首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breast cancer rises as the most commonly diagnosed cancer in 2020. Among women, breast cancer ranks first in both cancer incidence rate and mortality. Treatment resistance developed from the current clinical therapies limits the efficacy of therapeutic outcomes, thus new treatment approaches are urgently needed. Chimeric antigen receptor (CAR) T cell therapy is a type of immunotherapy developed from adoptive T cell transfer, which typically uses patients'' own immune cells to combat cancer. CAR-T cells are armed with specific antibodies to recognize antigens in self-tumor cells thus eliciting cytotoxic effects. In recent years, CAR-T cell therapy has achieved remarkable successes in treating hematologic malignancies; however, the therapeutic effects in solid tumors are not up to expectations including breast cancer. This review aims to discuss the development of CAR-T cell therapy in breast cancer from preclinical studies to ongoing clinical trials. Specifically, we summarize tumor-associated antigens in breast cancer, ongoing clinical trials, obstacles interfering with the therapeutic effects of CAR-T cell therapy, and discuss potential strategies to improve treatment efficacy. Overall, we hope our review provides a landscape view of recent progress for CAR-T cell therapy in breast cancer and ignites interest for further research directions.  相似文献   

2.
过继性细胞免疫治疗(adoptive cellular immunotherapy,ACI)是目前较为有效的恶性肿瘤的治疗方法之一。随着技术的日趋成熟,已在多种实体瘤和血液肿瘤的t临床治疗中取得较好疗效。其中,嵌合抗原受体(chimeric antigen receptor,CAR)T细胞技术是近年来发展非常迅速的一种细胞治疗技术。通过基因改造技术,效应T细胞的靶向性、杀伤活性和持久性均较常规应用的免疫细胞高,并可克服肿瘤局部免疫抑制微环境和打破宿主免疫耐受状态。目前,CAR的信号域已从第一代的单一信号分子发展为包含CD28、4—1BB等共刺激分子的多信号结构域(第二、三代),临床应用广泛。但是,该技术也存在脱靶效应、插入突变等临床应用风险。该文将就CAR—T细胞技术在恶性肿瘤免疫治疗中的应用及可能存在的问题作一综述。  相似文献   

3.
Recent reports on the impressive efficacy of adoptively transferred T cells to challenge cancer in early phase clinical trials have significantly raised the profile of T cell therapy. Concomitantly, general expectations are also raised by these reports, with the natural aspiration to deliver this therapy over a wide range of tumor indications. Chimeric antigen receptors (CARs) endow T cell populations with defined antigen specificities that function independently of the natural T cell receptor and permit targeting of T cells towards virtually any tumor. Here, we review the current clinical application of CAR-T cells and relate clinical efficacy and safety of CAR-T cell trials to parameters considered critical for CAR engineering, classified as the three T's of CAR-T cell manipulation.  相似文献   

4.
The host immune system plays an instrumental role in the surveillance and elimination of tumors by recognizing and destroying cancer cells. In recent decades, studies have mainly focused on adoptive immunotherapy using engineered T cells for the treatment of malignant diseases. Through gene engraftment of the patient’s own T cells with chimeric antigen receptor (CAR), they can recognize tumor specific antigens effectively and eradicate selectively targeted cells in an MHC-independent fashion. To date, CAR-T cell therapy has shown great clinical utility in patients with B-cell leukemias. Owing to different CAR designs and tumor complex microenvironments, genetically redirected T cells may generate diverse biological properties and thereby impact their long-term clinical performance and outcome. Meanwhile some unexpected toxicities that result from CAR-T cell application have been examined and limited the curative effects. Diverse important parameters are closely related with adoptively transferred cell behaviors, including CAR-T cells homing, CAR constitutive signaling, T cell differentiation and exhaustion. Thus, understanding CARs molecular design to improve infused cell efficacy and safety is crucial to clinicians and patients who are considering this novel cancer therapeutics. In this review, the developments in CAR-T cell therapy and the limitations and perspectives in optimizing this technology towards clinical application are discussed.  相似文献   

5.
In recent decades, chimeric antigen receptor T (CAR-T) cell therapy has achieved dramatic success in patients with hematological malignancies. However, CAR-T cell therapy failed to effectively treat solid tumors as a monotherapy. By summarizing the challenges of CAR-T cell monotherapy for solid tumors and analyzing the underlying mechanisms of combinatorial strategies to counteract these hurdles, we found that complementary therapeutics are needed to improve the scant and transient responses of CAR-T cell monotherapy in solid tumors. Further data, especially data from multicenter clinical trials regarding efficacy, toxicity, and predictive biomarkers are required before the CAR-T combination therapy can be translated into clinical settings.  相似文献   

6.
Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China.  相似文献   

7.
《Cytotherapy》2019,21(6):593-602
BackgroundChimeric antigen receptor (CAR)-T cells are genetically engineered to recognize tumor-associated antigens and have potent cytolytic activity against tumors. Adoptive therapy with CAR-T cells has been highly successful in B-cell leukemia and lymphoma. However, in solid tumor settings, CAR-T cells face a particularly hostile tumor microenvironment where multiple immune suppressive factors serve to thwart the anti-cancer immune response. Clinical trials of solid tumor antigen-targeted CAR-T cells have shown limited efficacy, and issues for current CAR-T cell therapies include failures of expansion and persistence, tumor entry, deletion and functional exhaustion.MethodsWe compared our standard protocol for CAR-T cell manufacturing, currently used to generate CAR-T cells for a phase 1 clinical trial, with two alternative approaches for T-cell activation and expansion. The resulting cultures were analyzed using multicolor flow cytometry, cytokine bead array and xCELLigence cytotoxicity assays.ResultsWe have found that by changing the method of activation we can promote generation of CAR-T cells with enhanced CD62L and CCR7 expression, increased interleukin (IL)-2 production and retention of cytolytic activity, albeit with slower kinetics.DiscussionWe propose that these phenotypic characteristics are consistent with a central memory phenotype that will better enable CAR-T cell survival and persistence after activation in vivo, and we aim to test this in a continuation of our current phase 1 clinical trial of CAR-T cells in patients with advanced melanoma.  相似文献   

8.
Chimeric antigen receptor (CAR) T-cell therapy is an immunotherapy approach that has played a tremendous role in the battle against cancer for years. Since the CAR T lymphocytes are unrestricted-major histocompatibility complex T lymphocytes, they could identify more targets than natural T cells, resulting in practical and widespread functions. The good prospects of CAR T-cell therapy in oncology can be additionally applied to treat other diseases such as autoimmune and infectious diseases. CAR-T cell-derived immunotherapy for autoimmune disorders can be allocated to CAR-Tregs and chimeric autoantibody receptor T cells. Other generations of CARs target human immunodeficiency virus (HIV) proteins. In this review, we summarize CAR-T cell therapies in autoimmune disorders and HIV infection.  相似文献   

9.
The survival of patients with hematological malignancies has been significantly improved due to the development of new therapeutic agents. However, relapse remains a major matter for concern. Recently, T cells engineered with chimeric antigen receptor(CAR) were reported to show unprecedented responses in a range of hematological malignancies. The persistence of the CAR-T cell can last for years and tends toward long-term antitumor memory by which relapses can be effectively prevented. The primary side effects that appear in most clinical trials are cytokine release syndrome and neurotoxicity. However, these symptoms can be treated and reversed. In this review, we describe CAR structure and function and summarize recent advances in CAR-T cell therapy in hematological malignancies.  相似文献   

10.
Cell and gene therapies have demonstrated excellent clinical results across a range of indications with chimeric antigen receptor (CAR)–T cell therapies among the first to reach market. Although these therapies are currently manufactured using patient-derived cells, therapies using healthy donor cells are in development, potentially offering avenues toward process improvement and patient access. An allogeneic model could significantly reduce aggregate cost of goods (COGs), potentially improving market penetration of these life-saving treatments. Furthermore, the shift toward offshore production may help reduce manufacturing costs. In this article, we examine production costs of an allogeneic CAR-T cell process and the potential differential manufacturing costs between regions. Two offshore locations are compared with regions within the United States. The critical findings of this article identify the COGs challenges facing manufacturing of allogeneic CAR-T immunotherapies, how these may evolve as production is sent offshore and the wider implication this trend could have.  相似文献   

11.
CAR-T cell therapy has already achieved world-renowned clinical effects in the treatment of hematological malignancies. Due to the tumor heterogeneity, immunosuppressive microenvironment, and other factors, CAR-T cell therapy has still not shown obvious clinical efficacy in clinical treatment of solid tumors. However, great progress has been made in the preparation of CAR-T cells in recent years, including T cells redirected for universal cytokine mediated killing, universal CAR -T cells, non-viral vector CAR-T cells, SynNotch technology, SUPRA CAR technology, regulated CAR-T cells, and bi-specific CAR-T cells, etc. Future research and development of CAR-T cell therapy will be focused on these following aspects: the combined application of CAR-T cells with different targets, known as "Cocktail CAR-T cells", is expected to increase efficiency toward solid tumors; based on systemic biology/synthetic biology theories, CAR-T cells are likely to be transformed to robot or intelligent system by introducing sensors, logic gates, and logic circuits. This article mainly comments on research progress and perspectives on CAR-T cell therapy in solid tumor treatment.  相似文献   

12.
Recent reports on the impressive efficacy of chimeric antigen receptor (CAR)-modified T cells against hematologic malignancies have inspired oncologists to extend these efforts for the treatment of solid tumors. Clinical trials of CAR-T-based cancer immunotherapy for solid tumors showed that the efficacies are not as remarkable as in the case of hematologic malignancies. There are several challenges that researchers must face when treating solid cancers with CAR-T cells, these include choosing an ideal target, promoting efficient trafficking and infiltration, overcoming the immunosuppressive microenvironment, and avoiding associated toxicity. In this review, we discuss the obstacles imposed by solid tumors on CAR-T cell-based immunotherapy and strategies adopted to improve the therapeutic potential of this approach. Continued investigations are necessary to improve therapeutic outcomes and decrease the adverse effects of CAR-T cell therapy in patients with solid malignancies in the future.  相似文献   

13.
《Cytotherapy》2022,24(7):720-732
BackgroundChimeric antigen receptor (CAR) T cell therapy has yielded impressive clinical results in hematological malignancies and is a promising approach for solid tumor treatment. However, toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, is a concern hampering its broader use.MethodsIn selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CARs bearing a low- and high-affinity single-chain variable fragment (scFv) binding to a similar epitope and cross-reactive with murine GPC3.ResultsWhere the high-affinity CAR-T cells were toxic in vivo, the low-affinity CAR maintained cytotoxic function against antigen-positive tumor cells but did not show toxicity against normal tissues. High-affinity CAR-induced toxicity was caused by on-target, off-tumor binding, based on the observation that higher doses of the high-affinity CAR-T caused toxicity in non–tumor-bearing mice and accumulated in organs with low expression of GPC3. To explore another layer of controlling CAR-T toxicity, we developed a means to target and eliminate CAR-T cells using anti-TNF-α antibody therapy after CAR-T infusion. The antibody was shown to function by eliminating early antigen-activated, but not all, CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from antitumor efficacy with only a minor loss in tumor control. By exploring additional traits of the CAR-T cells after activation, we identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that eliminated early activated CAR-T following antigen engagement in vivo.ConclusionsBy combining the reduced-affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.  相似文献   

14.
《Cytotherapy》2020,22(3):166-171
Gastrointestinal (GI) tract is the most common site of extranodal involvement in non-Hodgkin lymphoma. Life-threatening complications of GI may occur because of tumor or chemotherapy. Chimeric antigen receptor (CAR) T-cell therapy has been successfully used to treat refractory/relapse B-cell lymphoma, however, little is known about the efficacy and safety of CAR-T cell therapy for GI lymphoma. Here, we reported the efficacy and safety of CAR-T cell therapy in 14 patients with relapsed/refractory aggressive B-cell lymphoma involving the GI tract. After a sequential anti-CD22/anti-CD19 CAR-T therapy, 10 patients achieved an objective response, and seven patients achieved a complete response. CAR transgene and B-cell aplasia persisted in the majority of patients irrespective of response status. Six patients with partial response or stable disease developed progressive disease; two patients lost target antigens. Cytokine release syndrome (CRS) and GI adverse events were generally mild and manageable. The most common GI adverse events were diarrhea (4/14), vomiting (3/14) and hemorrhage (2/14). No perforation occurred during follow-up. Infection is a severe complication in GI lymphoma. Two patients were infected with bacteria that are able to colonize at GI; one died of sepsis early after CAR-T cells infusion. In conclusion, our study showed promising efficacy and safety of CAR-T cell therapy in refractory/relapsed B-cell lymphoma involving the GI tract. However, the characteristics of CAR-T–related infection in GI lymphoma should be further clarified to prevent and control infection.  相似文献   

15.
PurposeAcute myeloid leukemia (AML) is a highly heterogeneous neoplastic disease with a poor prognosis that relapses even after its treatment with chimeric antigen receptor (CAR)-T cells targeting a single antigen. CD123 and CLL1 are expressed in most AML blasts and leukemia stem cells, and their low expression in normal hematopoietic stem cells makes them ideal targets for CAR-T. In this study, we tested the hypothesis that a new bicistronic CAR targeting CD123 and CLL1 can enhance antigenic coverage and prevent antigen escape and subsequent recurrence of AML.MethodsCD123 and CLL1 expressions were evaluated on AML cell lines and blasts. Then, in addition to concentrating on CD123 and CLL1, we introduced the marker/suicide gene RQR8 with a bicistronic CAR. Xenograft models of disseminated AML and in vitro coculture models were used to assess the anti-leukemia efficacy of CAR-T cells. The hematopoietic toxicity of CAR-T cells was evaluated in vitro by colony cell formation assays. It was demonstrated in vitro that the combination of rituximab and NK cells caused RQR8-mediated clearance of 123CL CAR-T cells.ResultsWe have successfully established bicistronic 123CL CAR-T cells that can target CD123 and CLL1. 123CL CAR-T cells effectively cleared AML cell lines and blasts. They also demonstrated appreciable anti-AML activity in animal transplant models. Moreover, 123CL CAR-T cells can be eliminated in an emergency by a natural safety switch and don't target hematopoietic stem cells.ConclusionsThe bicistronic CAR-T cells targeting CD123 and CLL1 may be a useful and secure method for treating AML.  相似文献   

16.
《Cytotherapy》2022,24(2):101-109
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of some kinds of cancers. Hundreds of companies and academic institutions are collaborating to develop gene-modified cell therapies using novel targets, different cell types, and manufacturing processes of autologous and allogenic cell therapies. The individualized, custom-made autologous CAR-T cell production platform remains a significant limiting factor for its large-scale clinical application. In this respect, the advances in standardization and automation of the process can have considerable impact on cost reduction. Development of off-the-shelf, ready-to-use universal killer cells can enable scaling up. Despite the wide use of this cell therapy in the United States, Europe and China, its development is limited in developing countries in Southeast Asia, Africa and Latin America. In this review, we focus on good manufacturing practices–compliant manufacturing requirements, operational logistics, and regulatory processes that need to be considered for high-quality gene-modified cell therapies from an Indian perspective. We also list the potential strategies to overcome challenges associated with translation to affordability and scalability.  相似文献   

17.
The human immune system consists of a highly intelligent network of billions of independent, self-organized cells that interact with each other. Machine learning (ML) is an artificial intelligence (AI) tool that automatically processes huge amounts of image data. Immunotherapies have revolutionized the treatment of blood cancer. Specifically, one such therapy involves engineering immune cells to express chimeric antigen receptors (CAR), which combine tumor antigen specificity with immune cell activation in a single receptor. To improve their efficacy and expand their applicability to solid tumors, scientists optimize different CARs with different modifications. However, predicting and ranking the efficacy of different "off-the-shelf" immune products (e.g., CAR or Bispecific T-cell Engager [BiTE]) and selection of clinical responders are challenging in clinical practice. Meanwhile, identifying the optimal CAR construct for a researcher to further develop a potential clinical application is limited by the current, time-consuming, costly, and labor-intensive conventional tools used to evaluate efficacy. Particularly, more than 30 years of immunological synapse (IS) research data demonstrate that T cell efficacy is not only controlled by the specificity and avidity of the tumor antigen and T cell interaction, but also it depends on a collective process, involving multiple adhesion and regulatory molecules, as well as tumor microenvironment, spatially and temporally organized at the IS formed by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. The optimal function of cytotoxic lymphocytes (including CTL and NK) depends on IS quality. Recognizing the inadequacy of conventional tools and the importance of IS in immune cell functions, we investigate a new strategy for assessing CAR-T efficacy by quantifying CAR IS quality using the glass-support planar lipid bilayer system combined with ML-based data analysis. Previous studies in our group show that CAR-T IS quality correlates with antitumor activities in vitro and in vivo. However, current manually quantified IS quality data analysis is time-consuming and labor-intensive with low accuracy, reproducibility, and repeatability. In this study, we develop a novel ML-based method to quantify thousands of CAR cell IS images with enhanced accuracy and speed. Specifically, we used artificial neural networks (ANN) to incorporate object detection into segmentation. The proposed ANN model extracts the most useful information to differentiate different IS datasets. The network output is flexible and produces bounding boxes, instance segmentation, contour outlines (borders), intensities of the borders, and segmentations without borders. Based on requirements, one or a combination of this information is used in statistical analysis. The ML-based automated algorithm quantified CAR-T IS data correlates with the clinical responder and non-responder treated with Kappa-CAR-T cells directly from patients. The results suggest that CAR cell IS quality can be used as a potential composite biomarker and correlates with antitumor activities in patients, which is sufficiently discriminative to further test the CAR IS quality as a clinical biomarker to predict response to CAR immunotherapy in cancer. For translational research, the method developed here can also provide guidelines for designing and optimizing numerous CAR constructs for potential clinical development.Trial Registration: ClinicalTrials.gov NCT00881920.  相似文献   

18.
Chimeric antigen receptor (CAR)-engineered T cells have a proven efficacy for the treatment of refractory hematological B cell malignancies. While often accompanied by side effects, CAR-T technology is getting more mature and will become an important treatment option for various tumor indications. In this review, we summarize emerging approaches that aim to further evolve CAR-T cell therapy based on combinations of so-called universal or modular CAR-(modCAR-)T cells, and their respective adaptor molecules (CAR-adaptors), which mediate the crosslinking between target and effector cells. The activity of such modCAR-T cells is entirely dependent on binding of the respective CAR-adaptor to both a tumor antigen and to the CAR-expressing T cell. Contrary to conventional CAR-T cells, where the immunological synapse is established by direct interaction of CAR and membrane-bound target, modCAR-T cells provide a highly flexible and customizable development of the CAR-T cell concept and offer an additional possibility to control T cell activity.  相似文献   

19.
Localized immunomodulation technologies are rapidly emerging as a new modality with the potential to revolutionize transplantation of cells and organs. In the past decade, cell-based immunomodulation therapies saw clinical success in the treatment of cancer and autoimmune diseases. In this review, we describe recent advances in engineering solutions for the development of localized immunomodulation techniques focusing on cellular and organoid transplantation. We begin by describing cell transplantation and highlighting notable clinical successes, particularly in the areas of stem cell therapy, chimeric antigen receptor (CAR)-T cell therapy, and islet transplantation. Next, we detail recent preclinical studies centered on genome editing and biomaterials to enhance localized immunomodulation. We close by discussing future opportunities to improve clinical and commercial success using these approaches to facilitate long-term immunomodulation technologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号