首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP‐activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin‐induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)‐elicited intracellular lipid accumulation and increased AMPK activity in a dose‐dependent manner. Cordycepin‐induced AMPK activation was not accompanied by changes in either the intracellular levels of AMP or the AMP/ATP ratio, nor was it influenced by calmodulin‐dependent protein kinase kinase (CaMKK) inhibition; however, this activation was significantly suppressed by liver kinase B1 (LKB1) knockdown. Molecular docking, fluorescent and circular dichroism measurements showed that cordycepin interacted with the γ1 subunit of AMPK. Knockdown of AMPKγ1 by siRNA substantially abolished the effects of cordycepin on AMPK activation and lipid regulation. The modulating effects of cordycepin on the mRNA levels of key lipid regulatory genes were also largely reversed when AMPKγ1 expression was inhibited. Together, these data suggest that cordycepin may inhibit intracellular lipid accumulation through activation of AMPK via interaction with the γ1 subunit.  相似文献   

2.
3.
The highly conserved eukaryotic process of macroautophagy (autophagy) is a non-specific bulk-degradation program critical for maintaining proper cellular homeostasis, and for clearing aged and damaged organelles. This decision is inextricably dependent upon prevailing metabolic demands and energy requirements of the cell. Soluble monomeric decorin functions as a natural tumor repressor that antagonizes a variety of receptor tyrosine kinases. Recently, we discovered that decorin induces endothelial cell autophagy, downstream of VEGFR2. This process was wholly dependent upon Peg3, a decorin-inducible genomically imprinted tumor suppressor gene. However, the signaling cascades responsible have remained elusive. In this report we discovered that Vps34, a class III phosphoinositide kinase, is an upstream kinase required for Peg3 induction. Moreover, decorin triggered differential formation of Vps34/Beclin 1 complexes with concomitant dissolution of inhibitive Bcl-2/Beclin 1 complexes. Further, decorin inhibited anti-autophagic signaling via suppression of Akt/mTOR/p70S6K activity with the concurrent activation of pro-autophagic AMPK-mediated signaling cascades. Mechanistically, AMPK is downstream of VEGFR2 and inhibition of AMPK signaling abrogated decorin-evoked autophagy. Collectively, these findings hint at the complexity of the underlying molecular relays necessary for decorin-evoked endothelial cell autophagy and reveal important therapeutic targets for augmenting autophagy and combatting tumor angiogenesis.  相似文献   

4.
S Bapat  A Verkleij  J A Post 《FEBS letters》2001,499(1-2):21-26
In this study we show that phosphorylation of extracellular signal-regulated kinase (ERK1/2; also known as p44/42MAPK) following peroxynitrite (ONOO(-)) exposure occurs via a MAPK kinase (MEK)-independent but PKC-dependent pathway in rat-1 fibroblasts. ONOO(-)-mediated ERK1/2 phosphorylation was not blocked by MEK inhibitors PD98059 and U0126. Furthermore, no increase in MEK phosphorylation was detected upon ONOO(-) treatment. Staurosporine was used to investigate whether protein kinase C (PKC) is involved. This was confirmed by down-regulation of PKC by phorbol-12,13-dibutyrate, which resulted in significant reduction of ERK1/2 phosphorylation by ONOO(-), implying that activation of ERK by ONOO(-) depends on activation of PKC. Indeed, PKCalpha and epsilon were activated upon ONOO(-) exposure. When cells were treated with ONOO(-) in a calcium-free buffer, no activation of PKCalpha was detected. Concomitantly, a reduction of ERK1/2 phosphorylation was observed suggesting that calcium was required for translocation of PKCalpha and ERK phosphorylation by ONOO(-). Indeed, ONOO(-) exposure resulted in increased cytosolic calcium, which depended on the presence of extracellular calcium. Finally, data using G?6976, an inhibitor of calcium-dependent PKC activation, implied that ONOO(-)-mediated ERK1/2 phosphorylation depends on activation of a calcium-dependent PKC.  相似文献   

5.
6.
7.
We have previously shown that interleukin 1 (IL-1)-receptor-generated ceramide induces growth arrest in smooth muscle pericytes by activating an upstream kinase in the stress-activated protein kinase (SAPK) cascade. We now report the mechanism by which ceramide activates the SAPK signaling pathway in human embryonic kidney cells (HEK-293). We demonstrate that ceramide activation of protein kinase C zeta (PKCzeta) mediates SAPK signal complex formation and subsequent growth suppression. Ceramide directly activates both immunoprecipitated and recombinant human PKCzeta in vitro. Additionally, ceramide activates SAPK activity, which is blocked with a dominant-negative mutant of PKCzeta. Co-immunoprecipitation studies reveal that ceramide induces the association of SAPK with PKCzeta, but not with PKCepsilon. In addition, ceramide treatment induces PKCzeta association with phosphorylated SEK and MEKK1, elements of the SAPK signaling complex. The biological role of ceramide to induce cell cycle arrest is mimicked by overexpression of a constitutively active PKCzeta. Together, these studies demonstrate that ceramide induces cell cycle arrest by enhancing the ability of PKCzeta to form a signaling complex with MEKK1, SEK, and SAPK.  相似文献   

8.
Haemostatic proteinases may appear in brain tissue after injury and under inflammation as a result of the blood-brain barrier disruption. Serine proteinases regulate cell functions through G-protein-coupled transmembrane protease-activated receptors (PARs). Proteinases cleave only one peptide bond of receptor exodomain, which results in the formation of a new N-terminus (“tethered ligand”) that can specifically interact with the second extracellular loop of the receptor and activate it. Two types of receptors (EPCR and PAR1) are necessary for the cytoprotective effect of activated protein C (APC) on endothelial cells and neurons. APC activates PAR-1 and controls gene expression of proinflammatory and proapoptotic factors. APC exerts a protective effect in stressed neurons and hypoxic brain endothelium, modulates the activity of endothelial cell genes involved in apoptosis, and stabilizes the endothelial barrier. We suppose that the peptides analogous to the PAR1 tethered ligand released by APC may have a neuroprotective effect similar to that of APC. We have simulated ischemic brain damage using a model of glutamate excitotoxicity on the primary culture of neonatal rat hippocampal neurons. It was shown that NPNDKYEPF-amide (peptide 9) and NPNDKYEPFWE (peptide 11) more effectively reduced the level of apoptosis during neuronal excitotoxicity in comparison with APC, while the influence of these peptides on the number of living and necrotic cells was analogous to that of APC. The findings suggest that the protective effect of the peptides analogous to the PAR1 tethered ligand is comparable to the protective effect of APC under glutamate excitotoxicity. Investigation of the mechanisms of PAR1 agonist peptides action and development of their shortened versions with high neuroprotective activity may be a relevant approach to the search of novel neuroprotective drugs for treating neurodegenerative diseases and strokes.  相似文献   

9.
The adipocyte-derived hormone adiponectin was recently shown to stimulate glucose-utilization and to increase fatty acid oxidation in liver and muscle. The effects were ascribed to adiponectin-receptor mediated activation of the key metabolic regulator AMP-activated protein kinase (AMPK). In pancreatic beta cells, AMPK-activation is known to affect cellular function. We therefore investigated a possible adiponectin-induced activation of AMPK in beta cells. RT-PCR analysis confirmed the expression of adiponectin receptor subtypes 1 and 2 in rat beta cells and showed their expression in insulin-secreting MIN6 cells. Culture with physiological concentrations (2.5 microg/ml) of globular adiponectin was found to increase the phosphorylation of both AMPK and acetylcoA carboxylase (ACC) in these cell types. Like the pharmacological AMPK activator 5-amino-imidazole-4-carboxamide-riboside (AICAR), adiponectin activated AMPK in beta cells and MIN6 cells. In short-term incubations of MIN6 cells with either adiponectin (2.5 microg/ml) or AICAR (1 mM), the flux of glucose-carbon to acyl CoA/cholesterol biosynthetic intermediates was reduced. We conclude that adiponectin induces an activation of AMPK in beta cells, which inhibits their cataplerosis of glucose-carbon to lipids.  相似文献   

10.
Ghrelin, released from the stomach, stimulates food intake through activation of the ghrelin receptor (GHS-R) located on neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons in the hypothalamus. A role for the energy sensor AMP-activated protein kinase (AMPK) and its downstream effector uncoupling protein 2 (UCP2) in the stimulatory effect of exogenous ghrelin on NPY/AgRP expression and food intake has been suggested. This study aimed to investigate whether a rise in endogenous ghrelin levels is able to influence hypothalamic AMPK activity, pACC, UCP2 and NPY/AgRP expression through activation of GHS-R. An increase in endogenous ghrelin levels was established by fasting (24h) or by induction of streptozotocin(STZ)-diabetes (15 days) in GHS-R(+/+) and GHS-R(-/-) mice. GHS-R(+/+) mice showed a significant increase in AgRP and NPY mRNA expression after fasting, which was not observed in GHS-R(-/-) mice. Fasting did not affect AMPK activity nor ACC phosphorylation in both genotypes and increased UCP2 mRNA expression. The hyperghrelinemia associated with STZ-induced diabetes was accompanied by an increased NPY and AgRP expression in GHS-R(+/+) but not in GHS-R(-/-) mice. AMPK activity and UCP2 expression in GHS-R(+/+) mice after induction of diabetes were decreased to a similar extent in both genotypes. Exogenous ghrelin administration tended to decrease hypothalamic AMPK activity. In conclusion, an increase in endogenous ghrelin levels triggered by fasting or STZ-induced diabetes stimulates the expression of AgRP and NPY via interaction with the GHS-R. The changes in AMPK activity, pACC and UCP2 occur independently from GHS-R suggesting that they do not play a major role in the orexigenic effect of endogenous ghrelin.  相似文献   

11.
12.
13.
Osteoclasts are multinucleated giant cells, responsible for bone resorption. Osteoclast differentiation and function requires a series of cytokines to remove the old bone, which coordinates with the induction of bone remodelling by osteoblast-mediated bone formation. Studies have demonstrated that AMP-activated protein kinase (AMPK) play a negative regulatory role in osteoclast differentiation and function. Research involving AMPK, a nutrient and energy sensor, has primarily focused on osteoclast differentiation and function; thus, its role in autophagy, inflammation and immunity remains poorly understood. Autophagy is a conservative homoeostatic mechanism of eukaryotic cells, and response to osteoclast differentiation and function; however, how it interacts with inflammation remains unclear. Additionally, based on the regulatory function of different AMPK subunits for osteoclast differentiation and function, its activation is regulated by upstream factors to perform bone metabolism. This review summarises the critical role of AMPK-mediated autophagy, inflammation and immunity by upstream and downstream signalling during receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation and function. This pathway may provide therapeutic targets for bone-related diseases, as well as function as a biomarker for bone homoeostasis.  相似文献   

14.
15.
A necessary mediator of cardiac myocyte enlargement is protein synthesis, which is controlled, in part, by the highly energy-consuming process of peptide-chain elongation. Recently, AMP-activated protein kinase (AMPK), which is a key regulator of cellular energy homeostasis, has been shown to phosphorylate a number of enzymes involved in the control of protein synthesis. Since AMPK may inhibit protein synthesis via a number of different pathways, it is possible that AMPK is also a key regulator of cardiac hypertrophy. Recent advances linking AMPK and the energy status of the cell to the regulation of protein synthesis and (or) cardiac myocyte hypertrophy will be discussed.  相似文献   

16.
The highly conserved eukaryotic process of macroautophagy (autophagy) is a non-specific bulk-degradation program critical for maintaining proper cellular homeostasis, and for clearing aged and damaged organelles. This decision is inextricably dependent upon prevailing metabolic demands and energy requirements of the cell. Soluble monomeric decorin functions as a natural tumor repressor that antagonizes a variety of receptor tyrosine kinases. Recently, we discovered that decorin induces endothelial cell autophagy, downstream of VEGFR2. This process was wholly dependent upon Peg3, a decorin-inducible genomically imprinted tumor suppressor gene. However, the signaling cascades responsible have remained elusive. In this report we discovered that Vps34, a class III phosphoinositide kinase, is an upstream kinase required for Peg3 induction. Moreover, decorin triggered differential formation of Vps34/Beclin 1 complexes with concomitant dissolution of inhibitive Bcl-2/Beclin 1 complexes. Further, decorin inhibited anti-autophagic signaling via suppression of Akt/mTOR/p70S6K activity with the concurrent activation of pro-autophagic AMPK-mediated signaling cascades. Mechanistically, AMPK is downstream of VEGFR2 and inhibition of AMPK signaling abrogated decorin-evoked autophagy. Collectively, these findings hint at the complexity of the underlying molecular relays necessary for decorin-evoked endothelial cell autophagy and reveal important therapeutic targets for augmenting autophagy and combatting tumor angiogenesis.  相似文献   

17.
The objective of this study was to understand the mechanism of action of nitric oxide (NO) in the heart by determining whether nitric oxide (NO) released from sodium nitroprusside (SNP) induces p38 mitogen activated protein kinase (p38 MAPK) phosphorylation and whether this is mediated through a cyclic GMP (cGMP)/protein kinase G (PKG) pathway. p38 MAPK activation was examined by Western blotting of whole cell lysates of embryonic chick cardiomyocytes with antibodies specific to the native or phosphorylated forms of p38 MAPK. SNP, 1 mM, which released significant amounts of NO as determined by Griess reaction, induced p38 MAPK phosphorylation that was apparent within 10 min, was significantly (p<0.05) greater than control at 60 min and remained higher than initial levels up to the 4 h end point of the experiment. This could not be attributed to hydrogen peroxide release from SNP as catalase did not affect SNP-induced p38 MAPK phosphorylation. SB202190, a relatively selective inhibitor of p38 MAPK, mainly p38alpha MAPK, inhibited SNP-induced p38 MAPK phosphorylation. SNP-induced p38 MAPK phosphorylation was not altered by pre-treatment with the PKG inhibitor KT 5823 or by ODQ a potent and selective inhibitor of NO-sensitive guanylyl cyclase. p38 MAPK phosphorylation was not induced by the cell permeable cGMP analogue, 8-Br-cGMP. In summary, considering that new therapeutic strategies aimed at NO and p38 MAPK are being considered for myocardial injury and heart failure, these data demonstrate that SNP induces p38 MAPK phosphorylation through a pathway that is independent of NO-induced activation of cGMP/PKG pathways and suggest that non cGMP/PKG regulatory proteins leading to p38 MAPK phosphorylation merit further investigation to address this therapeutic target.  相似文献   

18.
Atypical protein kinase C (aPKC) controls cell polarity by modulating substrate cortical localization. Aberrant aPKC activity disrupts polarity, yet the mechanisms that control aPKC remain poorly understood. We used a reconstituted system with purified components and a cultured cell cortical displacement assay to investigate aPKC regulation. We find that aPKC is autoinhibited by two domains within its NH(2)-terminal regulatory half, a pseudosubstrate motif that occupies the kinase active site, and a C1 domain that assists in this process. The Par complex member Par-6, previously thought to inhibit aPKC, is a potent activator of aPKC in our assays. Par-6 and aPKC interact via PB1 domain heterodimerization, and this interaction activates aPKC by displacing the pseudosubstrate, although full activity requires the Par-6 CRIB-PDZ domains. We propose that, along with its previously described roles in controlling aPKC localization, Par-6 allosterically activates aPKC to allow for high spatial and temporal control of substrate phosphorylation and polarization.  相似文献   

19.
The double-stranded RNA (dsRNA)-activated protein kinase R (PKR) has been invoked in different signaling pathways. In cells pre-exposed to the PKR inhibitor 2-aminopurine or in PKR-null cells, the activation of p38 mitogen-activated protein kinase (MAPK) following dsRNA stimulation is attenuated. We found that the p38 MAPK activator MKK6, but not its close relatives MKK3 or MKK4, exhibited an increased affinity for PKR following the exposure of cells to poly(rI:rC), a dsRNA analog. In vitro kinase assays revealed that MKK6 was efficiently phosphorylated by PKR, and this could be inhibited by 2-aminopurine. Expression of kinase-inactive PKR (K296R) in cells inhibited the poly(IC)-induced phosphorylation of MKK3/6 detected by phosphospecific antiserum but did not affect the poly(IC)-induced gel migration retardation of MKK3. This suggests that poly(IC)-mediated in vivo activation of MKK6, but not MKK3, is through PKR. Consistent with this observation, PKR was capable of activating MKK6 as assessed in a coupled kinase assay containing the components of the p38 MAPK pathway. Our results indicate that the interaction of MKK6 and PKR provides a mechanism for regulating p38 MAPK activation in response to dsRNA stimulation.  相似文献   

20.
AMP-activated protein kinase (AMPK) is a potential therapeutic target for the treatment of metabolic syndrome including obesity and type-2 diabetes. As part of an ongoing search for new AMPK activators from plants, this study found that the total extract of Myristica fragrans (nutmeg) activated the AMPK enzyme in differentiated C2C12 cells. As active constituents, seven 2,5-bis-aryl-3,4-dimethyltetrahydrofuran lignans, tetrahydrofuroguaiacin B (1), saucernetindiol (2), verrucosin (3), nectandrin B (4), nectandrin A (5), fragransin C1 (6), and galbacin (7) were isolated from this extract. Among the isolates, compounds 1, 4, and 5 at 5 μM produced strong AMPK stimulation in differentiated C2C12 cells. In addition, the preventive effect of a tetrahydrofuran mixture (THF) on weight gain in a diet-induced animal model was further examined. These results suggest that nutmeg and its active constituents can be used not only for the development of agents to treat obesity and possibly type-2 diabetes but may also be beneficial for other metabolic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号