首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Rationale

During the past 30 years, myocardial ischemia/reperfusion injury in rodents became one of the most commonly used model in cardiovascular research. Appropriate pain-prevention appears critical since it may influence the outcome and the results obtained with this model. However, there are no proper guidelines for pain management in rats undergoing thoracic surgery. Accordingly, we evaluated three analgesic regimens in cardiac ischemia/reperfusion injury. This study was strongly focused on 3R’s ethic principles, in particular the principle of Reduction.

Methods

Rats undergoing surgery were treated with pre-surgical tramadol (45 mg/kg intra-peritoneal), or carprofen (5 mg/kg sub-cutaneous), or with pre-surgical administration of carprofen followed by 2 post-surgery tramadol injections (multi-modal group). We assessed behavioral signs of pain and made a subjective evaluation of stress and suffering one and two hours after surgery.

Results

Multi-modal treatment significantly reduced the number of signs of pain compared to carprofen alone at both the first hour (61±42 vs 123±47; p<0.05) and the second hour (43±21 vs 74±24; p<0.05) post-surgery. Tramadol alone appeared as effective as multi-modal treatment during the first hour, but signs of pain significantly increased one hour later (from 66±72 to 151±86, p<0.05). Carprofen alone was more effective at the second hour post-surgery when signs of pain reduced to 74±24 from 113±40 in the first hour (p<0.05). Stress behaviors during the second hour were observed in only 20% of rats in the multimodal group compared to 75% and 86% in the carprofen and tramadol groups, respectively (p<0.05).

Conclusions

Multi-modal treatment with carprofen and tramadol was more effective in preventing pain during the second hour after surgery compared with both tramadol or carprofen. Our results suggest that the combination of carprofen and tramadol represent the best therapy to prevent animal pain after myocardial ischemia/reperfusion. We obtained our results accordingly with the ethical principle of Reduction.  相似文献   

2.
ObjectivesMyocardial dysfunction is a significant manifestation in sepsis, which results in high mortality. Even Kcnh2 has been hinted to associate with the pathological process, its involved signalling is still elusive.Materials and methodsThe caecal ligation puncture (CLP) surgery or lipopolysaccharide (LPS) injection was performed to induce septic cardiac dysfunction. Western blotting was used to determine KCNH2 expression. Cardiac function was examined by echocardiography 6 hours after CLP and LPS injection in Kcnh2 knockout (Kcnh2+/‐) and NS1643 injection rats (n ≥ 6/group). Survival was monitored following CLP‐induced sepsis (n ≥ 8/group).ResultsSepsis could downregulate KCNH2 level in the rat heart, as well as in LPS‐stimulated cardiomyocytes but not cardiac fibroblast. Defect of Kcnh2 (Kcnh2+/‐) significantly aggravated septic cardiac dysfunction, exacerbated tissue damage and increased apoptosis under LPS challenge. Fractional shortening and ejection fraction values were significantly decreased in Kcnh2+/‐ group than Kcnh2+/+ group. Survival outcome in Kcnh2+/‐ septic rats was markedly deteriorated, compared with Kcnh2+/+ rats. Activated Kcnh2 with NS1643, however, resulted in opposite effects. Lack of Kcnh2 caused inhibition of FAK/AKT signalling, reflecting in an upregulation for FOXO3A and its downstream targets, which eventually induced cardiomyocyte apoptosis and heart tissue damage. Either activation of AKT by activator or knockdown of FOXO3A with si‐RNA remarkably attenuated the pathological manifestations that Kcnh2 defect mediated.ConclusionKcnh2 plays a protection role in sepsis‐induced cardiac dysfunction (SCID) via regulating FAK/AKT‐FOXO3A to block LPS‐induced myocardium apoptosis, indicating a potential effect of the potassium channels in pathophysiology of SCID.  相似文献   

3.
Our aim was to assess the timing and mechanisms of the sympathoexcitation that occurs immediately after coronary ligation. We recorded thoracic sympathetic (tSNA) and phrenic activities, heart rate (HR) and perfusion pressure in Wistar rats subjected to either ligation of the left anterior descending coronary artery (LAD) or Sham operated in the working heart-brainstem preparation. Thirty minutes after LAD ligation, tSNA had increased (basal: 2.5±0.2 µV, 30 min: 3.5±0.3 µV), being even higher at 60 min (5.2±0.5 µV, P<0.01); while no change was observed in Sham animals. HR increased significantly 45 min after LAD (P<0.01). Sixty minutes after LAD ligation, there was: (i) an augmented peripheral chemoreflex – greater sympathoexcitatory response (50, 45 and 27% of increase to 25, 50 and 75 µL injections of NaCN 0.03%, respectively, when compared to Sham, P<0.01); (ii) an elevated pressor response (32±1 versus 23±1 mmHg in Sham, P<0.01) and a reduced baroreflex sympathetic gain (1.3±0.1 versus Sham 2.0±0.1%.mmHg−1, P<0.01) to phenylephrine injection; (iii) an elevated cardiac sympathetic tone (ΔHR after atenolol: −108±8 versus −82±7 bpm in Sham, P<0.05). In contrast, no changes were observed in cardiac vagal tone and bradycardic response to both baroreflex and chemoreflex between LAD and Sham groups. The immediate sympathoexcitatory response in LAD rats was dependent on an excitatory spinal sympathetic cardiocardiac reflex, whereas at 3 h an angiotensin II type 1 receptor mechanism was essential since Losartan curbed the response by 34% relative to LAD rats administered saline (P<0.05). A spinal reflex appears key to the immediate sympathoexcitatory response after coronary ligation. Therefore, the sympathoexcitatory response seems to be maintained by an angiotensinergic mechanism and concomitant augmentation of sympathoexcitatory reflexes.  相似文献   

4.
This study aims to determine the efficacy of Zinc finger protein ZBTB20 in treatment of post‐infarction cardiac remodelling. For this purpose, left anterior descending (LAD) ligation was operated on mice to induce myocardial infarction (MI) with sham control group as contrast and adeno‐associated virus (AAV9) system was used to deliver ZBTB20 to mouse heart by myocardial injection with vehicle‐injected control group as contrast two weeks before MI surgery. Then four weeks after MI, vehicle‐treated mice with left ventricular (LV) remodelling underwent deterioration of cardiac function, with symptoms of hypertrophy, interstitial fibrosis, inflammation and apoptosis. The vehicle‐injected mice also showed increase of infarct size and decrease of survival rate. Meanwhile, the ZBTB20‐overexpressed mice displayed improvement after MI. Moreover, the anti‐apoptosis effect of ZBTB20 was further confirmed in H9c2 cells subjected to hypoxia in vitro. Further study suggested that ZBTB20 exerts cardioprotection by inhibiting tumour necrosis factor α/apoptosis signal‐regulating kinase 1 (ASK1)/c‐Jun N‐terminal kinase 1/2 (JNK1/2) signalling, which was confirmed by shRNA‐JNK adenoviruses transfection or a JNK activator in vitro as well as ASK1 overexpression in vivo. In summary, our data suggest that ZBTB20 could alleviate cardiac remodelling post‐MI. Thus, administration of ZBTB20 can be considered as a promising treatment strategy for heart failure post‐MI.Significance Statement: ZBTB20 could alleviate cardiac remodelling post‐MI via inhibition of ASK1/JNK1/2 signalling.  相似文献   

5.
《Aging cell》2022,21(6)
DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome‐wide association study of whole blood DNAm in relation to mortality in 15 cohorts (= 15,013). During a mean follow‐up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry‐stratified meta‐analysis of all‐cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at < 1 × 10−7, of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm‐based prediction models for all‐cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C‐index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, P MR = 4.1 × 10−4) and negatively associated with longevity (Beta = −1.9, P MR = 0.02). Pathway analysis revealed that genes associated with mortality‐related CpGs are enriched for immune‐ and cancer‐related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.  相似文献   

6.
Copper depletion is associated with myocardial ischemic infarction, in which copper metabolism MURR domain 1 (COMMD1) is increased. The present study was undertaken to test the hypothesis that the elevated COMMD1 is responsible for copper loss from the ischemic myocardium, thus worsening myocardial ischemic injury. Mice (C57BL/6J) were subjected to left anterior descending coronary artery permanent ligation to induce myocardial ischemic infarction. In the ischemic myocardium, copper reduction was associated with a significant increase in the protein level of COMMD1. A tamoxifen-inducible, cardiomyocyte -specific Commd1 knockout mouse (C57BL/6J) model (COMMD1CMC▲/▲) was generated using the Cre-LoxP recombination system. COMMD1CMC▲/▲ and wild-type littermates were subjected to the same permanent ligation of left anterior descending coronary artery. At the 7th day after ischemic insult, COMMD1 deficiency suppressed copper loss in the heart, along with preservation of vascular endothelial growth factor and vascular endothelial growth factor receptor 1 expression and the integrity of the vascular system in the ischemic myocardium. Corresponding to this change, infarct size of ischemic heart was reduced and myocardial contractile function was well preserved in COMMD1CMC▲/▲ mice. These results thus demonstrate that upregulation of COMMD1 is at least partially responsible for copper efflux from the ischemic heart. Cardiomyocyte-specific deletion of COMMD1 helps preserve the availability of copper for angiogenesis, thus suppressing myocardial ischemic dysfunction.  相似文献   

7.
Biological age measures outperform chronological age in predicting various aging outcomes, yet little is known regarding genetic predisposition. We performed genome‐wide association scans of two age‐adjusted biological age measures (PhenoAgeAcceleration and BioAgeAcceleration), estimated from clinical biochemistry markers (Levine et al., 2018; Levine, 2013) in European‐descent participants from UK Biobank. The strongest signals were found in the APOE gene, tagged by the two major protein‐coding SNPs, PhenoAgeAccel—rs429358 (APOE e4 determinant) (p = 1.50 × 10−72); BioAgeAccel—rs7412 (APOE e2 determinant) (p = 3.16 × 10−60). Interestingly, we observed inverse APOE e2 and e4 associations and unique pathway enrichments when comparing the two biological age measures. Genes associated with BioAgeAccel were enriched in lipid related pathways, while genes associated with PhenoAgeAccel showed enrichment for immune system, cell function, and carbohydrate homeostasis pathways, suggesting the two measures capture different aging domains. Our study reaffirms that aging patterns are heterogeneous across individuals, and the manner in which a person ages may be partly attributed to genetic predisposition.  相似文献   

8.
Caspases are key intracellular molecules in the control of apoptosis, but little is known concerning their relative contribution to the cascade of events leading to eosinophil apoptosis. We examined caspase-3, -8, and -9 activities in receptor ligation dependent apoptosis induction in the cultured eosinophils (CE). CE cultured alone for 48 hours exhibited constitutive apoptosis (12% ± 1.2). Significant (P < 0.05) enhancement of eosinophil apoptosis was observed following monoclonal antibody (Mab) treatment with CD45 (40% ± 0.7), CD95 (36% ± 1.6), or CD69 (34% ± 0.2). Caspase activity was analysed using the novel CaspaTagTM technique and flow cytometry. CE ligated with CD45 (Bra55), CD95 (Fas) and CD69 Mab resulted in caspase-3 and -9 activation after 16 hours post-ligation. This trend in caspase-3 and -9 activation continued to increase significantly through to the 20 and 24 hours time points when compared to isotype control. Activated up-stream caspase-8 was detected 16 and 20 hours after treatment with CD45, CD95 and CD69 Mab followed by a trend toward basal levels at 24 hours. Ligation of CD95 was followed by mitochondrial permeabilization, as demonstrated by marked increase in mitochondrial transmembrane potential (ΔΨm) at all time points. However, ligation with CD45 and CD69 failed to induce a change in ΔΨm at 16 hours post-treatment compared to isotype control even though there was an alteration in mitochondrial downstream-caspase activity following ligation with these Mab(s) at this time point. At 20 and 24 hours post-ligation, CD45 or CD69 induce significantly altered levels of ΔΨm. Thus, the intrinsic and extrinsic caspase pathways are involved in controlling receptor ligation-mediated apoptosis induction in human eosinophils, findings that may aid the development of a more targeted, anti inflammatory therapy for asthma.  相似文献   

9.

Objective

The aim of this study was to quantify the effects of right ventricular apical pacing (RVAP) on hemodynamics in left anterior descending coronary artery (LAD) and anterior interventricular vein (AIV) contrast to baseline condition in open chest beagles using Doppler ultrasound imaging.

Methods

In 6 anesthetized open chest beagles, the spectral Doppler waveforms of the middle segmental LAD and the AIV were acquired with a 5 MHz linear array transducer at baseline condition and during RVAP. The aortic pressure-time curves were recorded synchronously. The Doppler hemodynamic parameters of the LAD and AIV at both states were derived and compared.

Results

The spectral Doppler waveforms of the LAD had a principal diastolic positive wave (Dp), which heelled by a momentary negative wave and a positive wave during early systole at baseline condition. During RVAP, an additional negative wave appeared in the LAD at late systole. The duration of the Dp shortened (227.83±12.16 ms vs 188.50±8.97 ms, P<0.001), and the acceleration of the Dp decreased (11.85±2.22 m/s2 vs 3.54±0.42 m/s2, P<0.001). The spectral Doppler waveforms of the AIV only had a principal positive wave (Sp) at baseline condition, but an additional diastolic negative wave appeared during RVAP. The duration of the Sp shortened (242.99±7.98 ms vs 215.38±15.44 ms, P<0.001), and the acceleration of the Sp decreased (9.61±1.93 m/s2 vs 1.01±0.11 m/s2, P<0.001).

Conclusions

Obvious hemodynamic changes in the LAD and AIV during RVAP were observed, and these abnormal flow patterns in epicardial coronary arteries and vena coronaria may be sensitive and important hints of the disturbed cardiac electrical and mechanical activity sequences.  相似文献   

10.
Although several genome‐wide association studies (GWAS) of non‐syndromic cleft lip with or without cleft palate (NSCL/P) have been reported, more novel association signals are remained to be exploited. Here, we performed an in‐depth analysis of our previously published Chinese GWAS cohort study with replication in an extra dbGaP case‐parent trios and another in‐house Nanjing cohort, and finally identified five novel significant association signals (rs11119445: 3’ of SERTAD4, P = 6.44 × 10−14; rs227227 and rs12561877: intron of SYT14, P = 5.02 × 10−13 and 2.80 × 10−11, respectively; rs643118: intron of TRAF3IP3, P = 4.45 × 10−6; rs2095293: intron of NR6A1, P = 2.98 × 10−5). The mean (standard deviation) of the weighted genetic risk score (wGRS) from these SNPs was 1.83 (0.65) for NSCL/P cases and 1.58 (0.68) for controls, respectively (P = 2.67 × 10−16). Rs643118 was identified as a shared susceptible factor of NSCL/P among Asians and Europeans, while rs227227 may contribute to the risk of NSCL/P as well as NSCPO. In addition, sertad4 knockdown zebrafish models resulted in down‐regulation of sox2 and caused oedema around the heart and mandibular deficiency, compared with control embryos. Taken together, this study has improved our understanding of the genetic susceptibility to NSCL/P and provided further clues to its aetiology in the Chinese population.  相似文献   

11.
BackgroundThree dimensional (3D) echocardiography-derived measurements of myocardial deformation and twist have recently advanced as novel clinical tools. However, with the exception of left ventricular ejection fraction and mass quantifications in hypertension and heart failure populations, the prognostic value of such imaging techniques remains largely unexplored.MethodsWe studied 200 subjects (mean age: 60.2±16 years, 54% female, female n = 107) with known hypertension (n = 51), diastolic heart failure (n = 61), or systolic heart failure (n = 30), recruited from heart failure outpatient clinics. Fifty-eight healthy volunteers were used as a control group. All participants underwent 3D-based myocardial deformation and twist analysis (Artida, Toshiba Medical Systems, Tokyo, Japan). We further investigated associations between these measures and brain natriuretic peptide levels and clinical outcomes.ResultsThe global 3D strain measurements of the healthy, hypertension, diastolic heart failure, and systolic heart failure groups were 28.03%, 24.43%, 19.70%, and 11.95%, respectively (all p<0.001). Global twist measurements were estimated to be 9.49°, 9.77°, 8.32°, and 4.56°, respectively. We observed significant differences regarding 3D-derived longitudinal, radial, and global 3D strains between the different disease categories (p<0.05), even when age, gender, BMI and heart rate were matched. In addition, 3D-derived longitudinal, circumferential, and 3D strains were all highly correlated with brain natriuretic peptide levels (p<0.001). At a mean 567.7 days follow-up (25th–75th IQR: 197–909 days), poorer 3D-derived longitudinal, radial, and global 3D strain measurements remained independently associated with a higher risk of cardiovascular related death or hospitalization due to heart failure, after adjusting for age, gender, and left ventricular ejection fraction (all p<0.05).Conclusions3D-based strain analysis may be a feasible and useful diagnostic tool for discriminating the extent of myocardial dysfunction. Furthermore, it is able to provide a prognostic value beyond traditional echocardiographic parameters in terms of ejection fraction.  相似文献   

12.
BackgroundAs coronavirus disease 2019 (COVID-19) has reached pandemic status, authors from the most severely affected countries have reported reduced rates of hospital admissions for patients with acute coronary syndrome (ACS).AimThe aim of the present study was to investigate the influence of the COVID-19 outbreak on hospital admissions and outcomes in ACS patients in a single high-volume centre in southeastern Europe.MethodsThis retrospective observational study aimed to investigate the number of hospital admissions for ACS, clinical findings at admission, length of hospitalisation, major complications and in-hospital mortality during the COVID-19 outbreak and to compare the data with the same parameters during an equivalent time frame in 2019. For the ST-elevated myocardial infarction (STEMI) subgroup of patients, changes in ischaemic times were analysed as well.ResultsThere was a significant reduction of 44.3% in the number of patients admitted for ACS during the COVID-19 outbreak when compared with the same period in 2019 (151 vs 271; 95% confidence interval 38.4–50.2, p < 0.01) with a higher mortality rate (13.2% vs 7.2%, p = 0.03). In 2020, patients with non-ST-elevated myocardial infarction presented more often with acute heart failure (3.3% vs 0.7%, p = 0.04). During the COVID-19 outbreak, we observed increases in the total ischaemic time (303 ± 163.4 vs 200.8 ± 156.8 min, p < 0.05) and door-to-balloon time (69.2 ± 58.4 vs 50.5 ± 31.3 min, p < 0.01) in STEMI patients.ConclusionsThese findings should increase the awareness of morbidity and mortality related to missed or delayed treatment of ACS among the public and the healthcare services.  相似文献   

13.
Within minutes of acute myocardial infarction (MI), proinflammatory cytokines increase in the brain, heart, and plasma. We hypothesized that cardiac afferent nerves stimulated by myocardial injury signal the brain to increase central cytokines. Urethane-anesthetized male Sprague-Dawley rats underwent ligation of the left anterior descending coronary artery (LAD) or sham LAD ligation after bilateral cervical vagotomy, sham vagotomy, or application of a 10% phenol solution to the epicardial surface of the myocardium at risk. MI caused a significant increase in tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta in the plasma and heart, which was blunted by vagotomy. MI also caused a significant increase in hypothalamic TNF-alpha and IL-1beta, which was not affected by vagotomy. In contrast, epicardial phenol blocked MI-induced increases in hypothalamic TNF-alpha and IL-1beta without affecting increases in the plasma and heart. These findings demonstrate that the appearance of proinflammatory cytokines in the brain after MI is independent of blood-borne cytokines and suggest that cardiac sympathetic afferent nerves activated by myocardial ischemia signal the brain to increase cytokine production. In addition, an intact vagus nerve is required for the full expression of proinflammatory cytokines in the injured myocardium and in the circulation. We conclude that the sympathetic and parasympathetic innervation of the heart both contribute to the acute proinflammatory response to MI.  相似文献   

14.

Aim and background

Heart-type fatty acid-binding proteins (H-FABP) which are detected within 2–3 h of acute myocardial infarction are involved in uptake of free fatty acids in the myocardium. Our aim in the present study is to compare window periods of H-FABP to high sensitivity troponin T (hs-Trop T) in acute ST elevation myocardial infarction (STEMI).

Methods

160 STEMI diagnosed patient’s serum samples are analyzed for hs-Trop T and H-FABP. Different window periods of chest pain onset (<3 h, 3–6 h and >6 h) are compared with complications, in-hospital mortality and statistically analyzed.

Results

From 160 patients, 53 (33%) cases are presented in <3 h, 75 (47%) in 3–6, and 32 (20%) after >6 h respectively. Accordingly sensitivity of hs-Trop T was 92%, 94% and 97% while H-FABP was 75%, 88% and 84%, respectively. Overall sensitivity was 94% and 82% respectively. Statistically significant difference between mean hs-Trop T values with respect to window period <3, 3–6 and >6 h was 0.21, 0.35 and 0.80 ng/ml respectively, p value < 0.0001. No significant difference in H-FABP values was observed.Hs-Trop T positively correlated with age (r = 0.153, P = 0.05), window period (r = 0.363, P < 0.0001), TIMI score (r = 0.208, P = 0.008), ejection fraction (r = 0.191, P = 0.008), serum H-FABP (r = 0.229, P = 0.004), and serum hs-CRP (r = 0.326, p < 0.001). There was a statistically significant difference of mean hs-Trop T values with or without in hospital mortality (0.35 vs. 0.85 ng/ml, respectively, p = 0.008).No significant correlation to age, TIMI score, ejection fraction and hs-CRP values for H-FABP was observed.

Conclusion

It appears that hs-Trop T is a more sensitive marker than H-FABP in early hours of AMI and higher hs-Trop T predicts increase in-hospital mortality.  相似文献   

15.
16.

Background

The limited effectiveness of cardiac cell therapy has generated concern regarding its clinical relevance. Experimental studies show that cell retention and engraftment are low after injection into ischemic myocardium, which may restrict therapy effectiveness significantly. Surgical aspects and mechanical loss are suspected to be the main culprits behind this phenomenon. As current techniques of monitoring intramyocardial injections are complex and time-consuming, the aim of the study was to develop a fast and simple model to study cardiac retention and distribution following intramyocardial injections. For this purpose, our main hypothesis was that macroscopic fluorescence imaging could adequately serve as a detection method for intramyocardial injections.

Methods and Results

A total of 20 mice underwent ligation of the left anterior descending artery (LAD) for myocardial infarction. Fluorescent microspheres with cellular dimensions were used as cell surrogates. Particles (5×105) were injected into the infarcted area of explanted resting hearts (Ex vivo myocardial injetions EVMI, n = 10) and in vivo into beating hearts (In vivo myocardial injections IVMI, n = 10). Microsphere quantification was performed by fluorescence imaging of explanted organs. Measurements were repeated after a reduction to homogenate dilutions. Cardiac microsphere retention was 2.78×105±0.31×105 in the EVMI group. In the IVMI group, cardiac retention of microspheres was significantly lower (0.74×105±0.18×105; p<0.05). Direct fluorescence imaging revealed venous drainage through the coronary sinus, resulting in a microsphere accumulation in the left (0.90×105±0.20×105) and the right (1.07×105±0.17×105) lung. Processing to homogenates involved further particle loss (p<0.05) in both groups.

Conclusions

We developed a fast and simple direct fluorescence imaging method for biodistribution analysis which enabled the quantification of fluorescent microspheres after intramyocardial delivery using macroscopic fluorescence imaging. This new technique showed massive early particle loss and venous drainage into the right atrium leading to substantial accumulation of graft particles in both lungs.  相似文献   

17.

Background

Obesity is associated with diastolic dysfunction, lower maximal myocardial blood flow, impaired myocardial metabolism and increased risk of heart failure. We examined the association between obesity, left ventricular filling pressure and myocardial structure.

Methods

We performed histological analysis of non-ischemic myocardium from 57 patients (46 men and 11 women) undergoing coronary artery bypass graft surgery who did not have previous cardiac surgery, myocardial infarction, heart failure, atrial fibrillation or loop diuretic therapy.

Results

Non-obese (body mass index, BMI, ≤30 kg/m2, n=33) and obese patients (BMI >30 kg/m2, n=24) did not differ with respect to myocardial total, interstitial or perivascular fibrosis, arteriolar dimensions, or cardiomyocyte width. Obese patients had lower capillary length density (1145±239, mean±SD, vs. 1371±333 mm/mm3, P=0.007) and higher diffusion radius (16.9±1.5 vs. 15.6±2.0 μm, P=0.012), in comparison with non-obese patients. However, the diffusion radius/cardiomyocyte width ratio of obese patients (0.73±0.11 μm/μm) was not significantly different from that of non-obese patients (0.71±0.11 μm/μm), suggesting that differences in cardiomyocyte width explained in part the differences in capillary length density and diffusion radius between non-obese and obese patients. Increased BMI was associated with increased pulmonary capillary wedge pressure (PCWP, P<0.0001), and lower capillary length density was associated with both increased BMI (P=0.043) and increased PCWP (P=0.016).

Conclusions

Obesity and its accompanying increase in left ventricular filling pressure were associated with lower coronary microvascular density, which may contribute to the lower maximal myocardial blood flow, impaired myocardial metabolism, diastolic dysfunction and higher risk of heart failure in obese individuals.  相似文献   

18.
OBJECTIVE: Diagnosis of breast cancer in young patients (≤ 35) correlates with a worse prognosis compared to their older counterparts (> 35). The aim of this study is to evaluate the relevance of clinical-pathologic factors and prognosis in young (≤ 35) breast cancer patients. METHODS: One hundred thirty-two patients of operable breast cancer who were younger than 35 are analyzed in this study. They were treated in our hospital between January 2006 and December 2012. Patients are classified into four molecular subtypes based on the immunohistochemical profiles of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67. Clinical and pathologic factors have been combined to define a specific classification of three risk levels to evaluate the prognosis of these young women. RESULTS: Patients whose ages are less than 30 have poorer prognosis than patients whose ages are between 31 and 35. The status of lymph nodes post-surgery seems to be the only factor related to patient age in young patients. The patients in level of ER + or PR + and HER2 −/+ status have the worst prognosis in hormone receptor–positive breast cancer. Group 3 in risk factor grouping has the poorer prognosis than the other two groups. CONCLUSIONS: Patient age and axillary lymph nodes post-surgery are the independent and significant predictors of distant disease-free survival, local recurrence-free survival, and overall survival. The absence of PR relates to poor prognosis. The risk factor grouping provides a useful index to evaluate the risk of young breast cancer to identify subgroups of patients with a better prognosis.  相似文献   

19.
目的探讨大鼠左冠状动脉前降支中上1/3所支配的区域液氮冷冻处理后对心肌形态学及心功能的影响,以建立适合移植干细胞再生修复心肌梗死研究的一种新的大鼠心肌梗死模型制作方法。方法80只雄性SD大鼠,随机分为3组即:冷冻组、结扎组、对照组。大鼠麻醉后,行气管插管连通动物呼吸机,打开胸廓暴露心脏,用特制的直径为0.6cm冷冻头置入液氮中冷冻降温后迅速冷冻大鼠左冠状动脉前降支中上1/3所支配的区域,或结扎左冠状动脉前降支中上1/3处。分别于处理后1d、3d、7d、14d、28d观察心脏病理组织学变化,并于处理28d后检测心功能的变化。结果在液氮冷冻大鼠心脏后,大鼠心肌组织出现凝固性坏死,继而有肉芽组织长人梗死灶内,最后形成疤痕。用液氮冷冻法可成功复制心肌梗死大鼠动物模型。与冠状动脉结扎法相比较,操作简单,手术时间短,死亡率低.心肌梗死面积变异小。结论液氮冷冻法作为一种复制心肌梗死模型的方法,有其自身的优势.可用于心肌梗死发生机制和干细胞治疗等方面的研究。  相似文献   

20.
IntroductionDespite considerable advances in the last decade, major adverse events remain a concern after transcatheter aortic valve implantation (TAVI). The aim of this study was to provide a detailed overview of their underlying causes and contributing factors in order to identify key domains for quality improvement.MethodsThis observational, prospective registry included all patients undergoing TAVI between 31 December 2015 and 1 January 2020 at the St. Antonius Hospital in Nieuwegein and the University Medical Centre in Utrecht. Outcomes of interest were all-cause mortality, stroke, major bleeding, life-threatening or disabling bleeding, major vascular complications, myocardial infarction, severe acute kidney injury and conduction disturbances requiring permanent pacemaker implantation within 30 days after TAVI, according to the Valve Academic Research Consortium‑2 criteria.ResultsOf the 1250 patients who underwent TAVI in the evaluated period, 146 (11.7%) developed a major complication. In 54 (4.3%) patients a thromboembolic event occurred, leading to stroke in 36 (2.9%), myocardial infarction in 13 (1.0%) and lower limb ischaemia in 11 (0.9%). Major bleeding occurred in 65 (5.2%) patients, most frequently consisting of acute cardiac tamponade (n = 25; 2.0%) and major access-site bleeding (n = 21; 1.7%). Most complications occurred within 1 day of the procedure. Within 30 days a total of 54 (4.3%) patients died, the cause being directly TAVI-related in 30 (2.4%). Of the patients who died from causes that were not directly TAVI-related, 14 (1.1%) had multiple hospital-acquired complications.ConclusionA variety of underlying mechanisms and causes form a wide spectrum of major threats affecting early safety in 11.7% of patients undergoing TAVI in a contemporary cohort of real-world patients.Supplementary InformationThe online version of this article (10.1007/s12471-021-01638-8) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号