首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of organic materials to soil can recycle nutrients and increase organic matter in agricultural lands. Digestate can be used as a nutrient source for crop production but it has also been shown to stimulate greenhouse gas (GHG) emissions from amended soils. While edaphic factors, such as soil texture and pH, have been shown to be strong determinants of soil GHG fluxes, the impact of the legacy of previous management practices is less well understood. Here we aim to investigate the impact of such legacy effects and to contrast them against soil properties to identify the key determinants of soil GHG fluxes following digestate application. Soil from an already established field experiment was used to set up a pot experiment, to evaluate N2O, CH4 and CO2 fluxes from cattle‐slurry‐digestate amended soils. The soil had been treated with farmyard manure, green manure or synthetic N‐fertilizer, 18 months before the pot experiment was set up. Following homogenization and a preincubation stage, digestate was added at a concentration of 250 kg total N/ha eq. Soil GHG fluxes were then sampled over a 64 day period. The digestate stimulated emissions of the three GHGs compared to controls. The legacy of previous soil management was found to be a key determinant of CO2 and N2O flux while edaphic variables did not have a significant effect across the range of variables included in this experiment. Conversely, edaphic variables, in particular texture, were the main determinant of CH4 flux from soil following digestate application. Results demonstrate that edaphic factors and current soil management regime alone are not effective predictors of soil GHG flux response following digestate application. Knowledge of the site management in terms of organic amendments is required to make robust predictions of the likely soil GHG flux response following digestate application to soil.  相似文献   

2.
Soil and ecosystem trace gas fluxes are commonly measured using the dynamic chamber technique. Although the chamber pressure anomalies associated with this method are known to be a source of error, their effects have not been fully characterized. In this study, we use results from soil gas-exchange experiments and a soil CO2 transport model to characterize the effects of chamber pressure on soil CO2 efflux in an annual California grassland. For greater than ambient chamber pressures, experimental data show that soil-surface CO2 flux decreases as a nonlinear function of increasing chamber pressure; this decrease is larger for drier soils. In dry soil, a gauge pressure of 0.5 Pa reduced the measured soil CO2 efflux by roughly 70% relative to the control measurement at ambient pressure. Results from the soil CO2 transport model show that pressurizing the flux chamber above ambient pressure effectively flushes CO2 from the soil by generating a downward flow of air through the soil air-filled pore space. This advective flow of air reduces the CO2 concentration gradient across the soil–atmosphere interface, resulting in a smaller diffusive flux into the chamber head space. Simulations also show that the reduction in diffusive flux is a function of chamber pressure, soil moisture, soil texture, the depth distribution of soil CO2 generation, and chamber diameter. These results highlight the need for caution in the interpretation of dynamic chamber trace gas flux measurements. A portion of the frequently observed increase in net ecosystem carbon uptake under elevated CO2 may be an artifact resulting from the impact of chamber pressurization on soil CO2 efflux.  相似文献   

3.
稻田温室气体排放与土壤微生物菌群的多元回归分析   总被引:4,自引:1,他引:4  
为揭示多种田间管理措施综合影响下双季稻田温室气体平均排放通量与土壤微生物菌群的多元回归关系,利用静态箱—气相色谱法和稀释培养计数法进行了温室气体排放通量和土壤产气微生物菌群数量的连续观测。两年研究结果显示,稻田甲烷排放通量与土壤微生物总活性和产甲烷菌数量关系密切,甲烷排放通量与二者的关系可分别由指数和二次多项式模型拟合。一元回归分析表明,仅产甲烷菌数量就能单独解释96.9%的稻田甲烷排放通量变异(R2=0.969,P<0.001),但考虑两种因素以后的二元回归拟合优度高于一元回归(R2=0.975,P<0.001)。氧化亚氮排放通量与土壤硝化细菌和反硝化细菌数量也密切相关(P <0.05),氧化亚氮排放通量与二者的二元非线性混合回归模型可以解释至少70.4%的稻田氧化亚氮排放通量(R2≥0.704, P <0.001),其拟合优度也高于一元回归。稻田温室气体排放通量受多种影响因素控制,土壤产气微生物活性和数量是多种因素影响的直接响应,因此二者与温室气体排放存在显著相关,基于田间试验的多元非线性回归分析客观的揭示了温室气体排放通量与环境因子的相关关系。  相似文献   

4.
农田土壤固碳措施的温室气体泄漏和净减排潜力   总被引:8,自引:0,他引:8  
逯非  王效科  韩冰  欧阳志云  郑华 《生态学报》2009,29(9):4993-5006
农田土壤固碳措施作为京都议定书认可的大气CO2减排途径受到了广泛关注.研究表明,农田土壤固碳措施在主要农业国家和全球都具有很大的固碳潜力.但是,实施农田土壤固碳措施有可能影响农业中化石燃料消耗和其他农业投入的CO2排放和非CO2温室气体排放.这些土壤碳库以外的温室气体排放变化可能抵消部分甚至全部土壤固碳效果,构成了农田土壤固碳措施的温室气体泄漏.因此,将土壤固碳和温室气体泄漏综合计算的净减排潜力成为了判定土壤固碳措施可行性的首要标准.综述总结了目前较受重视的一些农田措施(包括施用化学氮肥、免耕和保护性耕作、灌溉、秸秆还田、施用禽畜粪便以及污灌)的土壤固碳潜力,温室气体泄漏和净减排潜力研究成果.结果表明,温室气体泄漏可抵消以上措施土壤固碳效益的-241%~660%.建议在今后的研究中,应该关注土壤碳饱和、气候变化及土地利用变化对农田固碳措施温室气体泄漏和净减排潜力的评估结果的影响.  相似文献   

5.
Rapid, precise, and globally comparable methods for monitoring greenhouse gas (GHG) fluxes are required for accurate GHG inventories from different cropping systems and management practices. Manual gas sampling followed by gas chromatography (GC) is widely used for measuring GHG fluxes in agricultural fields, but is laborious and time‐consuming. The photo‐acoustic infrared gas monitoring system (PAS) with on‐line gas sampling is an attractive option, although it has not been evaluated for measuring GHG fluxes in cereals in general and rice in particular. We compared N2O, CO2, and CH4 fluxes measured by GC and PAS from agricultural fields under the rice–wheat and maize–wheat systems during the wheat (winter), and maize/rice (monsoon) seasons in Haryana, India. All the PAS readings were corrected for baseline drifts over time and PAS‐CH4 (PCH4) readings in flooded rice were corrected for water vapor interferences. The PCH4 readings in ambient air increased by 2.3 ppm for every 1000 mg cm?3 increase in water vapor. The daily CO2, N2O, and CH4 fluxes measured by GC and PAS from the same chamber were not different in 93–98% of all the measurements made but the PAS exhibited greater precision for estimates of CO2 and N2O fluxes in wheat and maize, and lower precision for CH4 flux in rice, than GC. The seasonal GC‐ and PAS‐N2O (PN2O) fluxes in wheat and maize were not different but the PAS‐CO2 (PCO2) flux in wheat was 14–39% higher than that of GC. In flooded rice, the seasonal PCH4 and PN2O fluxes across N levels were higher than those of GC‐CH4 and GC‐N2O fluxes by about 2‐ and 4fold, respectively. The PAS (i) proved to be a suitable alternative to GC for N2O and CO2 flux measurements in wheat, and (ii) showed potential for obtaining accurate measurements of CH4 fluxes in flooded rice after making correction for changes in humidity.  相似文献   

6.
We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land‐use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first‐generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second‐generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio‐physical factors (e.g. the energy density of the crop) and socio‐economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation.  相似文献   

7.
Industrial symbiosis (IS) exchanges have been recognized to reduce greenhouse gas (GHG) emission, though methods for quantification of GHG emissions in IS exchanges are varied, and no standardized methods are available. This article proposes a practical approach to quantify total and allocated GHG emissions from IS exchanges by integrating the GHG protocol and life cycle assessment. The proposed method expands the system boundaries to include all IS companies, and the functional flow is set to be the sum of the main products. The total impact of a company is allocated to the main product. Three by‐product impact allocation methods of cutoff, avoidance, and 50/50 are proposed, and the total and distributed impacts of the IS systems in an industrial park are theoretically derived. The proposed method was tested to quantify GHG reduction in a real IS exchange developed between Korea Zinc (a zinc smelter) and Hankook Paper (a paper mill company) in the Ulsan Eco‐Industrial Park initiative. The total reduction of GHG emissions in this IS exchange, 60,522 tonnes of carbon dioxide per year, was the same in the GHG protocol, whereas GHG distribution between two companies depended on the allocation method. Given that the reduction of GHG emissions from IS exchanges is the product of the collaboration of giving companies and receiving companies, the 50/50 allocation method is best from an equivalent‐responsibility and benefit‐sharing perspective. However, this study suggests a more practical implementation approach based on a flexible and negotiable method of allocating the total GHG reduction between stakeholders.  相似文献   

8.
草原畜牧业温室气体排放现状、问题及展望   总被引:2,自引:0,他引:2  
庄明浩  贡布泽仁  张静  李文军 《生态学报》2021,41(24):9970-9977
草原畜牧业生产系统是一个涉及环境、经济、社会多层面、且系统内部气候-土壤-草地-家畜-管理之间相互作用的复杂的社会生态系统。草原不仅为人类提供所需要的肉奶,也提供了多种生态系统服务。然而,草原畜牧业也是主要的温室气体排放源之一。减缓畜牧业温室气体排放的研究已成为当前气候变化科学研究关注的焦点。综述了国内外草原畜牧业温室气体排放研究现状,指出现有研究的不足主要集中在以下3个方面:(1)虽然生命周期评价方法广泛应用于草原畜牧业温室气体排放研究,但是存在诸多问题,导致目前的研究框架体系尚不完善,特别体现在以下几方面:是否考虑外部输入、是否考虑土壤有机碳、畜牧业温室气体排放强度指标的选择等;(2)缺乏单一环节减缓措施对草原畜牧业整体温室气体减排效果的研究;(3)目前对影响草原畜牧业温室气体排放强度的因素主要集中在生态系统层面的分析,忽略了社会系统的作用,无法反映社会系统与生态系统的相互反馈机制,导致机制阐释不完善。综上所述,未来仍需从以下三方面开展研究:(1)完善草原畜牧业研究框架体系及提升研究方法;(2)加强对单一环节减缓措施对草原畜牧业温室气体整体减排效果的综合评价;(3)基于社会生态系统的角度深入研究影响草原畜牧业温室气体排放强度差异的机制。一方面,这有助于深入理解草原畜牧业温室气体排放强度情况,也为低碳型草原畜牧业发展政策的制定提供思路借鉴;另一方面对于科学合理的可持续利用草场和恢复草地生态环境均具有重要意义。  相似文献   

9.
Accurate estimation of the greenhouse gas (GHG) mitigation potential of bioenergy crops requires the integration of a significant component of spatially varying information. In particular, crop yield and soil carbon (C) stocks are variables which are generally soil type and climate dependent. Since gaseous emissions from soil C depend on current C stocks, which in turn are related to previous land management it is important to consider both previous and proposed future land use in any C accounting assessment. We have conducted a spatially explicit study for England and Wales, coupling empirical yield maps with the RothC soil C turnover model to simulate soil C dynamics. We estimate soil C changes under proposed planting of four bioenergy crops, Miscanthus ( Miscanthus × giganteus ), short rotation coppice (SRC) poplar ( Populus trichocarpa Torr. & Gray × P. trichocarpa , var. Trichobel), winter wheat, and oilseed rape. This is then related to the former land use – arable, pasture, or forest/seminatural, and the outputs are then assessed in the context of a life cycle analysis (LCA) for each crop. By offsetting emissions from management under the previous land use, and considering fossil fuel C displaced, the GHG balance is estimated for each of the 12 land use change transitions associated with replacing arable, grassland, or forest/seminatural land, with each of the four bioenergy crops. Miscanthus and SRC are likely to have a mostly beneficial impact in reducing GHG emissions, while oilseed rape and winter wheat have either a net GHG cost, or only a marginal benefit. Previous land use is important and can make the difference between the bioenergy crop being beneficial or worse than the existing land use in terms of GHG balance.  相似文献   

10.
Climate and land‐use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2) and nitrous oxide (N2O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2) and six (N2O) orders of magnitude. Maximal CO2 and N2O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2O fluxes and altered their temperature sensitivities (Q10) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2O flux, while significantly depressing the Q10 for CO2, and having no effect on the Q10 for N2O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions.  相似文献   

11.
Zhang W  Mo J M  Fang Y T  Lu X K  Wang H 《农业工程》2008,28(5):2309-2319
Nitrogen (N) deposition can alter the rates of microbial N- and C- turnover, and thus can affect the fluxes of greenhouse gases (GHG, e.g., CO2, CH4, and N2O) from forest soils. The effects of N deposition on the GHG fluxes from forest soils were reviewed in this paper. N deposition to forest soils have shown variable effects on the soil GHG fluxes from forest, including increases, decreases or unchanged rates depending on forest type, N status of the soil, and the rate and type of atmospheric N deposition. In forest ecosystems where biological processes are limited by N supply, N additions either stimulate soil respiration or have no significant effect, whereas in “N saturated” forest ecosystems, N additions decrease CO2 emission, reduce CH4 oxidation and elevate N2O flux from the soil. The mechanisms and research methods about the effects of N deposition on GHG fluxes from forest soils were also reviewed in this paper. Finally, the present and future research needs about the effects of N deposition on the GHG fluxes from forest soils were discussed.  相似文献   

12.
Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non‐normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis–Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. High‐frequency chamber‐based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log‐normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2, which then determines the PDF of microsites that produce or consume CH4 and N2O, such that a range of microsites occurs with both positive and negative signs for net CH4 and N2O flux. Results demonstrate that it is numerically feasible for microsites of N2O reduction and CH4 oxidation to co‐occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.  相似文献   

13.
Soil respiration is the largest C-flux component in the terrestrial carbon (C) cycle, yet in many biomes this flux and its environmental responses are still poorly understood. Several methodological techniques exist to measure this flux, but mostly there remain comparability uncertainties. For example, the closed static chamber (CSC) and the closed dynamic chamber (CDC) systems are widely used, but still require a rigorous comparison. A major issue with the CSC approach is the generally long manual gas sampling periods causing a potential underestimation of the calculated fluxes due to an asymptotic increase in headspace CO2 concentrations. However, shortening the sampling periods of the static chamber approach might provide comparable results to the closed dynamic chamber system. We compared these two different chamber systems using replicated CSC cover boxes and a Li-Cor 8100 CDC system under field conditions, and performed tests on both, mineral and peat soil. Whereas the automated CDC system calculated fluxes during the first two minutes, the CSC approach considered either all seven manual sampling points taken over 75?min, or only the first three sampling points over 15?min. Although flux variation was fairly large, there were considerable and statistically significant differences between the calculated fluxes considering the two chamber systems, yet this depended on soil type and the number of CSC sampling time points. The cover-box approach underestimated the chamber-based fluxes by 30% for combined samples, 21% for mineral and 39% for peat soils when calculated over 75?min but was comparable over the first 15?min. The chamber flux comparison demonstrates that the CSC approach can provide CO2 flux measurements comparable to the CDC system when sampling at an appropriate initial frequency, preventing flux underestimation due to a build up of CO2 headspace concentrations.  相似文献   

14.
Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer‐induced soil N2O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per‐hectare basis. The optimal mitigation for each soil‐climate‐region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site‐specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice.  相似文献   

15.
Cellulosic ethanol is widely believed to offer substantial environmental advantages over petroleum fuels and grain‐based ethanol, particularly in reducing greenhouse gas emissions from transportation. The environmental impacts of biofuels are largely caused by precombustion activities, feedstock production and conversion facility operations. Life cycle analysis (LCA) is required to understand these impacts. This article describes a field‐to‐blending terminal LCA of cellulosic ethanol produced by biochemical conversion (hydrolysis and fermentation) using corn stover or switchgrass as feedstock. This LCA develops unique models for most elements of the biofuel production process and assigns environmental impact to different phases of production. More than 30 scenarios are evaluated, reflecting a range of feedstock, technology and scale options for near‐term and future facilities. Cellulosic ethanol, as modeled here, has the potential to significantly reduce greenhouse gas (GHG) emissions compared to petroleum‐based liquid transportation fuels, though substantial uncertainty exists. Most of the conservative scenarios estimate GHG emissions of approximately 45–60 g carbon dioxide equivalent per MJ of delivered fuel (g CO2e MJ?1) without credit for coproducts, and 20–30 g CO2e MJ?1 when coproducts are considered. Under most scenarios, feedstock production, grinding and transport dominate the total GHG footprint. The most optimistic scenarios include sequestration of carbon in soil and have GHG emissions below zero g CO2e MJ?1, while the most pessimistic have life‐cycle GHG emissions higher than petroleum gasoline. Soil carbon changes are the greatest source of uncertainty, dominating all other sources of GHG emissions at the upper bound of their uncertainty. Many LCAs of biofuels are narrowly constrained to GHG emissions and energy; however, these narrow assessments may miss important environmental impacts. To ensure a more holistic assessment of environmental performance, a complete life cycle inventory, with over 1100 tracked material and energy flows for each scenario is provided in the online supplementary material for this article.  相似文献   

16.
Wetland catchments are major ecosystems in the Prairie Pothole Region (PPR) and play an important role in greenhouse gases (GHG) flux. However, there is limited information regarding effects of land-use on GHG fluxes from these wetland systems. We examined the effects of grazing and haying, two common land-use practices in the region, on GHG fluxes from wetland catchments during 2007 and 2008. Fluxes of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), along with soil water content and temperature, were measured along a topographic gradient every other week during the growing season near Ipswich, SD, USA. Closed, opaque chambers were used to measure fluxes of soil and plant respiration from native sod catchments that were grazed or left idle, and from recently restored catchments which were seeded with native plant species; half of these catchments were hayed once during the growing season. Catchments were adjacent to each other and had similar soils, soil nitrogen and organic carbon content, precipitation, and vegetation. When compared with idle catchments, grazing as a land-use had little effect on GHG fluxes. Likewise, haying had little effect on fluxes of CH4 and N2O compared with non-hayed catchments. Haying, however, did have a significant effect on combined soil and vegetative CO2 flux in restored wetland catchments owing to the immediate and comprehensive effect haying has on plant productivity. This study also examined soil conditions that affect GHG fluxes and provides cumulative annual estimates of GHG fluxes from wetland catchment in the PPR.  相似文献   

17.
基于涡度相关法和静态箱/气相色谱法(箱式法)的碳通量观测数据,对比分析了两种方法在评价禹城冬小麦 夏玉米复种农田生态系统和海北高寒矮嵩草草甸生态系统呼吸中的差异.结果表明:在保证涡度相关法和箱式法观测数据质量的条件下,两种方法实时观测的夜间通量结果具有较好的一致性,相关系数达0.95~0.98;箱式法白天的观测结果与涡度相关法估算的白天生态系统呼吸值有较好的一致性,但前者普遍大于后者;两种方法测定生态系统呼吸日平均值的差异达极显著水平(P<0.01),但二者的季节变化趋势较一致.在整个观测期内, 冬小麦-夏玉米复种农田观测箱内外平均温差为1.8 ℃,涡度相关法较箱式法测定的生态系统呼吸日平均值偏低30.3%;高寒矮嵩草草甸观测箱内外平均温差为1.9 ℃,涡度相关法较箱式法测定的生态系统呼吸日平均值偏低31.4%.两种方法对生态系统生长季呼吸日平均值测定结果的偏差高于非生长季.  相似文献   

18.
As society faces the urgent need to mitigate climate change, it is critical to understand how various ecosystems contribute to the climate, and to express these contributions in terms that are meaningful to policymakers, economists, land managers, and other nonscience interest holders. Efforts to mitigate climate change call for quantification of the full greenhouse gas (GHG) effects of land use decisions, yet we lack an appropriate metric of the full GHG implications of maintaining a given ecosystem over a multiple year time frame. Here, we propose the concept of greenhouse gas value (GHGV) of ecosystems, which accounts for potential GHG release upon clearing of stored organic matter, annual GHG flux, and probable GHG exchanges resulting from disturbance. It treats these ecosystem–atmosphere exchanges in a time‐sensitive manner, thereby providing an appropriate framework for computing of the GHG consequences of any land use decision. To illustrate this concept, we provide estimates of the GHGV of various biome types (based on data compiled from the literature), disturbance regimes, and decisions on the treatment of time. We show that natural ecosystems generally have high GHGV's, whereas managed ecosystems generally have lower or negative GHGV's; that GHGV decreases with increasing probability of disturbance, and that decisions on the treatment of time can be important, affecting some ecosystem types more strongly than others. In addition, we show how GHGV may be used to quantify the full GHG effects of land‐use or land‐cover change in a thorough and rigorous manner. Finally, we provide comparisons of GHGV to other major paradigms for valuing the GHG contributions of ecosystems, showing that – for many purposes –GHGV is the most appropriate method of quantifying the GHG services of ecosystems.  相似文献   

19.
National governments and international organizations perceive bioenergy, from crops such as Miscanthus, to have an important role in mitigating greenhouse gas (GHG) emissions and combating climate change. In this research, we address three objectives aimed at reducing uncertainty regarding the climate change mitigation potential of commercial Miscanthus plantations in the United Kingdom: (i) to examine soil temperature and moisture as potential drivers of soil GHG emissions through four years of parallel measurements, (ii) to quantify carbon (C) dynamics associated with soil sequestration using regular measurements of topsoil (0–30 cm) C and the surface litter layer and (iii) to calculate a life cycle GHG budget using site‐specific measurements, enabling the GHG intensity of Miscanthus used for electricity generation to be compared against coal and natural gas. Our results show that methane (CH4) and nitrous oxide (N2O) emissions contributed little to the overall GHG budget of Miscanthus, while soil respiration offset 30% of the crop's net aboveground C uptake. Temperature sensitivity of soil respiration was highest during crop growth and lowest during winter months. We observed no significant change in topsoil C or nitrogen stocks following 7 years of Miscanthus cultivation. The depth of litter did, however, increase significantly, stabilizing at approximately 7 tonnes dry biomass per hectare after 6 years. The cradle‐to‐farm gate GHG budget of this crop indicated a net removal of 24.5 t CO2‐eq ha?1 yr?1 from the atmosphere despite no detectable C sequestration in soils. When scaled up to consider the full life cycle, Miscanthus fared very well in comparison with coal and natural gas, suggesting considerable CO2 offsetting per kWh generated. Although the comparison does not account for the land area requirements of the energy generated, Miscanthus used for electricity generation can make a significant contribution to climate change mitigation even when combusted in conventional steam turbine power plants.  相似文献   

20.
No‐tillage (NT) management has been promoted as a practice capable of offsetting greenhouse gas (GHG) emissions because of its ability to sequester carbon in soils. However, true mitigation is only possible if the overall impact of NT adoption reduces the net global warming potential (GWP) determined by fluxes of the three major biogenic GHGs (i.e. CO2, N2O, and CH4). We compiled all available data of soil‐derived GHG emission comparisons between conventional tilled (CT) and NT systems for humid and dry temperate climates. Newly converted NT systems increase GWP relative to CT practices, in both humid and dry climate regimes, and longer‐term adoption (>10 years) only significantly reduces GWP in humid climates. Mean cumulative GWP over a 20‐year period is also reduced under continuous NT in dry areas, but with a high degree of uncertainty. Emissions of N2O drive much of the trend in net GWP, suggesting improved nitrogen management is essential to realize the full benefit from carbon storage in the soil for purposes of global warming mitigation. Our results indicate a strong time dependency in the GHG mitigation potential of NT agriculture, demonstrating that GHG mitigation by adoption of NT is much more variable and complex than previously considered, and policy plans to reduce global warming through this land management practice need further scrutiny to ensure success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号