首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased affinity of integrins for the extracellular matrix (activation) regulates cell adhesion and migration, extracellular matrix assembly, and mechanotransduction. Major uncertainties concern the sufficiency of talin for activation, whether conformational change without clustering leads to activation, and whether mechanical force is required for molecular extension. Here, we reconstructed physiological integrin activation in vitro and used cellular, biochemical, biophysical, and ultrastructural analyses to show that talin binding is sufficient to activate integrin αIIbβ3. Furthermore, we synthesized nanodiscs, each bearing a single lipid-embedded integrin, and used them to show that talin activates unclustered integrins leading to molecular extension in the absence of force or other membrane proteins. Thus, we provide the first proof that talin binding is sufficient to activate and extend membrane-embedded integrin αIIbβ3, thereby resolving numerous controversies and enabling molecular analysis of reconstructed integrin signaling.  相似文献   

2.
Focal adhesions are clusters of integrin transmembrane receptors that mechanically couple the extracellular matrix to the actin cytoskeleton during cell migration. Focal adhesions sense and respond to variations in force transmission along a chain of protein-protein interactions linking successively actin filaments, actin binding proteins, integrins and the extracellular matrix to adapt cell-matrix adhesion to the composition and mechanical properties of the extracellular matrix. This review focuses on the molecular mechanisms by which actin binding proteins integrate actin dynamics, mechanotransduction and integrin activation to control force transmission in focal adhesions.  相似文献   

3.
Activation (affinity regulation) of integrin adhesion receptors controls cell migration and extracellular matrix assembly. Talin connects integrins with actin filaments and influences integrin affinity by binding to the integrins' short cytoplasmic beta-tail. The principal beta-tail binding site in talin is a FERM domain, comprised of three subdomains (F1, F2, and F3). Previous studies of integrin alphaIIbbeta3 have shown that both F2 and F3 bind the beta3 tail, but only F3, or the F2-F3 domain pair, induces activation. Here, talin-induced perturbations of beta3 NMR resonances were examined to explore integrin activation mechanisms. F3 and F2-F3, but not F2, distinctly perturbed the membrane-proximal region of the beta3 tail. All domains also perturbed more distal regions of the beta3 tail that appear to form the major interaction surface, since the beta3(Y747A) mutation suppressed those effects. These results suggest that perturbation of the beta3 tail membrane-proximal region is associated with talin-mediated integrin activation.  相似文献   

4.
Cody V  Davis PJ  Davis FB 《Steroids》2007,72(2):165-170
A cell surface receptor for thyroid hormone has recently been identified on the extracellular domain of integrin alphavbeta3. In a variety of human and animal cell lines this hormone receptor mediates activation by thyroid hormone of the cellular mitogen-activated protein kinase (MAPK) signal transduction cascade. An arginine-glycine-aspartate (RGD) recognition site on the heterodimeric integrin is essential to the binding of a variety of extracellular matrix proteins. Recent competition data reveal that RGD peptides block hormone-binding by the integrin and consequent MAPK activation, suggesting that the hormone interaction site is located at or near the RGD recognition site on integrin alphavbeta3. A deaminated thyroid hormone (l-thyroxine, T4) analogue, tetraiodothyroacetic acid (tetrac, T4ac), inhibits binding of T4 and 3,5,3'-triiodo-l-thyronine (T3) to alphavbeta3, but does not activate MAPK. Structural data show that the RGD cyclic peptide binds at the interface of the propeller of the alphav and the B domains on the integrin head [Xiong JP, Stehle T, Zhang R, Joachimiack A, Frech M, Goodman SL, et al. Crystal structure of the extracellular segment of integrin alphavbeta3 in complexing with an Arg-Gly-Asp ligand. Science 2002;296:151-5]. To model potential interactions of thyroid hormone analogues with integrin, we mapped T4 and T4ac to the binding site of the RGD peptide. Modeling studies indicate that there is sufficient space in the cavity for the thyroid hormone to bind. Since the hormone is smaller in overall length than the RGD peptide, the hormone does not interact with the Arg recognition site in the propeller domain from alphav. In this model, most of the hormone interactions are with betaA domain of the integrin. Mutagenic studies can be carried out to validate the role of these residues in directing hormone interactions.  相似文献   

5.
Atherosclerotic plaque forms in regions of the vasculature exposed to disturbed flow. NF-kappaB activation by fluid flow, leading to expression of target genes such as E-selectin, ICAM-1, and VCAM-1, may regulate early monocyte recruitment and fatty streak formation. Flow-induced NF-kappaB activation is downstream of conformational activation of integrins, resulting in new integrin binding to the subendothelial extracellular matrix and signaling. Therefore, we examined the involvement of the extracellular matrix in this process. Whereas endothelial cells plated on fibronectin or fibrinogen activate NF-kappaB in response to flow, cells on collagen or laminin do not. In vivo, fibronectin and fibrinogen are deposited at atherosclerosis-prone sites before other signs of atherosclerosis. Ligation of integrin alpha2beta1 on collagen prevents flow-induced NF-kappaB activation through a p38-dependent pathway that is activated locally at adhesion sites. Furthermore, altering the extracellular matrix to promote p38 activation in cells on fibronectin suppresses NF-kappaB activation, suggesting a novel therapeutic strategy for treating atherosclerosis.  相似文献   

6.
Recent evidence demonstrated that conformational changes of the integrin during receptor activation affected its binding to extracellular matrix; however, experimental assessment of ligand-receptor binding following the initial molecular interaction has rarely been carried out at a single-molecule resolution. In the present study, laser tweezers were used to measure the binding force exerted by a live Chinese hamster ovary cell that expressed integrin alphaIIb beta3 (CHO alphaIIb beta3), to the bead carrier coated with the snake venom rhodostomin that served as an activated ligand for integrin alphaIIb beta3. A progressive increase of total binding force over time was noticed when the bead interacted with the CHO alphaIIb beta3 cell; such an increase was due mainly to the recruitment of more integrin molecules to the bead-cell interface. When the binding strength exerted by a single ligand-receptor pair was derived from the "polyvalent" measurements, surprisingly, a stepped decrease of the "monovalent binding force" was noted (from 4.15 to 2.54 piconewtons (pN)); such decrease appeared to occur during the ligand-induced integrin clustering process. On the other hand, the mutant rhodostomin defective in clustering integrins exhibited only one (1.81 pN) unit binding strength.  相似文献   

7.
Integrin activation is essential for dynamically linking the extracellular environment and cytoskeletal/signaling networks. Activation is controlled by integrins' short cytoplasmic tails (CTs). It is widely accepted that the head domain of talin (talin-H) can mediate integrin activation by binding to two sites in integrin beta's CT; in integrin beta(3) this is an NPLY(747) motif and the membrane-proximal region. Here, we show that the C-terminal region of integrin beta(3) CT, composed of a conserved TS(752)T region and NITY(759) motif, supports integrin activation by binding to a cytosolic binding partner, kindlin-2, a widely distributed PTB domain protein. Co-transfection of kindlin-2 with talin-H results in a synergistic enhancement of integrin alpha(IIb)beta(3) activation. Furthermore, siRNA knockdown of endogenous kindlin-2 impairs talin-induced alpha(IIb)beta(3) activation in transfected CHO cells and blunts alpha(v)beta(3)-mediated adhesion and migration of endothelial cells. Our results thus identify kindlin-2 as a novel regulator of integrin activation; it functions as a coactivator.  相似文献   

8.
Fluid shear stress is a critical determinant of vascular remodeling and atherogenesis. Both integrins and the small GTPase Rho are implicated in endothelial cell responses to shear but the mechanisms are poorly understood. We now show that shear stress rapidly stimulates conformational activation of integrin alpha(v)beta3 in bovine aortic endothelial cells, followed by an increase in its binding to extracellular cell matrix (ECM) proteins. The shear-induced new integrin binding to ECM induces a transient inactivation of Rho similar to that seen when suspended cells are plated on ECM proteins. This transient inhibition is necessary for cytoskeletal alignment in the direction of flow. The results therefore define the role of integrins and Rho in a pathway leading to endothelial cell adaptation to flow.  相似文献   

9.
Shear promotes endothelial recruitment of leukocytes, cell activation, and transmigration. Mechanical stress on cells caused by shear can induce a rapid integrin conformational change and activation, followed by an increase in binding to the extracellular matrix. The molecular mechanism of increased avidity is unknown. We have shown previously that the affinity of the alpha(4)beta(1) integrin, very late antigen-4 (VLA-4), measured with an LDV-containing small molecule, varies with cellular avidity, measured from cell disaggregation rates. In this study, we measured in real time affinity changes of VLA-4 in response to shear. The resulting affinity was comparable with the state mediated by receptor signaling and corresponded in time with intracellular Ca(2+) responses. Ca(2+) ionophores and N,N'-[1,2-ethanediyl-bis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-, bis[(acetyloxy)methyl]ester demonstrate that the affinity regulation of VLA-4 in the presence of shear was related to Ca(2+) signaling. Pertussis toxin treatment implicates G(i) in an unknown pathway that connects shear, Ca(2+) elevation, VLA-4 affinity, and cell avidity.  相似文献   

10.
We have recently shown that the platelet integrin alpha(IIb)beta(3) is activated by von Willebrand factor (vWF) binding to its platelet receptor, glycoprotein Ib-IX (GPIb-IX), via the protein kinase G (PKG) signaling pathway. Here we show that GPIb-IX-mediated activation of integrin alpha(IIb)beta(3) is inhibited by dominant negative mutants of Raf-1 and MEK1 in a reconstituted integrin activation model in Chinese hamster ovary (CHO) cells and that the integrin-dependent platelet aggregation induced by either vWF or low dose thrombin is inhibited by MEK inhibitors PD98059 and U0126. Thus, mitogen-activated protein kinase (MAPK) pathway is important in GPIb-IX-dependent activation of platelet integrin alpha(IIb)beta(3). Furthermore, vWF binding to GPIb-IX induces phosphorylation of Thr-202/Tyr-204 of extracellular signal-regulated kinase 2 (ERK2). GPIb-IX-induced ERK2 phosphorylation is inhibited by PKG inhibitors and enhanced by overexpression of recombinant PKG. PKG activators also induce ERK phosphorylation, indicating that activation of MAPK pathway is downstream from PKG. Thus, our data delineate a novel integrin activation pathway in which ligand binding to GPIb-IX activates PKG that stimulates MAPK pathway, leading to integrin activation.  相似文献   

11.
Integrins play an important role in cell adhesion to the extracellular matrix and other cells. Upon ligand binding, signaling is initiated and several intracellular pathways are activated. This leads to a wide variety of effects, depending on cell type. Integrin activation has been linked to proliferation, secretion of matrix-degrading enzymes, cytokine production, migration, and invasion. Dysregulated integrin expression is often found in malignant disease. Tumors use integrins to evade apoptosis or metastasize, indicating that integrin signaling has to be tightly controlled. During the course of rheumatoid arthritis, the synovial tissue is infiltrated by immune cells that secrete large amounts of cytokines. This pro-inflammatory milieu leads to an upregulation of integrin receptors and their ligands in the synovial tissue. As a consequence, integrin signaling is enhanced, leading to enhanced production of matrix-degrading enzymes and cytokines. Furthermore, in analogy to invading tumors, synovial fibroblasts start invading and degrading cartilage, thereby generating extracellular matrix debris that can further activate integrins.  相似文献   

12.
Modulation of integrin activation is important in many cellular functions including adhesion, migration, and assembly of the extracellular matrix. RSK2 functions downstream of Ras/Raf and promotes tumor cell motility and metastasis. We therefore investigated whether RSK2 affects integrin function. We report that RSK2 mediates Ras/Raf inactivation of integrins. As a result, we find that RSK2 impairs cell adhesion and integrin-mediated matrix assembly and promotes cell motility. Active RSK2 appears to affect integrins by reducing actin stress fibers and disrupting focal adhesions. Moreover, RSK2 co-localizes with the integrin activator talin and is present at integrin cytoplasmic tails. It is thereby in a position to modulate integrin activation and integrin-mediated migration. Activation of RSK2 promotes filamin phosphorylation and binding to integrins. We also find that RSK2 is activated in response to integrin ligation to fibronectin. Thus, RSK2 could participate in a feedback loop controlling integrin function. These results reveal RSK2 as a key regulator of integrin activity and provide a novel mechanism by which it may promote cell migration and cancer metastasis.  相似文献   

13.
T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin.  相似文献   

14.
Human fibrillin-1, the major structural protein of extracellular matrix (ECM) 10-12 nm microfibrils, is dominated by 43 calcium binding epidermal growth factor-like (cbEGF) and 7 transforming growth factor beta binding protein-like (TB) domains. Crystal structures reveal the integrin binding cbEGF22-TB4-cbEGF23 fragment of human fibrillin-1 to be a Ca(2+)-rigidified tetragonal pyramid. We suggest that other cbEGF-TB pairs within the fibrillins may adopt a similar orientation to cbEGF22-TB4. In addition, we have located a flexible RGD integrin binding loop within TB4. Modeling, cell attachment and spreading assays, immunocytochemistry, and surface plasmon resonance indicate that cbEGF22 bound to TB4 is a requirement for integrin activation and provide insight into the molecular basis of the fibrillin-1 interaction with alphaVbeta3. In light of our data, we propose a novel model for the assembly of the fibrillin microfibril and a mechanism to explain its extensibility.  相似文献   

15.
Acidic extracellular pH is characteristic of the cell microenvironment in several important physiological and pathological contexts. Although it is well established that acidic extracellular pH can have profound effects on processes such as cell adhesion and migration, the underlying molecular mechanisms are largely unknown. Integrin receptors physically connect cells to the extracellular matrix, and are thus likely to modulate cell responses to extracellular conditions. Here, we examine the role of acidic extracellular pH in regulating activation of integrin α(v)β(3). Through computational molecular dynamics simulations, we find that acidic extracellular pH promotes opening of the α(v)β(3) headpiece, indicating that acidic pH can thereby facilitate integrin activation. This prediction is consistent with our flow cytometry and atomic force microscope-mediated force spectroscopy assays of integrin α(v)β(3) on live cells, which both demonstrate that acidic pH promotes activation at the intact cell surface. Finally, quantification of cell morphology and migration measurements shows that acidic extracellular pH affects cell behavior in a manner that is consistent with increased integrin activation. Taken together, these computational and experimental results suggest a new and complementary mechanism of integrin activation regulation, with associated implications for cell adhesion and migration in regions of altered pH that are relevant to wound healing and cancer.  相似文献   

16.
Interaction of integrins with the extracellular matrix leads to transmission of signals, cytoskeletal reorganizations, and changes in cell behavior. While many signaling molecules are known to be activated within Rac-induced focal complexes or Rho-induced focal adhesions, the way in which integrin-mediated adhesion leads to activation of Rac and Rho is not known. In the present study, we identified clusters of integrin that formed upstream of Rac activation. These clusters contained a Rac-binding protein(s) and appeared to be involved in Rac activation. The integrin clusters contained calpain and calpain-cleaved beta3 integrin, while the focal complexes and focal adhesions that formed once Rac and Rho were activated did not. Moreover, the integrin clusters were dependent on calpain for their formation. In contrast, while Rac- and Rho-GTPases were dependent on calpain for their activation, formation of focal complexes and focal adhesions by constitutively active Rac or Rho, respectively, occurred even when calpain inhibitors were present. Taken together, these data are consistent with a model in which integrin-induced Rac activation requires the formation of integrin clusters. The clusters form in a calpain-dependent manner, contain calpain, calpain-cleaved integrin, and a Rac binding protein(s). Once Rac is activated, other integrin signaling complexes are formed by a calpain-independent mechanism(s).  相似文献   

17.
Previous studies have indicated that the receptor for urokinase-type plasminogen activator, uPAR, can form functional complexes with integrin receptors thereby modulating integrin activity. In the present study, the role of uPAR in the regulation of alpha5beta1-dependent polymerization of the fibronectin matrix was investigated. Incubation of fibroblast monolayers with the P-25 peptide, a uPAR ligand, resulted in a 12-15-fold increase in the accumulation of exogenous fibronectin in the cell layer. The exogenous fibronectin co-localized in the extracellular matrix with endogenous cell-derived fibronectin, and its deposition into the matrix was inhibited by blocking antibodies against the beta1 integrin receptor. The P-25-dependent increase in fibronectin assembly was associated with a 7-8-fold increase in the expression of matrix assembly sites as well as a 37-fold increase in the rate of transfer of cell surface-bound fibronectin into a detergent-insoluble matrix. The effects of P-25 on the matrix assembly were attenuated by incubating cells with either phospholipase C or with antibodies against uPAR, confirming a role for uPAR in the P-25-dependent increase in matrix assembly. P-25-treated cells exhibited a 10-fold increase in the binding of the 120-kDa cell-binding fragment of fibronectin suggesting an increase in alpha5beta1 affinity for fibronectin. Consistent with this, treatment of cells with P-25 also resulted in a 6-10-fold increase in the binding of two different monoclonal antibodies that recognize the active conformation of the beta1 integrin. These results indicate that P-25 increases matrix assembly by altering the activation state of the alpha5beta1 integrin receptor and suggest that changes in integrin activation affect both the number of matrix assembly sites as well as the rate of transfer of cell-bound fibronectin into a detergent-insoluble matrix. These data provide direct evidence that uPAR and integrin receptors synergistically regulate the levels of fibronectin in the extracellular matrix.  相似文献   

18.
《The Journal of cell biology》1986,103(6):2421-2428
Integrin, the cell-substrate attachment (CSAT) antigen, is a complex of integral membrane glycoproteins whose apparent function is to mediate cell-substratum adhesion by serving as a transmembrane link between the extracellular matrix and elements of the cytoskeleton. Previous attempts to separate the members of this complex under nondenaturing conditions have been successful. We have now produced a monoclonal antibody "G" that is specific for the lower molecular mass cysteine- rich band 3 of the complex. Using an antibody affinity column containing this monoclonal antibody, it is possible to dissociate integrin into two fractions, one containing band 3, the other containing bands 1 plus 2. Neither fraction will by itself bind fibronectin, laminin, or talin. However, when the fractions are combined, the reconstituted integrin elutes from a gel filtration column in the same position as the native complex, and binding activity to these molecules returns. Further, it is shown by gel filtration that the recognition site for the adhesion-disrupting monoclonal antibodies CSAT and JG22 is on band 3, supporting the contention that integrin is an oligomer. The data presented here is consistent with integrin being either a mixture of heterodimers, each with a common subunit and reacting with a particular extracellular matrix molecule, or a single heterotrimer capable of binding to several different extracellular matrix molecules.  相似文献   

19.
《Cellular signalling》2014,26(11):2493-2503
Heterodimeric integrin receptors are mediators of cell adhesion, motility, invasion, proliferation, and survival. By this, they are crucially involved in (tumor) cell biological behavior. Integrins trigger signals bidirectionally across cell membranes: by outside-in, following binding of protein ligands of the extracellular matrix, and by inside-out, where proteins are recruited to ß-integrin cytoplasmic tails resulting in conformational changes leading to increased integrin binding affinity and integrin activation. Computational modeling and experimental/mutational approaches imply that associations of integrin transmembrane domains stabilize the low-affinity integrin state. Moreover, a cytoplasmic interchain salt bridge is discussed to contribute to a tight clasp of the α/ß-membrane-proximal regions; however, its existence and physiological relevance for integrin activation are still a controversial issue. In order to further elucidate the functional role of salt bridge formation, we designed mutants of the tumor biologically relevant integrin αvß3 by mutually exchanging the salt bridge forming amino acid residues on each chain (αvR995D and ß3D723R). Following transfection of human ovarian cancer cells with different combinations of wild type and mutated integrin chains, we showed that loss of salt bridge formation strengthened αvß3-mediated adhesion to vitronectin, provoked recruitment of cytoskeletal proteins, such as talin, and induced integrin signaling, ultimately resulting in enhanced cell migration, proliferation, and activation of integrin-related signaling molecules. These data support the notion of a functional relevance of integrin cytoplasmic salt bridge disruption during integrin activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号