cellular regulation and localization of CAS SD tyrosine phosphorylation. An analysis of CAS and focal adhesion kinase (FAK) variants expressed in CAS- and FAK-deficient cell lines, respectively, indicated that CAS SD tyrosine phosphorylation is substantially achieved by Src family kinases brought into association with CAS through two distinct mechanisms: direct binding to the CAS Src-binding domain and indirect association through a FAK bridge. Cell immunostaining with pCAS antibodies revealed that CAS SD tyrosine phosphorylation occurs exclusively at sites of integrin adhesion including both nascent focal complexes formed at the edges of extending lamellipodia as well as mature focal adhesions underlying the cell body. These findings further document a role for FAK as an important upstream regulator of CAS SD tyrosine phosphorylation and implicate CAS-mediated signaling events in promoting membrane protrusion/lamellipodium extension during cell motility.  相似文献   

8.
Interactions linking the Eph receptor tyrosine kinase and ephrin ligands transduce short-range repulsive signals regulating several motile biological processes including axon path-finding, angiogenesis and tumor growth. These ephrin-induced effects are believed to be mediated by alterations in actin dynamics and cytoskeleton reorganization. The members of the small Rho GTPase family elicit various effects on actin structures and are probably involved in Eph receptor-induced actin modulation. In particular, some ephrin ligands lead to a decrease in integrin-mediated cell adhesion and spread. Here we show that the ability of ephrinA1 to inhibit cell adhesion and spreading in prostatic carcinoma cells is strictly dependent on the decrease in the activity of the small GTPase Rac1. Given the recognized role of Rac-driven redox signaling for integrin function, reported to play an essential role in focal adhesion formation and in the overall organization of actin cytoskeleton, we investigated the possible involvement of oxidants in ephrinA1/EphA2 signaling. We now provide evidence that Reactive Oxygen Species are an integration point of the ephrinA1/integrin interplay. We identify redox circuitry in which the ephrinA1-mediated inhibition of Rac1 leads to a negative regulation of integrin redox signaling affecting the activity of the tyrosine phosphatase LMW-PTP. The enzyme in turn actively dephosphorylates its substrate p190RhoGAP, finally leading to RhoA activation. Altogether our data suggest a redox-based Rac-dependent upregulation of Rho activity, concurring with the inhibitory effect elicited by ephrinA1 on integrin-mediated adhesion strength.Key Words: EphA2 kinase, reactive oxygen species, integrin, cell repulsion, tumorigenesis  相似文献   

9.
Integrin-associated focal adhesions not only provide adhesive links between cellular actin and extracellular matrix but also are sites of signal transmission into the cell interior. Many cell responses signal through focal adhesion kinase (FAK), often by integrin-induced autophosphorylation of FAK or phosphorylation by Src family kinases. Here, we used an interfering FAK mutant (4-9F-FAK) to show that Src-dependent FAK phosphorylation is required for focal adhesion turnover and cell migration, by controlling assembly of a calpain 2/FAK/Src/p42ERK complex, calpain activation, and proteolysis of FAK. Expression of 4-9F-FAK in FAK-deficient fibroblasts also disrupts F-actin assembly associated with normal adhesion and spreading. In addition, we found that FAK's ability to regulate both assembly and disassembly of the actin and adhesion networks may be linked to regulation of the protease calpain. Surprisingly, we also found that the same interfering 4-9F-FAK mutant protein causes apoptosis of serum-deprived, transformed cells and suppresses anchorage-independent growth. These data show that Src-mediated phosphorylation of FAK acts as a pivotal regulator of both actin and adhesion dynamics and survival signaling, which, in turn, control apparently distinct processes such as cell migration and anchorage-independent growth. This also highlights that dynamic regulation of actin and adhesions (which include the integrin matrix receptors) is critical to signaling output and biological responses.  相似文献   

10.
Calpain function in the modulation of signal transduction molecules   总被引:5,自引:0,他引:5  
Calpains are cytosolic cysteine proteases that are activated by a rise in intracellular Ca2+, and are believed to function in stimulating Ca2+ signaling on cell activation, leading the cell to differentiation, proliferation and death. In this review, we focus on the implication of calpains in signal transduction in molecules such as growth factors, T cell receptor, and integrin. Calpains are downstream molecules of hormone receptors, membrane-type tyrosine kinases and adhesion molecules, and proteolyze many signaling-related substrates. The substrates, protein kinase C (PKC), alpha subunit of G-proteins, and protein tyrosine phosphatases, are cleaved at interdomain site(s) and their activities are sustained or upregulated, while the fragments of focal adhesion kinase and the tyrosine kinase src family lose their activity. In the integrin cascade, calpains are upstream molecules of the Rho GTPase family, Rac1 or RhoA, and allow the lamellipodia formation. The significant activation of calpain suggests that calpain activity is regulated not only by an increase in intracellular Ca2+, but also by signaling that include the PKC-, tyrosine kinase- or the adhesion molecule-derived cascade. We have summarized these interesting phenomena, and speculate on the function and location of calpain in the signaling cascades.  相似文献   

11.
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins for the ADP-ribosylation factor family of small GTP-binding proteins, but also serve as adaptors to link signaling proteins to distinct cellular locations. One role for GIT proteins is to link the PIX family of Rho guanine nucleotide exchange factors and their binding partners, the p21-activated protein kinases, to remodeling focal adhesions by interacting with the focal adhesion adaptor protein paxillin. We here identified the C-terminal domain of GIT1 responsible for paxillin binding. Combining structural and mutational analyses, we show that this region folds into an anti-parallel four-helix domain highly reminiscent to the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK). Our results suggest that the GIT1 FAT-homology (FAH) domain and FAT bind the paxillin LD4 motif quite similarly. Since only a small fraction of GIT1 is bound to paxillin under normal conditions, regulation of paxillin binding was explored. Although paxillin binding to the FAT domain of FAK is regulated by tyrosine phosphorylation within this domain, we find that tyrosine phosphorylation of the FAH domain GIT1 is not involved in regulating binding to paxillin. Instead, we find that mutations within the FAH domain may alter binding to paxillin that has been phosphorylated within the LD4 motif. Thus, despite apparent structural similarity in their FAT domains, GIT1 and FAK binding to paxillin is differentially regulated.  相似文献   

12.
Signaling to migration in neutrophils: importance of localized pathways   总被引:8,自引:0,他引:8  
Neutrophils, a major type of blood leukocytes, are indispensable for host defense of bacterial infections. Directed migration in a gradient of chemotactic stimuli enables these cells to rapidly find the site of infection and destroy the invading pathogens.

Chemotactic factors bind to seven-transmembrane-domain receptors and activate heterotrimeric G-proteins. Downstream of these proteins a complex interrelated signaling network is activated in human neutrophils. Stimulation of phospholipase Cβ results in activation of protein kinase C isoforms and increases in cytosolic calcium. Activation of the enzyme phosphoinositide 3-kinase results in increased production of phosphatidylinositol 3,4,5-trisphosphate and phosphatidyl 3,4-bisphosphate. In addition, small GTP-binding proteins of the Rho family, the mitogen-activated protein kinase cascade, tyrosine kinases and protein phosphatases are activated. The enzyme phosphoinositide 3-kinase and the small cytosolic GTP-binding proteins Rho and Rac emerge as key regulators of neutrophil migration. A steep internal gradient of phosphatidylinositol 3,4,5-trisphosphate, with a high concentration in the leading lamellae, is thought to regulate polarized actin polymerization and formation of protrusions, together with Rac which may be more directly involved in initiating actin reorganization. Rho may regulate localized myosin activation, tail retraction, cell body traction and dynamics of adhesion.

The impact of these different signaling pathways on reversible actin polymerization, development of polarity, reversible adhesion and migration, and the putative targets of these pathways in neutrophils, are reviewed in this article. Insight into mechanisms regulating migration of neutrophils could potentially lead to novel therapeutic strategies for counteracting chronic activation of neutrophils which leads to tissue damage.  相似文献   


13.
Integrins and cell signaling in chondrocytes   总被引:7,自引:0,他引:7  
Loeser RF 《Biorheology》2002,39(1-2):119-124
Integrins are adhesion receptor heterodimers that transmit information from the extracellular matrix (ECM) to the cell through activation of cell signaling pathways. Chondrocytes express several members of the integrin family including alpha5beta1 which is the primary chondrocyte receptor for fibronectin. Cell signaling mediated through integrins regulates several chondrocyte functions including differentiation, matrix remodeling, responses to mechanical stimulation and cell survival. Integrin-mediated activation of members of the mitogen-activated protein kinase family likely plays a key role in transmitting signals regulating chondrocyte gene expression. Upstream mediators of mitogen-activated protein kinase (MAP kinase) activation include focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (pyk2) which are both expressed by chondrocytes. A better understanding of chondrocyte integrin signaling is needed to define the mechanisms by which the ECM regulates chondrocyte function.  相似文献   

14.
Human mesangial cells (HMCs) respond to angiotensin II stimulation, which modulates their physiological activities, i.e., contraction and proliferation. It has been revealed that focal adhesion kinase (FAK) and paxillin participate in the angiotensin II-mediated signaling and cytoskeletal rearrangements at focal adhesion. We investigated the influences of cell adhesion upon angiotensin II effects in HMCs. In adherent cells, both FAK and paxillin were tyrosine phosphorylated by angiotensin II, while the cell detachment completely inhibited the tyrosine phosphorylation of paxillin. Activation of p44/42 mitogen-activated protein (MAP) kinase by angiotensin II was accentuated in suspended cells. Moreover, p190, a member of Rho GTPase activating protein (GAP), and RasGAP were coprecipitated with paxillin in adherent cells and angiotensin II stimulation reduced the formation of paxillin-p190 and paxillin-RasGAP complexes. These results suggest that the formation of focal adhesion complexes accelerated by accumulation of mesangial matrices may inhibit the proliferation of HMCs by modulating MAP kinase activity and be related to mesangial cell depletion.  相似文献   

15.
Cell migration plays an important role in embryonic development, wound healing, immune responses, and in pathological phenomena such as tissue invasion and metastasis formation. In this review, we summarize recent reports that connect the focal adhesion kinase (FAK) to cell migration and invasion. FAK is a nonreceptor protein tyrosine kinase involved in signal transduction from integrin-enriched focal adhesion sites that mediate cell contact with the extracellular matrix. Multiple protein-protein interaction sites allow FAK to associate with adapter and structural proteins allowing for the modulation of mitogen-activated protein (MAP) kinases, stress-activated protein (SAP) kinases, and small GTPase activity. FAK-enhanced signals have been shown to mediate the survival of anchorage-dependent cells and are critical for efficient cell migration in response to growth factor receptor and integrin stimulation. Elevated expression of FAK in human tumors has been correlated with increased malignancy and invasiveness. Because recent findings show that FAK contributes to the secretion of matrix-metalloproteinases, FAK may represent an important checkpoint in coordinating the dynamic processes of cell motility and extracellular matrix remodeling during tumor cell invasion.  相似文献   

16.
Rho and Rac take center stage   总被引:85,自引:0,他引:85  
Burridge K  Wennerberg K 《Cell》2004,116(2):167-179
Many features of cell behavior are regulated by Rho family GTPases, but the most profound effects of these proteins are on the actin cytoskeleton and it was these that first drew attention to this family of signaling proteins. Focusing on Rho and Rac, we will discuss how their effectors regulate the actin cytoskeleton. We will describe how the activity of Rho proteins is regulated downstream from growth factor receptors and cell adhesion molecules by guanine nucleotide exchange factors and GTPase activating proteins. Additionally, we will discuss how there is signaling crosstalk between family members and how various bacterial pathogens have developed strategies to manipulate Rho protein activity so as to enhance their own survival.  相似文献   

17.
Rho小G蛋白家族是Ras超家族成员之一,人类Rho小G蛋白包括20个成员,研究最清楚的有RhoA、Rac1和Cdc42。Rho小G蛋白参与了诸如细胞骨架调节、细胞移动、细胞增殖、细胞周期调控等重要的生物学过程。在这些生物学过程的调节中,Rho小G蛋白的下游效应蛋白质如蛋白激酶(p21-activated kinase,PAK)、ROCK(Rho-kinase)、PKN(protein kinase novel)和MRCK(myotonin-related Cdc42-binding kinase)发挥了不可或缺的作用。迄今研究发现,PAK可调节细胞骨架动力学和细胞运动,另外,PAK通过MAPK(mitogen-activated protein kinases)参与转录、细胞凋亡和幸存通路及细胞周期进程;ROCK与肌动蛋白应力纤维介导黏附复合物的形成及与细胞周期进程的调节有关;哺乳动物的PKN与RhoA/B/C相互作用介导细胞骨架调节;MRCK与细胞骨架重排、细胞核转动、微管组织中心再定位、细胞移动和癌细胞侵袭等有关。该文简要介绍Rho小G蛋白下游激酶PAK、ROCK、PKN和MRCK的结构及其在细胞骨架调节中的功能,重点总结它们在真核细胞周期调控中的作用,尤其是在癌细胞周期进程中所发挥的作用,为寻找癌症治疗的新靶点提供理论依据。  相似文献   

18.
A variety of agonists including phenylephrine (PE) induce hypertrophy in neonatal ventricular cardiomyocytes. Here we report that signals provided by extracellular matrix proteins (ECM) augment the PE-induced hypertrophic response of cardiomyocytes and provide evidence that ECM-dependent signaling is mediated in part by the protein tyrosine kinase, focal adhesion kinase (FAK). Addition of PE to cultured neonatal cardiomyocytes stimulated sarcomeric organization, increased cell size, and induced atrial natriuretic factor in cardiomyocytes plated on the ECM protein laminin or fibronectin. In contrast, cardiomyocytes plated on the non-adhesive substrate gelatin exhibited a reduced capacity to undergo these PE-stimulated hypertrophic changes. In cardiomyocytes cultured on ECM, PE stimulated a rapid increase in tyrosine phosphorylation of focal adhesion proteins including FAK, paxillin, and p130 Crk-associated substrate and subsequent formation of peripheral focal complexes. Inhibition of the PE-induced hypertrophic response by genistein and herbimycin-A indicated a requirement for protein tyrosine kinases in PE signaling. To determine whether activation of FAK is required for PE-induced hypertrophy, a dominant-interfering mutant form of FAK, termed FRNK (FAK-related non-kinase), was ectopically expressed in cardiomyocytes using a replication-defective adenovirus expression system. FRNK expression attenuated PE-stimulated hypertrophy as assessed by cell size, sarcomeric organization, and induction of atrial natriuretic factor. These data indicate that the signal transduction pathways leading to cardiomyocyte hypertrophy are strongly influenced by and/or dependent upon an integrin-mediated signaling process requiring FAK.  相似文献   

19.
《The Journal of cell biology》1993,123(4):993-1005
The integrin family of heterodimeric cell surface receptors play critical roles in multiple biological processes by mediating cellular adhesion to the extracellular matrix (ECM). Adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation and elevation of [Ca2+]i. The Focal Adhesion Kinase (FAK or pp125FAK), a protein tyrosine kinase that colocalizes with integrins in cellular focal adhesions, is a prime candidate for a mediator of integrin signaling events. Here we report an analysis of the domain structure of FAK in which we have identified a contiguous stretch of 159 amino acids within the COOH terminus essential for correct subcellular localization. When placed in the context of an unrelated cytosolic protein, this Focal Adhesion Targeting (FAT) sequence functions to efficiently mediate the focal adhesion localization of this fusion protein. Furthermore, this analysis suggests that pp125FAK cannot be activated oncogenically by mutation. This result could be explained if pp125FK either exhibits a narrow substrate specificity or is diametrically opposed by cellular phosphatases or other cellular processes.  相似文献   

20.
Cell migration requires the coordination of adhesion site assembly and turnover. Canonical models for nascent adhesion formation postulate that integrin binding to extracellular matrix (ECM) proteins results in the rapid recruitment of cytoskeletal proteins such as talin and paxillin to integrin cytoplasmic domains. It is thought that integrin-talin clusters recruit and activate tyrosine kinases such as focal adhesion kinase (FAK). However, the molecular connections of this linkage remain unresolved. Our recent findings support an alternative model whereby FAK recruits talin to new sites of β1 integrin-mediated adhesion in mouse embryonic fibroblasts and human ovarian carcinoma cells. This is dependent on a direct binding interaction between FAK and talin and occurs independently of direct talin binding to β1 integrin. Herein, we discuss differences between nascent and mature adhesions, interactions between FAK, talin and paxillin, possible mechanisms of FAK activation and how this FAK-talin complex may function to promote cell motility through increased adhesion turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号