首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microbial consortium attached onto a polyethylene support was used to evaluate the simultaneous oxidation of sulfide and phenol by denitrification. The phenol, sulfide and nitrate loading rates applied to an inverse fluidized bed reactor were up to 168 mg phenol–C/(l d), 37 mg S2?/(l d) and 168 mg NO3?–N/(l d), respectively. Under steady state operation the consumption efficiencies of phenol, sulfide and nitrate were 100%. The N2 yield (g N2/g NO3?–N) was 0.89. The phenol was mineralized resulting in a yield of 0.82 g bicarbonate–C/g phenol–C and sulfide was completely oxidized to sulfate with a yield of 0.99 g SO42?–S/g S2?. 16S rRNA gene-based microbial community analysis of the denitrifying biofilm showed the presence of Thauera aromatica, Thiobacillus denitrificans, Thiobacillus sajanensis and Thiobacillus sp. This is the first work reporting the simultaneous oxidation of sulfide and phenol in a denitrifying biofilm reactor.  相似文献   

2.
Twenty-five aerobic phenol-degrading bacteria, isolated from different environmental samples on phenol agar after several subcultures in phenol broth, utilized phenol (0.2 g l−1) within 24 h, but removal of phenol was more rapid when other carbon sources were also present. A microtitre plate method was developed to determine growth rate, biofilm formation and respiratory activity of the strains isolated. Pseudomonas putida strains C5 and D6 showed maximum growth (as O.D. at 600 nm), P. putida D6 and unidentified bacterial strain M1 were more stable at high concentrations of phenol (0.8 g l−1), and P. putida C5 formed the greatest amount of biofilm in 0.5 g phenol l−1 medium. Measurement of dehydrogenase activity as reduction of triphenyl tetrazolium chloride supported data on growth rate and biofilm formation. The microtitre plate method provided a selective method for detection of the best phenol degrading and biofilm-forming microorganisms, and was also a rapid, convenient means of studying the effect of phenol concentration on growth rate and biofilm formation.  相似文献   

3.
An α-carbonic anhydrase (CA, EC 4.2.1.1) has been recently cloned and characterized in the human pathogenic bacterium Vibrio cholerae, denominated VchCA (Del Prete et al. J. Med. Chem. 2012, 55, 10742). This enzyme shows a good catalytic activity for the CO2 hydration reaction, comparable to that of the human (h) isoform hCA I. Many inorganic anions and several small molecules were investigated as VchCA inhibitors. Inorganic anions such as cyanate, cyanide, hydrogen sulfide, hydrogen sulfite, and trithiocarbonate were effective VchCA inhibitors with inhibition constants in the range of 33–88 μM. Other effective inhibitors were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, with KIs of 7–43 μM. Halides (bromide, iodide), bicarbonate and carbonate were much less effective VchCA inhibitors, with KIs in the range of 4.64–28.0 mM. The resistance of VchCA to bicarbonate inhibition may represent an evolutionary adaptation of this enzyme to living in an environment rich in this ion, such as the gastrointestinal tract, as bicarbonate is a virulence enhancer of this bacterium.  相似文献   

4.
《Anaerobe》2009,15(4):108-115
Bacterial strain QZ1 was isolated from sludge of anoxic sulfide-oxidizing (ASO) reactor. Based on 16S rDNA sequence analysis and morphological characteristics, the isolate was identified as Pseudomonas stutzeri. The isolate was found to be a facultative chemolithotroph, using sulfide as electron donor and nitrite as electron acceptor. The strain QZ1 produced sulfate as the major product of sulfide oxidation, depending on the initial sulfide and nitrite concentrations. The isolate was capable of growth under strictly autotrophic conditions. The growth and substrate removal of Pseudomonas stutzeri QZ1 were optimal at an initial pH of 7.5–8.0 at 30 °C. The specific growth rate (μ) was found as 0.035 h−1 with a doubling time of 21.5 h. For isolate QZ1, the EC50 values both for sulfide and nitrite were found to be 335.95 mg S L−1 and 512.38 mg N L−1, respectively, showing that the sulfide oxidation into sulfate by Pseudomonas stutzeri QZ1 was badly affected beyond these substrate concentrations.  相似文献   

5.
We successfully enriched a novel anaerobic ammonium-oxidizing (anammox) bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and produced hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20–45 °C with a maximum activity at 37 °C. The maximum specific growth rate (μmax) was 0.0082 h?1 at 37 °C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5 ± 2.5 μM. The anammox activity was inhibited by nitrite (IC50 = 11.6 mM) but not by formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). The enriched anammox bacterium shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The enriched bacterium showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its 16S rRNA gene sequence. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.  相似文献   

6.
The objectives of this research were to isolate pure phenol-degrading strains from enriched mixed cultures, monitoring the variations of species during the enrichment period. Two strains were isolated from the acclimated mixed culture. They were identified as Pseudomonas resinovorans strain P-1 and Brevibacillus sp. strain P-6. DGGE indicated that strain P. resinovorans appeared at the beginning, and maintained well during the enrichment period. The second strain, Brevibacillus sp., did not appear in the initial stage, but showed up after 2 weeks of enrichment. The optimum growth temperatures for P. resinovorans and Brevibacillus sp. were 31 and 39 °C, respectively. P. resinovorans could degrade phenol completely within 57.5 h, when the initial phenol concentration was lower than 600 mg l−1. If the initial phenol concentration was lower than 200 mg l−1, Brevibacillus sp. could remove phenol completely within 93.1 h. It was obvious that the phenol-degrading ability of P. resinovorans was much better than that of Brevibacillus sp. The metabolic pathway for P. resinovorans phenol degradation was assigned to the meta-cleavage activity of catechol 2,3-dioxygenase.  相似文献   

7.
《Process Biochemistry》2007,42(3):401-408
This study systematically characterized an aerobic bacterial strain Sphingomonas sp. GY2B for biotransformation of phenanthrene. The strain was isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and was shown to efficiently use phenanthrene as the sole carbon and energy source. The antibiotics discs susceptibility test revealed that the bacterium was susceptible to some commonly used antibiotics, such as cefuroxime, chloramphenicol, erythromycin and tetracycline. It showed better growth at pH 7.4 and 30 °C and in a mineral salts medium (MSM) with phenanthrene at 100 mg L−1 as the substrate. The results indicated that 99.8% of the substrate had been degraded and that salicylate route was likely the metabolic pathway. When added as the second organic chemical, glucose could enhance the bacterial growth at low concentration (10–200 mg L−1), but could inhibit cell growth at high concentration (>500 mg L−1). Further study showed that strain GY2B could also use naphthalene, phenol, 1-hydroxy-2-naphthoic acid, 2-naphthol, salicylic acid and catechol as the sole carbon and energy source, but did not grow on 1-naphthol which could be co-metabolized in the present of phenanthrene or 1-hydroxy-2-naphthoic acid.  相似文献   

8.
《Process Biochemistry》2014,49(3):380-385
A microbial biosensing system for detection of hydrogen sulfide has been developed by using immobilized Thiobacillus thioparus TK-m in poly vinyl alcohol matrix, together with a dissolved oxygen sensor. Parameters of immobilization (poly vinyl alcohol concentration and amount of wet cell) were optimized by using statistical software. The obtained values for concentration of poly vinyl alcohol and wet cell weight were 11.3% (w/v) and 45 mg, respectively, where the response time of biosensor was 80 s. Calibration of oxygen concentration based on hydrogen sulfide concentration was investigated between 1 mg/L and 20 mg/L. The effect of pH and temperature were investigated in specific range of experimental conditions as well. Some parameters including operational stability and detection limit were studied in detail for characterization of biosensing system. In order to determine the operational stability, bio-sensing system at optimized working conditions was used to distinguish viability of microorganisms in polymer beads in period of time.  相似文献   

9.
Several studies on various Chattonella species have reported that bacteria may play an important role in Chattonella bloom initiation, however, no studies have described how these bacteria promote the growth of C. marina. The interaction between C. marina and bacteria was investigated for identification and characterization of potential growth-promoting bacteria. In preliminary tests, the growth promoting effect of Pseudomonas species (25 strains) was investigated and P. asplenii (≥2.27) was determined as a growth-promoting bacteria for both C. marina strains (CCMP 2049 and 2050). This bacterium exerted optimal growth-promoting effects on C. marina, causing an increase in the initial density of P. asplenii to approximately 1 × 107 cells mL−1, which was used as the initial density in this study. To determine whether the growth-promoting activity was direct or indirect, P. asplenii was incubated in the algal media and then a filtrate of this culture was added to both C. marina strains. The P. asplenii filtrate stimulated the growth of C. marina and maintained the growth-promoting effects after high temperature (121 °C for 20 min) and pressure (15 psi) treatment. Thus, P. asplenii is able to promote C. marina growth through the release of a heat-resistant substance, such as inorganic nutrients. A nutrient analysis indicated that this bacterium elevated the phosphate concentration. Interestingly, P. asplenii was unable to survive in phosphate-limited media but could grow in phosphate-limited media incubating C. marina. Moreover, this bacterium could secrete significantly more phosphate in the presence of C. marina (p < 0.0001). These results suggested that P. asplenii and C. marina may have a mutualistic interaction.  相似文献   

10.
We describe the discovery and optimization of a novel series of furo[3,2-d]pyrimidines as G protein-coupled receptor 119 agonists. Agonistic activity of 4 (EC50 = 129 nM) was improved by replacing the intramolecular hydrogen bond between the fluorine atom and the aniline hydrogen in the head moiety with a covalent C-C bond to enhance conformational restriction, which consequently gave a lead compound 12 (EC50 = 53 nM). Optimized compound 26, which was identified by the further optimization of 12, exhibited potent activity (EC50 = 42 nM) with improved clearance in liver microsomes and induced a 33% reduction in blood glucose area under the curve at a dose of 10 mg/kg in an oral glucose tolerance test in C57BL/6N mice.  相似文献   

11.
A new lanostane aldehyde, charantal (1), was isolated from the ethanolic leaf extract of Momordica charantia together with the known compound, 2,4-bis(2-phenylpropan-2-yl)phenol (2). The structure of compound 1 was elucidated by extensive 1D and 2D NMR and MS experiments. Compound 2 displayed a moderately strong antitubercular activity against Mycobacterium tuberculosis H37Rv (MIC = 14 μg/mL) according to the MABA susceptibility assay.  相似文献   

12.
Typha angustifolia was evaluated for various heavy metals (Cu, Pb, Ni, Fe, Mn, and Zn) bioremediation potential from aqueous solution containing variable concentrations of phenol (100–800 mg l?1) and melanoidin (2500–8500 Co–Pt) at 20, 40, and 60 days. The concentration of phenol (200–400 mg l?1) along with melanoidin 2500 Co–Pt showed optimum for phytoremediation of tested heavy metals, while, higher concentrations of melanoidin (5600–8500 Co–Pt) showed toxic effect on T. angustifolia along with phenol. Phenol and melanoidin showed adverse effect on T. angustifolia of up to 20 days incubation, but this leads to induction of peroxidase and ascorbic acid activity to cope with adverse conditions. Subsequently, as pollutants were decreased along with plant growth, peroxidase and ascorbic acid also declined. However, with reduction of peroxidase, catalase level was increased. The Cu, Zn, and Ni were accumulated at maximum in all tested conditions. The TEM observations of T. angustifolia showed clotted deposition of metals and shrinkage of cell in root, breakdown of spongy and palisade parenchyma of leaves at higher concentration of phenol (100 mg l?1) and melanoidin (5500 Co–Pt). Thus, this study concluded that T. angustifolia could be a potential phytoremediator for heavy metals from metal, melanoidin, and phenol containing industrial wastewater at optimized condition.  相似文献   

13.
Biosorption is an effective treatment method for the removal of phenol and cyanide from aqueous solution by saw dust activated carbon (SDAC). Batch experiments were achieved as a function of several experimental parameters, i.e. influence of biosorbent dose (5–60 g/L) contact time (2–40 h), pH (4–12), initial phenol concentration (100–1000 mg/L) and initial cyanide concentration (10–100 mg/L) and temperature (20–40 °C). The biosorption capacities of the biosorbent were detected as 178.85 mg/g for phenol with 300 mg/L of initial concentration and 0.82 mg/g for cyanide with 30 mg/L of initial concentration. The optimum pH is found to be 8 for phenol and 9 for cyanide biosorption. The mono component biosorption equilibrium data for both phenol and cyanide were well defined by Redlich–Peterson model and binary component adsorption equilibrium data well fitted by extended Freundlich model. The percentage removal of phenol and cyanide using SDAC was 66.67% and 73.33%, respectively. Equilibrium established within 30 h for phenol and 28 h for cyanide. Kinetic studies revealed that biosorption of phenol followed pseudo second order indicating adsorption through chemisorption and cyanide followed pseudo first order kinetic model indicating adsorption through physisorption. Thermodynamic studies parameters, i.e., enthalpy (Δh0), entropy (ΔS0) and Gibb’s free energy (ΔG0) have also been considered for the system. Thermodynamic modeling studies revealed that the process of cyanide biosorption was endothermic and phenol biosorption was exothermic in nature.  相似文献   

14.
This study aimed to evaluate the effects of diet containing the green macroalgae, Ulva lactuca, on the growth performance, feed utilization and body composition of African catfish Clarias gariepinus. Four experimental diets were formulated: D1 as a control group and D2, D3 and D4 which included 10%, 20% and 30% U. lactuca meal, respectively. 180 African catfish, weighing 9.59 ± 0.43 g, and with an average length of 11.26 ± 0.21, (mean ± SE) were divided into four groups corresponding to the different feeding regimes. The final body weight of the fish showed insignificant differences (P > 0.05) between the control and fish fed D2, whereas, there was a significant difference (P < 0.05) between these two diets compared with D3 and D4, with weights of 70.52, 60.92, 40.57 and 35.66 g recorded for D1, D2, D3 and D4, respectively. In the same trend significant differences were also evident in weight gain, specific growth rate and feed utilization. Fish fed with a diet containing 20% or 30% U. lactuca meal had poorer growth performance and feed utilization. Protein productive value, protein efficiency ratio, daily dry feed intake and total feed intake were also significantly lower in fish fed with D3 and D4 than in the control D1 and D2.Overall, the results of the experiment revealed that African catfish fed a diet with U. lactuca included at 20% and 30% levels showed poorer growth and feed utilization than the control group and fish fed diets containing 10% of U. lactuca.  相似文献   

15.
《Process Biochemistry》2010,45(5):805-809
The effects of the biosurfactant monorhamnolipid (monoRL) and the chemical surfactant Tween 80 on the degradation of phenol by Candida tropicalis CICC 1463 were studied. Both surfactants impeded the decay in cell concentrations at the beginning of the fermentation and enhanced the cell growth thereafter. They also increased the degradation efficiencies of 500 mg/L phenol from 86.9% in control to above 99.0% for all test concentrations within 30 h. The monoRL could also be degraded by the C. tropicalis. These results indicate that the surfactants could diminish the toxicity of phenol to the yeast, increase cell growth and improve phenol removal. The monoRL is better than Tween 80 because of biodegradability.  相似文献   

16.
This paper presents an alternative solution to the current problem faced by the world; diminishing of fossil fuel. Bioconversion of synthesis gas to hydrogen as clean fuel was catalyzed by a photosynthetic bacterium, Rhodospirillum rubrum. The clean fuel production was biologically mediated by the water–gas shift reaction in a 2 l bioreactor. The work performed was on agitation effects on hydrogen production, KLa and power consumption. The results show that 500 rpm was the suitable agitation rate to be employed. The hydrogen production was optimized at 0.44 ± 0.023 atm giving a KLa of 86.4 ± 3.5 h−1. The production rate was 9.6 mmol H2/h. The maximum light conversion efficiency at agitation speed of 800 rpm, light intensity of 500 lux (732 kW/m2) and 4 g/l inlet acetate concentration was about 10.84 ± 1.73%. At this condition, the maximum CO conversion efficiency was found to be 81 ± 5.6%. The ratio of power per volume was calculated to be 322.30 ± 12.14 kW/m3 and foaming problem was successfully avoided. The corresponding power consumption was estimated to be about 0.64 ± 0.03 kW, while the output hydrogen energy was determined to be 643.2 ± 26 kW. A prolonged operation of continuous hydrogen production employing a microsparger showed stable behaviour for a duration of 27 days.  相似文献   

17.
The aim of this study was to evaluate the use of dried marine seaweed, Gracilaria arcuata for the first time as dietary ingredient in partial substitution of fishmeal on the growth performance, feed utilization and body composition of African catfish, Clarias gariepinus. Four experimental diets were formulated: D1 as a control group; D2; D3 and D4 which included 10%, 20% and 30% G. arcuata meal respectively. One hundred and eighty African catfish weighing 9.62 ± 0.42 g, (mean ± SE) was divided into four groups corresponding to the different feeding regimes. The final body weight of the fishes showed significant differences (P < 0.05) between the control (D1); D2 and other treated groups D3 and D4, with weights of 66.98, 59.60, 47.34 and 30.73 g recorded for D1, D2, D3 and D4, respectively. Significant differences (P < 0.05) were also evident in weight gain, specific growth rate, and feed utilization between treatment and control groups. However, no significant differences (P > 0.05) were observed between the control group and fishes fed D2 for all previous parameters. Protein productive value, protein efficiency ratio, daily dry feed intake and total feed intake were also significantly lower in fish fed with a diet containing G. arcuata than in the control group and D2 which contains 10% of G. arcuata. Overall, the results of the experiment revealed that African catfish fed a diet with G. arcuata included in 20% and 30% levels showed poorer growth and feed utilization than the control group and D2. However, the study recommended that C. gariepinus can accept this ingredient up to 10% in their diets. More defined experiments therefore seem to be necessary in order to determine the maximum level of this marine seaweed in diets with amino acid supplementation for African catfish.  相似文献   

18.
A magnetotactic bacterium, designated strain BW-1T, was isolated from a brackish spring in Death Valley National Park (California, USA) and cultivated in axenic culture. The Gram-negative cells of strain BW-1T are relatively large and rod-shaped and possess a single polar flagellum (monotrichous). This strain is the first magnetotactic bacterium isolated in axenic culture capable of producing greigite and/or magnetite nanocrystals aligned in one or more chains per cell. Strain BW-1T is an obligate anaerobe that grows chemoorganoheterotrophically while reducing sulfate as a terminal electron acceptor. Optimal growth occurred at pH 7.0 and 28 °C with fumarate as electron donor and carbon source. Based on its genome sequence, the G + C content is 40.72 mol %. Phylogenomic and phylogenetic analyses indicate that strain BW-1T belongs to the Desulfobacteraceae family within the Deltaproteobacteria class. Based on average amino acid identity, strain BW-1T can be considered as a novel species of a new genus, for which the name Desulfamplus magnetovallimortis is proposed. The type strain of D. magnetovallimortis is BW-1T (JCM 18010T–DSM 103535T).  相似文献   

19.
Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the γ-class are present in archaea, bacteria and plants but, except the Methanosarcina thermophila enzymes CAM and CAMH, they were poorly characterized so far. Here we report a new such enzyme (PgiCA), the γ-CA from the oral cavity pathogenic bacterium Porphyromonas gingivalis, the main causative agent of periodontitis. PgiCA showed a good catalytic activity for the CO2 hydration reaction, comparable to that of the human (h) isoform hCA I. Inorganic anions such as thiocyanate, cyanide, azide, hydrogen sulfide, sulfamate and trithiocarbonate were effective PgiCA inhibitors with inhibition constants in the range of 41–97 μM. Other effective inhibitors were diethyldithiocarbamate, sulfamide, and phenylboronic acid, with KIs of 4.0–9.8 μM. The role of this enzyme as a possible virulence factor of P. gingivalis is poorly understood at the moment but its good catalytic activity and the possibility to be inhibited by a large number of compounds may lead to interesting developments in the field.  相似文献   

20.
A non-modified and modified with NaOH and ethylenediamine ultrafiltration membranes prepared from AN copolymer have been used as carriers for the immobilization of horseradish peroxidase (HRP) enzyme. The amount of bound protein onto the membranes and the activity of the immobilized enzyme have been investigated as well as the pH and thermal optimum, and the thermal stability of the free and immobilized HRP. The experiments have proved that the modified membrane is a better support for the immobilization of HRP enzyme. The latter has shown a greater thermal stability than the free enzyme.A possible application has been studied for reducing phenol concentration in water solutions through oxidation of phenol by hydrogen peroxide, in the presence of free and immobilized HRP enzyme on modified AN copolymer membranes. A higher degree of the phenol oxidation has been observed in the presence of the immobilized enzyme. A total removal of phenol has been achieved in the presence of immobilized HRP at concentration of the hydrogen peroxide 0.5 mmol L?1 and concentration of the phenol in the model solutions within the interval 5–40 mg L?1. A high degree of phenol oxidation (95.4%) has been achieved in phenol solution with 100 mg L?1 concentration in the presence of hydrogen peroxide and immobilized HRP, which demonstrates the promising opportunity of using the enzyme for bioremediation of waste waters, containing phenol.The immobilized HRP has shown good operational stability. Deactivation of the immobilized enzyme to 50% of the initial activity has been observed after the 20th day of the enzyme operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号