首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hispaniola Island was the first stopover in the travels of Columbus between America and Spain, and played a crucial role in the exchange of Phaseolus vulgaris seeds and their endosymbionts. The analysis of recA and atpD genes from strains nodulating this legume in coastal and inner regions of Hispaniola Island showed that they were almost identical to those of the American strains CIAT 652, Ch24-10 and CNPAF512, which were initially named as Rhizobium etli and have been recently reclassified into Rhizobium phaseoli after the analysis of their genomes. Therefore, the species R. phaseoli is more abundant in America than previously thought, and since the proposal of the American origin of R. etli was based on the analysis of several strains that are currently known to be R. phaseoli, it can be concluded that both species have an American origin coevolving with their host in its distribution centres. The analysis of the symbiovar phaseoli nodC gene alleles carried by different species isolated in American and European countries suggested a Mesoamerican origin of the α allele and an Andean origin of the γ allele, which is supported by the dominance of this latter allele in Europe where mostly Andean cultivars of common beans have been traditionally cultivated.  相似文献   

2.
Phaseolus vulgaris and Lens culinaris are two legumes with different distribution centers that were introduced in Spain at different times, but in some regions L. culinaris has been traditionally cultivated and P. vulgaris did not. Here we analysed the rhizobia isolated from nodules of these two legumes in one of these regions. MALDI-TOF MS analysis showed that all isolated strains matched with Rhizobium laguerreae and the phylogenetic analysis of rrs, atpD and recA genes confirmed these results. The phylogenetic analysis of these core genes allowed the differentiation of several groups within R. laguerreae and unexpectedly, strains with housekeeping genes identical to that of the type strain of R. laguerreae presented some differences in the rrs gene. In some strains this gene contains an intervening sequence (IVS) identical to that found in Rhizobium strains nodulating several legumes in different geographical locations. The atpD, recA and nodC genes of all isolated strains clustered with those of strains nodulating L. culinaris in its distribution centers, but not with those nodulating P. vulgaris in theirs. Therefore, all these strains belong to the symbiovar viciae, including those isolated from P. vulgaris, which in the studied region established effective symbiosis with the common endosymbiont of L. culinaris, instead to with its common endosymbiont, the symbiovar phaseoli. These results are particularly interesting for biogeography studies, because they showed that, due its high promiscuity degree, P. vulgaris is able to establish symbiosis with local symbiovars well established in the soil after centuries of cultivation with other legumes.  相似文献   

3.

Background

Symbiosis genes (nod and nif) involved in nodulation and nitrogen fixation in legumes are plasmid-borne in Rhizobium. Rhizobial symbiotic variants (symbiovars) with distinct host specificity would depend on the type of symbiosis plasmid. In Rhizobium etli or in Rhizobium phaseoli, symbiovar phaseoli strains have the capacity to form nodules in Phaseolus vulgaris while symbiovar mimosae confers a broad host range including different mimosa trees.

Results

We report on the genome of R. etli symbiovar mimosae strain Mim1 and its comparison to that from R. etli symbiovar phaseoli strain CFN42. Differences were found in plasmids especially in the symbiosis plasmid, not only in nod gene sequences but in nod gene content. Differences in Nod factors deduced from the presence of nod genes, in secretion systems or ACC-deaminase could help explain the distinct host specificity. Genes involved in P. vulgaris exudate uptake were not found in symbiovar mimosae but hup genes (involved in hydrogen uptake) were found. Plasmid pRetCFN42a was partially contained in Mim1 and a plasmid (pRetMim1c) was found only in Mim1. Chromids were well conserved.

Conclusions

The genomic differences between the two symbiovars, mimosae and phaseoli may explain different host specificity. With the genomic analysis presented, the term symbiovar is validated. Furthermore, our data support that the generalist symbiovar mimosae may be older than the specialist symbiovar phaseoli.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-575) contains supplementary material, which is available to authorized users.  相似文献   

4.
Leucaena leucocephala is a Mimosoid legume tree indigenous to America that has spread to other continents, although it is not still present in some European countries such as Portugal. Nevertheless, we found that this legume can be nodulated in this country by slow-growing rhizobial strains which were identified as Bradyrhizobium canariense trough the analysis of the core genes recA and glnII. The analysis of the symbiotic gene nodC showed that these strains belong to the symbiovar genistearum, which commonly nodulates Genistoid legumes. Although two strains nodulating L. leucocephala in China and Brazil were classified within the genus Bradyrhizobium, they belong to undescribed species and to the symbiovars glycinearum and tropici, respectively. Therefore, we report here for the first time the ability of L. leucocephala to establish symbiosis with strains of B. canariense sv genistearum confirming the high promiscuity of L. leucocephala, that allows it to establish symbiosis with rhizobia native to different continents increasing its invasiveness potential.  相似文献   

5.
Salinity is an increasing problem in Africa affecting rhizobia-legume symbioses. In Morocco, Phaseolus vulgaris is cultivated in saline soils and its symbiosis with rhizobia depends on the presence of osmotolerant strains in these soils. In this study, 32 osmotolerant rhizobial strains nodulating P. vulgaris were identified at the species and symbiovar levels by analysing core and symbiotic genes, respectively. The most abundant strains were closely related to Rhizobium etli and R. phaseoli and belonged to symbiovar phaseoli. A second group of strains was identified as R. gallicum sv gallicum. The remaining strains, identified as R. tropici, belonged to the CIAT 899(T) nodC group, which has not yet been described as a symbiovar. In representative strains, the otsA gene involved in the accumulation of trehalose and putatively in osmotolerance was analysed. The results showed that the phylogeny of this gene was not completely congruent with those of other core genes, since the genus Ensifer was more closely related to some Rhizobium species than others. Although the role of the otsA gene in osmotolerance is not well established, it can be a useful protein-coding gene for phylogenetic studies in the genus Rhizobium, since the phylogenies of otsA and other core genes are coincident at the species level.  相似文献   

6.
In this work, we analyzed the diversity of seventy-six bacteria isolated from Pea and faba bean nodules in two regions of Morocco. The molecular diversity was realized using the analysis of the sequences of 16S rRNA and six housekeeping genes (recA, glnII, atpD, dnaK, rpoB and gyrB) and two symbiotic genes (nodA and nodC).The phylogeny of the 16S rRNA gene sequences revealed that all strains belong to the genus Rhizobium, being related to the type strains of R. leguminosarum, R. laguerreae, R. indigoferae, R. anhuiense and R. acidisoli. The housekeeping genes phylogenies showed that some strains formed a subclade distinct from the rhizobial species that usually nodulate Vicia faba and Pisum sativum which are closely related to R. acidisoli FH23 with sequence similarity of 98.3%.Analysis of the PGPR activities of the different isolates showed that the strains related to R. laguerreae were able to solubilize phosphates and to produce siderophores and auxin phytohormone. However, R. acidisoli strain F40D2 was unable to solubilize phosphates although they produce siderophores and IAA.The phylogenetic analysis of the nodA and nodC sequences showed that all isolated strains were closely related with the strains of symbiovar viciae. The nodulation tests confirmed the ability to nodulate V. faba and P. sativum but not Cicer arietinum or Phaseolus vulgaris. Hence, in Morocco P. sativum is nodulated by R. laguerreae; whereas V. faba is nodulated by R. laguerreae and the symbiovar viciae of R. acidisoli which has been not previously described in this species.  相似文献   

7.
Due to the wide cultivation of bean (Phaseolus vulgaris L.), rhizobia associated with this plant have been isolated from many different geographical regions. In order to investigate the species diversity of bean rhizobia, comparative genome sequence analysis was performed in the present study for 69 Rhizobium strains mainly isolated from root nodules of bean and clover (Trifolium spp.). Based on genome average nucleotide identity, digital DNA:DNA hybridization, and phylogenetic analysis of 1,458 single-copy core genes, these strains were classified into 28 clusters, consistent with their species definition based on multilocus sequence analysis (MLSA) of atpD, glnII, and recA. The bean rhizobia were found in 16 defined species and nine putative novel species; in addition, 35 strains previously described as Rhizobium etli, Rhizobium phaseoli, Rhizobium vallis, Rhizobium gallicum, Rhizobium leguminosarum and Rhizobium spp. should be renamed. The phylogenetic patterns of symbiotic genes nodC and nifH were highly host-specific and inconsistent with the genomic phylogeny. Multiple symbiovars (sv.) within the Rhizobium species were found as a common feature: sv. phaseoli, sv. trifolii and sv. viciae in Rhizobium anhuiense; sv. phaseoli and sv. mimosae in Rhizobium sophoriradicis/R. etli/Rhizobium sp. III; sv. phaseoli and sv. trifolii in Rhizobium hidalgonense/Rhizobium acidisoli; sv. phaseoli and sv. viciae in R. leguminosarum/Rhizobium sp. IX; sv. trifolii and sv. viciae in Rhizobium laguerreae. Thus, genomic comparison revealed great species diversity in bean rhizobia, corrected the species definition of some previously misnamed strains, and demonstrated the MLSA a valuable and simple method for defining Rhizobium species.  相似文献   

8.
Faba bean (Vicia faba L.) is a major introduced grain-legume crop cultivated in China. In this study, rhizobia that nodulated faba bean grown in soils from three sites in North China (Hebei Province) were isolated and characterized. Firstly, isolates were categorized into genotypes by ribosomal IGS PCR-RFLP analysis, then representatives of the different IGS genotypes were further identified by phylogenetic analyses of 16S rRNA, housekeeping (atpD, recA) and nodulation (nodC) gene sequences. Rhizobial distribution based on the IGS genotype was related to the different soil physicochemical features by redundancy analysis. IGS typing and phylogenetic analyses of 16S rRNA and concatenated housekeeping gene sequences affiliated the 103 rhizobial strains isolated into four Rhizobium species/genospecies. A total of 69 strains of 3 IGS types were assigned to R. sophorae, 20 isolates of 5 IGS types to R. changzhiense and 9 isolates of 3 IGS types to R. indicum. The representative strain of the five remaining isolates (1 IGS type) was clearly separated from all Rhizobium type strains and was most closely related to defined genospecies according to the recently described R. leguminosarum species complex. Rhizobium sophorae strains (67% of total isolates) were common in all sites and shared an identical nodC sequence typical of faba bean symbionts belonging to symbiovar viciae. In this first study of rhizobia nodulating faba bean in Hebei Province, China, R. sophorae was found to be the dominant symbiont in contrast to other countries.  相似文献   

9.
The purpose of this work was to study the genetic diversity of the nodule-forming bacteria associated with native populations of Vachellia gummifera growing wild in Morocco. The nearly complete 16S rRNA gene sequences from three selected strains, following ARDRA and REP-PCR results, revealed they were members of the genus Ensifer and the sequencing of the housekeeping genes recA, gyrB, dnaK and rpoB, and their concatenated phylogenetic analysis, showed that the 3 strains belong to the species E. fredii. Based on the nodC and nodA phylogenies, the 3 strains clearly diverged from the type and other reference strains of E. fredii and formed a clearly separated cluster. The strains AGA1, AGA2 and AGB23 did not form nodules on Glycine max, Phaseolus vulgaris and Medicago truncatula, and effectively nodulated V. gummifera, Acacia cyanophylla, Prosopis chilensis and Leucaena leucocephala. Based on similarities of the nodC and nodA symbiotic genes and differences in the host range, the strains isolated from Moroccan endemic V. gummifera may form a different symbiovar within Ensifer species, for which the name “vachelliae” is proposed.  相似文献   

10.
In order to investigate bean-nodulating rhizobia in different types of soil, 41 nodule isolates from acid and alkaline soils in Mexico were characterized. Based upon the phylogenetic studies of 16S rRNA, atpD, glnII, recA, rpoB, gyrB, nifH and nodC genes, the isolates originating from acid soils were identified as the phaseoli symbiovar of the Rhizobium leguminosarum-like group and Rhizobium grahamii, whereas the isolates from alkaline soils were defined as Ensifer americanum sv. mediterranense and Rhizobium radiobacter. The isolates of “R. leguminosarum” and E. americanum harbored nodC and nifH genes, but the symbiotic genes were not detected in the four isolates of the other two species. It was the first time that “R. leguminosarum” and E. americanum have been reported as bean-nodulating bacteria in Mexico. The high similarity of symbiotic genes in the Rhizobium and Ensifer populations showed that these genes had the same origin and have diversified recently in different rhizobial species. Phenotypic characterization revealed that the “R. leguminosarum” population was more adapted to the acid and low salinity conditions, while the E. americanum population preferred alkaline conditions. The findings of this study have improved the knowledge of the diversity, geographic distribution and evolution of bean-nodulating rhizobia in Mexico.  相似文献   

11.
From a total of 80 bacterial strains isolated from root nodules of Lupinus angustifolius grown wild in the North-Eastern Algerian region of El Tarf, 64 plant host-nodulating strains clustered into 17 random amplified polymorphic DNA (RAPD) fingerprinting groups. The nearly complete 16S rRNA gene sequence from the representative strain of each group revealed they were closely related to members of the genus Bradyrhizobium of the Alphaproteobacteria, but their affiliation at the species level was not clear. Sequencing of the housekeeping genes glnII and recA, and their concatenated phylogenetic analysis, showed that 12 strains belong to B. lupini, other 2 strains affiliated with B. diazoefficiens and that 1 strain was closely related to B. japonicum. The remaining two strains showed similarity values ≤95% with B. cytisi and could represent new lineages within the genus Bradyrhizobium. Sequencing of the symbiotic nodC gene from 4 selected bradyrhizobial strains showed they were all similar to those of the species included in symbiovar genistearum.  相似文献   

12.
Cowpea (Vigna unguiculata) is a promiscuous grain legume, capable of establishing efficient symbiosis with diverse symbiotic bacteria, mainly slow-growing rhizobial species belonging to the genus Bradyrhizobium. Although much research has been done on cowpea-nodulating bacteria in various countries around the world, little is known about the genetic and symbiotic diversity of indigenous cowpea rhizobia in European soils. In the present study, the genetic and symbiotic diversity of indigenous rhizobia isolated from field-grown cowpea nodules in three geographically different Greek regions were studied. Forty-five authenticated strains were subjected to a polyphasic approach. ERIC-PCR based fingerprinting analysis grouped the isolates into seven groups and representative strains of each group were further analyzed. The analysis of the rrs gene showed that the strains belong to different species of the genus Bradyrhizobium. The analysis of the 16S-23S IGS region showed that the strains from each geographic region were characterized by distinct IGS types which may represent novel phylogenetic lineages, closely related to the type species of Bradyrhizobium pachyrhizi, Bradyrhizobium ferriligni and Bradyrhizobium liaoningense. MLSA analysis of three housekeeping genes (recA, glnII, and gyrB) showed the close relatedness of our strains with B. pachyrhizi PAC48T and B. liaoningense USDA 3622T and confirmed that the B. liaoningense-related isolate VUEP21 may constitute a novel species within Bradyrhizobium. Moreover, symbiotic gene phylogenies, based on nodC and nifH genes, showed that the B. pachyrhizi-related isolates belonged to symbiovar vignae, whereas the B. liaoningense-related isolates may represent a novel symbiovar.  相似文献   

13.
Diversity and taxonomic affiliation of chickpea rhizobia were investigated from Ningxia in north central China and their genomic relationships were compared with those from northwestern adjacent regions (Gansu and Xinjiang). Rhizobia were isolated from root-nodules after trapping by chickpea grown in soils from a single site of Ningxia and typed by IGS PCR-RFLP. Representative strains were phylogenetically analyzed on the basis of the 16S rRNA, housekeeping (atpD, recA and glnII) and symbiosis (nodC and nifH) genes. Genetic differentiation and gene flow were estimated among the chickpea microsymbionts from Ningxia, Gansu and Xinjiang. Fifty chickpea rhizobial isolates were obtained and identified as Mesorhizobium muleiense. Their symbiosis genes nodC and nifH were highly similar (98.4 to 100%) to those of other chickpea microsymbionts, except for one representative strain (NG24) that showed low nifH similarities with all the defined Mesorhizobium species. The rhizobial population from Ningxia was genetically similar to that from Gansu, but different from that in Xinjiang as shown by high chromosomal gene flow/low differentiation with the Gansu population but the reverse with the Xinjiang population. This reveals a biogeographic pattern with two main populations in M. muleiense, the Xinjiang population being chromosomally differentiated from Ningxia-Gansu one. M. muleiense was found as the sole main chickpea-nodulating rhizobial symbiont of Ningxia and it was also found in Gansu sharing alkaline-saline soils with Ningxia. Introduction of chickpea in recently cultivated areas in China seems to select from alkaline-saline soils of M. muleiense that acquired symbiotic genes from symbiovar ciceri.  相似文献   

14.
Cicer canariense is a threatened perennial wild chickpea endemic to the Canary Islands. In this study, rhizobia that nodulate this species in its natural habitats on La Palma (Canary Islands) were characterised. The genetic diversity and phylogeny were estimated by RAPD profiles, 16S-RFLP analysis and sequencing of the rrs, recA, glnII and nodC genes. 16S-RFLP grouped the isolates within the Mesorhizobium genus and distinguished nine different ribotypes. Four branches included minority ribotypes (3–5 isolates), whereas another five contained the predominant ribotypes that clustered with reference strains of M. tianshanense/M. gobiense/M. metallidurans, M. caraganae, M. opportunistum, M. ciceri and M. tamadayense. The sequences confirmed the RFLP groupings but resolved additional internal divergence within the M. caraganae group and outlined several potential novel species. The RAPD profiles showed a high diversity at the infraspecific level, except in the M. ciceri group. The nodC phylogeny resolved three symbiotic lineages. A small group of isolates had sequences identical to those of symbiovar ciceri and were only detected in M. ciceri isolates. Another group of sequences represented a novel symbiotic lineage that was associated with two particular chromosomal backgrounds. However, nodC sequences closely related to symbiovar loti predominated in most isolates, and they were detected in several chromosomal backgrounds corresponding to up to nine Mesorhizobium lineages. The results indicated that C. canariense is a promiscuous legume that can be nodulated by several rhizobial species and symbiotypes, which means it will be important to determine the combination of core and symbiotic genes that produce the most effective symbiosis.  相似文献   

15.
16.
Phaseolus vulgaris (common bean) was introduced to Kenya several centuries ago but the rhizobia that nodulate it in the country remain poorly characterised. To address this gap in knowledge, 178 isolates recovered from the root nodules of P. vulgaris cultivated in Kenya were genotyped stepwise by the analysis of genomic DNA fingerprints, PCR-RFLP and 16S rRNA, atpD, recA and nodC gene sequences. Results indicated that P. vulgaris in Kenya is nodulated by at least six Rhizobium genospecies, with most of the isolates belonging to Rhizobium phaseoli and a possibly novel Rhizobium species. Infrequently, isolates belonged to Rhizobium paranaense, Rhizobium leucaenae, Rhizobium sophoriradicis and Rhizobium aegyptiacum. Despite considerable core-gene heterogeneity among the isolates, only four nodC gene alleles were observed indicating conservation within this gene. Testing of the capacity of the isolates to fix nitrogen (N2) in symbiosis with P. vulgaris revealed wide variations in effectiveness, with ten isolates comparable to Rhizobium tropici CIAT 899, a commercial inoculant strain for P. vulgaris. In addition to unveiling effective native rhizobial strains with potential as inoculants in Kenya, this study demonstrated that Kenyan soils harbour diverse P. vulgaris-nodulating rhizobia, some of which formed phylogenetic clusters distinct from known lineages. The native rhizobia differed by site, suggesting that field inoculation of P. vulgaris may need to be locally optimised.  相似文献   

17.
Out of 70 bacterial strains isolated from root nodules of Lupinus albus and L. angustifolius grown in the soils from the Maamora forest in Morocco, 56 isolates possessed the nodC symbiotic gene, as determined by nodC-PCR, and they were able to renodulate their original hosts.The phenotypic analysis showed that many strains had great potential for using different carbon compounds and amino acids as sole carbon and nitrogen sources. The majority of strains grew in media with pH values between 6 and 8. Only one strain isolated from L. angustifolius was able to grow at low pH values, whereas fourteen strains nodulating L. albus grew at pH 5. No strain developed at 40 °C, and eighteen strains grew at NaCl concentrations as high as 855 mM. A total of 17 strains solubilized phosphates, whereas 20 produced siderophores and seven produced IAA. Only three strains, Lalb41, Lang10 and Lang16, possessed all three plant growth promoting activities. The strains were grouped into eight genetic groups by rep-PCR. Analysis of the 16S rRNA sequences of eight strains representing the different groups showed that they were members of the genus Bradyrhizobium. The sequencing of the five housekeeping genes atpD, glnII, dnaK, gyrB and recA, from the eight representative strains, and the phylogenetic analysis of their concatenated sequences, showed that both plants were nodulated by different Bradyrhizobium species. Accordingly, two strains, Lalb41 and Lalb5.2, belonged to B. lupini, whereas two strains, Lalb2 and Lang17.2, were affiliated to B. cytisi, and one strain, Lang2, was close to B. canariense. The fourth group of strains, Lalb25, Lang14.3 and Lang8.3, which had similarity values of less than 96% with their closest named species, B. cytisi, may belong to two new genospecies in the genus Bradyrhizobium. All the strains nodulated Lupinus cosentinii, L. luteus, Retama sphaerocarpa, R. monosperma, Chamaecytisus albus, but not Vachellia gummifera, Phaseolus vulgaris or Glycine max. The nodA, nodC and nifH sequence analyses and their phylogeny confirmed that the strains isolated from the two lupines were members of the symbiovar genistearum.  相似文献   

18.
Lotus lancerottensis is an endemic species that grows widely throughout Lanzarote Island (Canary Is.). Characterization of 48 strains isolated from root nodules of plants growing in soils from eleven locations on the island showed that 38 isolates (79.1%) belonged to the species Sinorhizobium meliloti, whereas only six belonged to Mesorhizobium sp., the more common microsymbionts for the Lotus. Other genotypes containing only one isolate were classified as Pararhizobium sp., Sinorhizobium sp., Phyllobacterium sp. and Bradyrhizobium-like. Strains of S. meliloti were distributed along the island and, in most of the localities they were exclusive or major microsymbionts of L. lancerottensis. Phylogeny of the nodulation nodC gene placed the S. meliloti strains within symbiovar lancerottense and the mesorhizobial strains with the symbiovar loti. Although strains from both symbiovars produced effective N2-fixing nodules, S. meliloti symbiovar lancerottense was clearly the predominant microsymbiont of L. lancerottensis. This fact correlated with the better adaptation of strains of this species to the alkaline soils of Lanzarote, as in vitro characterization showed that while the mesorhizobial strains were inhibited by alkaline pH, S. meliloti strains grew well at pH 9.  相似文献   

19.
A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin.  相似文献   

20.
Genista versicolor is an endemic legume from Sierra Nevada National Park which constitutes one of the UNESCO-recognized Biosphere Reserves. In the present study, a collection of strains nodulating this legume was analysed in characteristic soils of this ecosystem. Most strains nodulating G. versicolor belonged to rrs group I within the genus Bradyrhizobium and only one strain, named GV137, belonged to rrs group II from which only a single species, B. retamae, has been described in Europe to date. Strain GV137, and some strains from rrs group I, belonged to putative new species of Bradyrhizobium, although most strains from group I belonged to B. canariense, according to the ITS fragment and atpD gene analysis. This result contrasted with those obtained in Genista tinctoria in Northeast Europe whose endosymbionts were identified as B. japonicum. The analysis of the symbiotic nodC and nifH genes carried by G. versicolor-nodulating strains showed that most of them belonged to symbiovar genistearum, as did those isolated from G. tinctoria. Nevertheless, strain GV137, belonging to rrs group II, formed a divergent lineage that constituted a novel symbiovar within the genus Bradyrhizobium for which the name sierranevadense is proposed. This finding showed that the Genisteae are not restrictive legumes only nodulated by symbiovar genistearum, since Genista is a promiscuous legume nodulated by at least two symbiovars of Bradyrhizobium, as occurs in Retama species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号