首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two year period bacteriological data was analysed and the frequent bacterial isolates from different clinical specimens included: S. aureus, 25% E. coli, 15%; Proteus spp 14%; Citrobacter-Enterobacter group, 10% coagulase negative Staphylococcus species, 9%; and other miscellaneous bacteria each less than 9%. The majority of the bacterial isolates were resistant to commonly available antimicrobial agents like tetracycline, ampicillin, and chloramphenicol.  相似文献   

2.

Background and Aims

The role and linkage of endophytic bacteria to resistance of peanut seeds to biotic stress is poorly understood. The aims of the present study were to survey the experimental (axenic) and control (conventional) peanut plants for the predominant endophytic bacteria, and to characterize isolates with activity against selected A. flavus strains.

Methods

Young axenic plants were grown from presumably bacteria-free embryos in the lab, and then they were grown in a field. Endophytic bacterial species were identified by the analysis of DNA sequences of their 16S-ribosomal RNA gene. DNA extracted from soil was also analyzed for predominant bacteria.

Results

Mature seeds from the experimental and control plants contained several species of nonpathogenic endophytic bacteria. Among the eight bacterial species isolated from seeds, and DNA sequences detected in soil, Bacillus thuringiensis was dominant. All B. amyloliquefaciens isolates, the second abundant species in seeds demonstrated activity against A. flavus. This effect was not observed with any other bacterial isolates. There was no significant difference in number and relative occurrence of the two major bacterial species between the experimental and conventionally grown control seeds.

Conclusion

Endophytic bacterial colonization derives from local soil and not from the seed source, and the peanut plant accommodates only selected species of bacteria from diverse soil populations. Some bacterial isolates showed antibiosis against A. flavus.  相似文献   

3.

Background

In Africa, there are several problems with the specific identification of bacteria. Recently, MALDI-TOF mass spectrometry has become a powerful tool for the routine microbial identification in many clinical laboratories.

Methodology/Principal Findings

This study was conducted using feces from 347 individuals (162 with diarrhea and 185 without diarrhea) sampled in health centers in Dakar, Senegal. Feces were transported from Dakar to Marseille, France, where they were cultured using different culture conditions. The isolated colonies were identified using MALDI-TOF. If a colony was unidentified, 16S rRNA sequencing was performed. Overall, 2,753 isolates were tested, allowing for the identification of 189 bacteria from 5 phyla, including 2 previously unknown species, 11 species not previously reported in the human gut, 10 species not previously reported in humans, and 3 fungi. 2,718 bacterial isolates (98.8%) out of 2,750 yielded an accurate identification using mass spectrometry, as did the 3 Candida albicans isolates. Thirty-two bacterial isolates not identified by MALDI-TOF (1.2%) were identified by sequencing, allowing for the identification of 2 new species. The number of bacterial species per fecal sample was significantly higher among patients without diarrhea (8.6±3) than in those with diarrhea (7.3±3.4; P = 0.0003). A modification of the gut microbiota was observed between the two groups. In individuals with diarrhea, major commensal bacterial species such as E. coli were significantly decreased (85% versus 64%), as were several Enterococcus spp. (E. faecium and E. casseliflavus) and anaerobes, such as Bacteroides spp. (B. uniformis and B. vulgatus) and Clostridium spp. (C. bifermentans, C. orbiscindens, C. perfringens, and C. symbosium). Conversely, several Bacillus spp. (B. licheniformis, B. mojavensis, and B. pumilus) were significantly more frequent among patients with diarrhea.

Conclusions/Significance

MALDI-TOF is a potentially powerful tool for routine bacterial identification in Africa, allowing for a quick identification of bacterial species.  相似文献   

4.
Surveillance of bacterial susceptibility to five antimicrobial agents was performed during a 1-year period in and around four freshwater fish farms situated along a stream in western Denmark. Besides assessing the levels of antibiotic resistance among the culturable fraction of microorganisms in fish, water, and sediment samples, two major fish pathogens (88 Flavobacterium psychrophilum isolates and 134 Yersinia ruckeri isolates) and 313 motile Aeromonas isolates, representing a group of ubiquitous aquatic bacteria, were isolated from the same samples. MICs were obtained applying a standardized agar dilution method. A markedly decreased susceptibility of F. psychrophilum isolates to most antimicrobial agents presently available for use in Danish aquaculture was detected, while the collected Y. ruckeri isolates remained largely sensitive to all therapeutic substances. Comparing the inlet and outlet samples, the increase of the antibiotic-resistant proportions observed among the culturable microflora was more pronounced and statistically significant among the motile aeromonads. High levels of individual and multiple antimicrobial resistances were demonstrated within the collected flavobacteria and aeromonads, thus indicating a substantial impact of fish farming on several groups of bacteria associated with aquacultural environments.  相似文献   

5.
Probiotics, gut-colonizing microorganisms capable of conferring a number of health benefits to their hosts, are highly desirable as animal feed supplements. Members of the Gram-positive genus Bacillus are often utilized as probiotics, since endospores formed by those bacteria render them highly resistant to environmental extremes and therefore capable of surviving gastrointestinal tract conditions. In this study, 84 distinct bacterial colonies were obtained from bovine chyme and 29 isolates were determined as Bacillus species. These isolates were principally screened for their antimicrobial activity against a group of two Gram-positive and four Gram-negative bacteria, including known human and animal pathogens such as Salmonella enterica, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Seven strains displaying strong antimicrobial activity against the test cohort were further evaluated for other properties desirable from animal probiotics, including high spore-forming capacity and adhesiveness, resistance to pH extremes and ability to form biofilms. The isolates were found to resist simulated gastrointestinal conditions and most of the antibiotics tested. In addition, plasmid presence was checked and cytotoxicity tests were performed to evaluate the potential risks of antibiotic resistance transfer and unintended pathogenic effects on host, respectively. We propose that the bacterial isolates are suitable for use as animal probiotics.  相似文献   

6.
Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates.” We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens  相似文献   

7.
The oral cavity of humans is inhabited by hundreds of bacterial species and some of them have a key role in the development of oral diseases, mainly dental caries and periodontitis. We describe for the first time the metagenome of the human oral cavity under health and diseased conditions, with a focus on supragingival dental plaque and cavities. Direct pyrosequencing of eight samples with different oral-health status produced 1 Gbp of sequence without the biases imposed by PCR or cloning. These data show that cavities are not dominated by Streptococcus mutans (the species originally identified as the ethiological agent of dental caries) but are in fact a complex community formed by tens of bacterial species, in agreement with the view that caries is a polymicrobial disease. The analysis of the reads indicated that the oral cavity is functionally a different environment from the gut, with many functional categories enriched in one of the two environments and depleted in the other. Individuals who had never suffered from dental caries showed an over-representation of several functional categories, like genes for antimicrobial peptides and quorum sensing. In addition, they did not have mutans streptococci but displayed high recruitment of other species. Several isolates belonging to these dominant bacteria in healthy individuals were cultured and shown to inhibit the growth of cariogenic bacteria, suggesting the use of these commensal bacterial strains as probiotics to promote oral health and prevent dental caries.  相似文献   

8.
Microbiomes associated with multicellular organisms influence the disease susceptibility of hosts. The potential exists for such bacteria to protect wildlife from infectious diseases, particularly in the case of the globally distributed and highly virulent fungal pathogen Batrachochytrium dendrobatidis of the global panzootic lineage (B. dendrobatidis GPL), responsible for mass extinctions and population declines of amphibians. B. dendrobatidis GPL exhibits wide genotypic and virulence variation, and the ability of candidate probiotics to restrict growth across B. dendrobatidis isolates has not previously been considered. Here we show that only a small proportion of candidate probiotics exhibited broad-spectrum inhibition across B. dendrobatidis GPL isolates. Moreover, some bacterial genera showed significantly greater inhibition than others, but overall, genus and species were not particularly reliable predictors of inhibitory capabilities. These findings indicate that bacterial consortia are likely to offer a more stable and effective approach to probiotics, particularly if related bacteria are selected from genera with greater antimicrobial capabilities. Together these results highlight a complex interaction between pathogens and host-associated symbiotic bacteria that will require consideration in the development of bacterial probiotics for wildlife conservation. Future efforts to construct protective microbiomes should incorporate bacteria that exhibit broad-spectrum inhibition of B. dendrobatidis GPL isolates.  相似文献   

9.
Objectives: To develop a system to (1) provide automated interpretation of antimicrobial susceptibility results using animal species, specimen site and bacterial isolate identification criteria, (2) report antimicrobial susceptibility results, according to recommended use category and animal species approval status, (3) allow for changes in antimicrobial agent being tested and result interpretations without need for programming changes and (4) allow for intuitive data entry process without need for reference material. Design: Tables are used to match results and reporting categories to a test method, specific tests, animal species, specimen sites and bacterial isolates. Information used for interpretation of test readings is maintained in tables for user reference while entering results. Results: A table driven system was developed to account for variations in reporting due to antimicrobial susceptibility method used, animal species, bacterial isolate tested and the site from which bacteria isolate was recovered. Conclusions: This process provides for accurate reporting of antimicrobial susceptibility results and is easily adaptable to changes in reporting requirements. The system minimizes reporting criteria and decision-making requirements for technical laboratory personnel, while improving antimicrobial susceptibility reports generated for veterinary practitioners.  相似文献   

10.
AIMS: To study the bacterial diversity in expressed human milk with a focus on detecting bacteria with an antimicrobial activity against Staphylococcus aureus, known as a causative agent of maternal breast infections and neonatal infections. METHODS AND RESULTS: Random isolates (n = 509) were collected from breast milk samples (n = 40) of healthy lactating women, genotypically identified, and tested for antimicrobial activity against Staph. aureus. Commensal staphylococci (64%) and oral streptococci (30%), with Staph. epidermidis, Strep. salivarius, and Strep. mitis as the most frequent isolates, were the predominant bacterial species in breast milk. One-fifth of Staph. epidermidis and half of Strep. salivarius isolates suppressed growth of Staph. aureus. Enterococci (Ent. faecalis), isolated from 7.5% of samples, and lactic acid bacteria (LAB) (Lactobacillus rhamnosus, Lact. crispatus, Lactococcus lactis, Leuconoctoc mesenteroides), isolated from 12.5% of samples, were also effective against Staph. aureus. One L. lactis isolate was shown to produce nisin, a bacteriocin used in food industry to prevent bacterial pathogens and spoilage. CONCLUSIONS: Expressed breast milk contains commensal bacteria, which inhibit Staph. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY: The strains inhibitory against the pathogen Staph. aureus have potential use as bacteriotherapeutic agents in preventing neonatal and maternal breast infections caused by this bacterium.  相似文献   

11.
The antimicrobial activity of plant extract of Peganum harmala, a medicinal plant has been studied already. However, knowledge about bacterial diversity associated with different parts of host plant antagonistic to different human pathogenic bacteria is limited. In this study, bacteria were isolated from root, leaf and fruit of plant. Among 188 bacterial isolates isolated from different parts of the plant only 24 were found to be active against different pathogenic bacteria i.e. Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecium, Enterococcus faecalis and Pseudomonas aeruginosa. These active bacterial isolates were identified on the basis of 16S rRNA gene analysis. Total population of bacteria isolated from plant was high in root, following leaf and fruit. Antagonistic bacteria were also more abundant in root as compared to leaf and fruit. Two isolates (EA5 and EA18) exhibited antagonistic activity against most of the targeted pathogenic bacteria mentioned above. Some isolates showed strong inhibition for one targeted pathogenic bacterium while weak or no inhibition for others. Most of the antagonistic isolates were active against MRSA, following E. faecium, P. aeruginosa, E. coli and E. faecalis. Taken together, our results show that medicinal plants are good source of antagonistic bacteria having inhibitory effect against clinical bacterial pathogens.  相似文献   

12.
The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of antimicrobial cLPs.  相似文献   

13.
To date, several bacterial species have been described as mineral-weathering agents which improve plant nutrition and growth. However, the possible relationships between mineral-weathering potential, taxonomic identity, and metabolic ability have not been investigated thus far. In this study, we characterized a collection of 61 bacterial strains isolated from Scleroderma citrinum mycorrhizae, the mycorrhizosphere, and the adjacent bulk soil in an oak forest. The ability of bacteria to weather biotite was assessed with a new microplate bioassay that measures the pH and the quantity of iron released from this mineral. We showed that weathering bacteria occurred more frequently in the vicinity of S. citrinum than in the bulk soil. Moreover, the weathering efficacy of the mycorrhizosphere bacterial isolates was significantly greater than that of the bulk soil isolates. All the bacterial isolates were identified by partial 16S rRNA gene sequence analysis as members of the genera Burkholderia, Collimonas, Pseudomonas, and Sphingomonas, and their carbon metabolism was characterized by the BIOLOG method. The most efficient isolates belonged to the genera Burkholderia and Collimonas. Multivariate analysis resulted in identification of three metabolic groups, one of which contained mainly bacterial isolates associated with S. citrinum and exhibiting high mineral-weathering potential. Therefore, our results support the hypothesis that by its carbon metabolism this fungus selects in the bulk soil reservoir a bacterial community with high weathering potential, and they also address the question of functional complementation between mycorrhizal fungi and bacteria in the ectomycorrhizal complex for the promotion of tree nutrition.  相似文献   

14.
Among 1,236 colony-forming units (CFU) associated with 11 species of marine sponges collected from a Brazilian coast, a total of 100 morphologically different bacterial strains were analyzed. The phylogenetic diversity of the bacterial isolates was assessed by 16S rRNA gene amplification—restriction fragment length polymorphism (RFLP) analysis, using AluI restriction endonuclease. The RFLP fingerprinting resulted in 21 different patterns with good resolution for the identification of the bacterial isolates at the genus level. The genus Bacillus was the most commonly encountered genus, followed by Kocuria. Regarding the relationship between the morphotypes and species of marine sponges, Mycale microsigmatosa presented major diversity, followed by Dragmacidon reticulatum and Polymastia janeirensis. An antibiotic susceptibility profile of the 100 sponge-associated bacterial strains was determined by the disk diffusion method, and we observed a variable resistance profile, with 15 % of the bacteria being multiresistant. In addition, 71 of 100 strains were able to produce biofilm. These 71 strains were divided into 20 strong biofilm producers, 10 moderate biofilm producers, and 41 weak biofilm producers. The plasmid profile of the 100 bacterial strains was analyzed and 38 (38 %) of these samples possessed one or more plasmids. Studies like this are important to increase the information on these associated bacteria found off the coastline of Brazil, a place which has rich biodiversity that is still unknown.  相似文献   

15.
Chitinase Genes in Lake Sediments of Ardley Island, Antarctica   总被引:3,自引:0,他引:3       下载免费PDF全文
A sediment core spanning approximately 1,600 years was collected from a lake on Ardley Island, Antarctica. The sediment core had been greatly influenced by penguin guano. Using molecular methods, the chitinolytic bacterial community along the sediment core was studied over its entire length. Primers targeting conserved sequences of the catalytic domains of family 18 subgroup A chitinases detected group A chitinases from a wide taxonomic range of bacteria. Using quantitative competitive PCR (QC-PCR), chitinase gene copies in each 1-cm section of the whole sediment column were quantified. QC-PCR determination of the chitinase gene copies indicated significant correlation with phosphorus and total organic carbon concentration, suggesting a historical connection between chitinase gene copies and the amount of penguin guano input into the lake sediment. Most of the chitinase genes cloned from the historic sediment core were novel. Analysis of the chitinase gene diversity in selected sediment layers and in the fresh penguin deposits indicated frequent shifts in the chitinolytic bacterial community over time. Sequence analysis of the 16S rRNA genes of chitinolytic bacteria isolated from the lake sediment revealed that the isolates belonged to Janthinobacterium species, Stenotrophomonas species of γ-Proteobacteria, Cytophaga species of the Cytophaga-Flexibacter-Bacteroides group, and Streptomyces and Norcardiopsis species of Actinobacteria. Chitinase gene fragments were cloned and sequenced from these cultivated chitinolytic bacteria. The phylogeny of the chitinase genes obtained from the isolates did not correspond well to that of the isolates, suggesting acquisition via horizontal gene transfer.  相似文献   

16.
Marine macroalgae surfaces constitute suitable substrata for bacterial colonization which are known to produce bioactive compounds. Thus, hereby we focused on heterotrophic aerobic bacteria species associated with coralline red alga Jania rubens (northern coast of Tunisia, southern Mediterranean Sea) and their inhibition against several microbial marine and terrestrial species. The whole collection (19 isolates, J1 to J19) was identified, based on their 16S ribosomal RNA gene sequences as Proteobacteria (14 strains), Bacteroidetes (4 strains) and Firmicutes (1 strain). Thirty-six percent of the isolates (J2, J9, J11, J13, J16, J17 and J18) were antibiotic-like producers with in vitro inhibition against Gram + and Gram ? bacteria and the yeast Candida albicans. Highest level of inhibition was revealed for the isolates J2, J9 and J13 identified respectively as Bacillus, Aquimarina and Pseudomonas, with strong activity against Staphylococcus aureus, Micrococcus and C. albicans, with inhibition diameters of 25 to 35 mm shown by drop test assay on T soy agar plates. Furthermore, we tested inhibition of J. rubens crude organic extracts against human and marine bacteria as well as against all J. rubens isolates, in order to determine the degree of affinity of the epibionts to their proper host. The recovery of strains with antimicrobial activity suggests that J. rubens represent an ecological niche which harbors a specific microbial diversity worthy of further secondary metabolites investigation.  相似文献   

17.
Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.  相似文献   

18.
Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation   总被引:1,自引:0,他引:1       下载免费PDF全文
During a study of ureolytic microbial calcium carbonate (CaCO3) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO3 crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differences in crystal morphology were the result of different microbial species or, alternatively, differences in the functional attributes of the isolates selected. Sequencing of 16S rRNA genes showed that all of the isolates were phylogenetically closely related to the Bacillus sphaericus group. Urease gene diversity among the isolates was examined by using a novel application of PCR-denaturing gradient gel electrophoresis (DGGE). This approach revealed significant differences between the isolates. Moreover, for several isolates, multiple bands appeared on the DGGE gels, suggesting the apparent presence of different urease genes in these isolates. The substrate affinities (Km) and maximum hydrolysis rates (Vmax) of crude enzyme extracts differed considerably for the different strains. For certain isolates, the urease activity increased up to 10-fold in the presence of 30 mM calcium, and apparently this contributed to the characteristic crystal formation by these isolates. We show that strain-specific calcification occurred during ureolytic microbial carbonate precipitation. The specificity was mainly due to differences in urease expression and the response to calcium.  相似文献   

19.
Heterotrophic bacteria associated with the green alga Ulva rigida, collected from the coast of Tunisia, were isolated and subsequently identified by their 16S rRNA gene sequences and by phylogenetic analysis. The 71 isolates belong to four phyla: Proteobacteria (Alpha-and Gamma- subclasses), Bacteroidetes, Firmicutes, and Actinobacteria. Most of the isolates belong to Proteobacteria. The Gram-positive Firmicutes and especially the genus Bacillus were well-represented at the surface of U. rigida, collected from the coast as well as from the lagoon, while Actinobacteria were represented only at the surface of algae collected from the coast of Cap Zebib. Bacteroidetes were more represented at the surface of algae collected from the Ghar El Melh lagoon. The bacterial community of the water surrounding the algae was different from that associated with the surface of the algae. Moreover, the abundance of bacteria in the surrounding water was much lower compared to the density of bacteria associated with the surface of the algae. Bacteria isolated from the algal surface were tested for their antimicrobial potential. The results show that ~?36% of the algae-associated bacterial isolates possess antibacterial activity whereas free-living bacteria, isolated from the surrounding water, did not show such activity. The surface of U. rigida was colonized by a high diversity of culturable and possibly novel epiphytic bacteria that may be an important source of antimicrobial compounds and are therefore of biotechnological interest.  相似文献   

20.
Ceragenins are cationic bile salt derivatives having antimicrobial activity. The interactions of several ceragenins with phospholipid bilayers were tested in different systems. The ceragenins are capable of forming specific associations with several phospholipid species that may be involved with their antimicrobial action. Their antimicrobial activity is lower in bacteria that have a high content of phosphatidylethanolamine. Gram negative bacteria with a high content of phosphatidylethanolamine exhibit sensitivity to different ceragenins that corresponds to the extent of interaction of these compounds with phospholipids, including the ability of different ceragenins to induce leakage of aqueous contents from phosphatidylethanolamine-rich liposomes. A second class of bacteria having cell membranes composed largely of anionic lipids and having a low content of phosphatidylethanolamine are very sensitive to the action of the ceragenins but they exhibit similar minimal inhibitory concentrations with most of the ceragenins and for different strains of bacteria. Although Gram negative bacteria generally have a high content of phosphatidylethanolamine, there are a few exceptions. In addition, a mutant strain of Escherichia coli has been made that is essentially devoid of phophatidylethanolamine, although 80% of the lipid of the wild-type strain is phosphatidylethanolamine. Furthermore, certain Gram positive bacteria are also exceptions in that they can have a high content of phosphatidylethanolamine. We find that the antimicrobial action of the ceragenins correlates better with the content of phosphatidylethanolamine in the bacterial membrane than whether or not the bacteria has an outer membrane. Thus, the bacterial lipid composition can be an important factor in determining the sensitivity of bacteria to antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号