首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two non-pathogenic strains R89-1 and R90T isolated from poppy seed (Papaver somniferum L.) wastes were phenotypically and genotypically characterized. Multilocus sequence analysis (MLSA) was conducted with six genes (atpD, glnA, gyrB, recA, rpoB, 16S rRNA). The strains represented a new species which clustered with Agrobacterium rubi NBRC 13261T and Agrobacterium skierniewicense Ch11T type strains. MLSA was further accompanied by whole-genome phylogeny, in silico DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses for both strains. ANI and dDDH values were deep below the species delineation threshold. Phenotypic features of the novel strains unequivocally allowed their differentiation from all other Agrobacterium species. Unlike other agrobacteria, the strains were salt sensitive and were able to biotransform morphine alkaloids. The dominant cellular fatty acids are 18:1 w7c, 16:0 and 12:0 aldehyde/16:1 iso I/14:0 3OH summed in feature 2 and the major respiratory quinine is Q-10 (87%). The DNA G + C content is 56 mol%. Microbial community analysis indicated probable association with P. somniferum plant material. Altogether, these characteristics showed that strains R90T and R89-1 represent a new species of the genus Agrobacterium which we propose to name Agrobacterium bohemicum. The type strain of A. bohemicum is R90T (=CCM 8736T = DSM 104667T).  相似文献   

2.
Microbiota analysis of blown pack spoiled salami revealed five distinguishable Lactobacillus isolates we could not assign to a known species. Two of the isolates (TMW 1.2172T and TMW 1.1920) are rod-shaped, whilst three isolates (TMW 1.2098T, TMW 1.2118 and TMW 1.2188) appear coccus shaped or as short rods. All isolates are Gram-stain positive, facultative anaerobic, catalase and oxidase negative, non-motile and non-sporulating. Phylogenetic analysis of the 16S rRNA, dnaK, pheS and rpoA gene sequences revealed two distinct lineages within the genus Lactobacillus (L.). The isolates are members of the Lactobacillus alimentarius group with Lactobacillus ginsenosidimutans DSM 24154T (99.4% 16S similarity), Lactobacillus versmoldensis DSM 14857T (97.9%) and Lactobacillus furfuricola DSM 27174T (97.7%) as phylogenetic closest related species and L. alimentarius DSM 20249T (97.7%) and Lactobacillus paralimentarius DSM 13961T (97.5%) as closest relatives, respectively. Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the isolates and their close related type strains are lower than 80% and 25%, respectively. For both designated type strains, the peptidoglycan type is A4α l-Lys-d-Asp and the major fatty acids are C16:0, C18:1ω9c and summed feature 7. Based on phylogenetic, phenotypic and chemotaxonomic analysis we demonstrated that the investigated isolates belong to two novel Lactobacillus species for which we propose the names Lactobacillus salsicarnum with the type strain TMW 1.2098T = DSM 109451T = LMG 31401T and Lactobacillus halodurans with the type strain TMW 1.2172T = DSM 109452T = LMG 31402T.  相似文献   

3.
The plant tumorigenic strain NCPPB 1650T isolated from Rosa × hybrida, and four nonpathogenic strains isolated from tumors on grapevine (strain 384), raspberry (strain 839) and blueberry (strains B20.3 and B25.3) were characterized by using polyphasic taxonomic methods. Based on 16S rRNA gene phylogeny, strains were clustered within the genus Agrobacterium. Furthermore, multilocus sequence analysis (MLSA) based on the partial sequences of atpD, recA and rpoB housekeeping genes indicated that five strains studied form a novel Agrobacterium species. Their closest relatives were Agrobacterium sp. R89-1, Agrobacterium rubi and Agrobacterium skierniewicense. Authenticity of the novel species was confirmed by average nucleotide identity (ANI) and in silico DNA–DNA hybridization (DDH) comparisons between strains NCPPB 1650T and B20.3, and their closest relatives, since obtained values were considerably below the proposed thresholds for the species delineation. Whole-genome-based phylogeny further supported distinctiveness of the novel species, that forms together with A. rubi, A. skierniewicense and Agrobacterium sp. R89-1 a well-delineated sub-clade of Agrobacterium spp. named “rubi”. As for other species of the genus Agrobacterium, the major fatty acid of the strains studied was 18:1 w7c (73.42–78.12%). The five strains studied were phenotypically distinguishable from other species of the genus Agrobacterium. Overall, polyphasic characterization showed that the five strains studied represent a novel species of the genus Agrobacterium, for which the name Agrobacterium rosae sp. nov. is proposed. The type strain of A. rosae is NCPPB 1650T (=DSM 30203T = LMG 230T = CFBP 4470T = IAM 13558T = JCM 20915T).  相似文献   

4.
Four strains, coded as UPM1132, UPM1133T, UPM1134 and UPM1135, and isolated from nodules of Pisum sativum plants grown on Ni-rich soils were characterised through a polyphasic taxonomy approach. Their 16S rRNA gene sequences were identical and showed 100% similarity with their closest phylogenetic neighbors, the species included in the ‘R. leguminosarum group’: R. laguerreae FB206T, R. leguminosarum USDA 2370T, R. anhuiense CCBAU 23252T, R. sophoreae CCBAU 03386T, R. acidisoli FH13T and R. hidalgonense FH14T, and 99.6% sequence similarity with R. esperanzae CNPSo 668T. The analysis of combined housekeeping genes recA, atpD and glnII sequences showed similarities of 92-95% with the closest relatives. Whole genome average nucleotide identity (ANI) values were 97.5-99.7% ANIb similarity among the four strains, and less than 92.4% with closely related species, while digital DNA-DNA hybridization average values (dDDH) were 82-85% within our strains and 34-52% with closely related species. Major fatty acids in strain UPM1133T were C18:1 ω7c / C18:1 ω6c in summed feature 8, C14:0 3OH/ C16:1 iso I in summed feature 2 and C18:0. Colonies were small to medium, pearl-white coloured in YMA at 28 °C and growth was observed in the ranges 8-34 °C, pH 5.5-7.5 and 0-0.7% (w/v) NaCl. The DNA G + C content was 60.8 mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains UPM1132, UPM1133T, UPM1134 and UPM1135 into a novel species of Rhizobium, for which the name Rhizobium ruizarguesonis sp. nov. is proposed. The type strain is UPM1133T (=CECT 9542T = LMG 30526T).  相似文献   

5.
Nine isolates obtained from a great scallop hatchery in Norway were characterized using a polyphasic approach. Strains were Gram-negative, aerobic and motile rods with oxidative metabolism. Phylogenetic analysis based on the sequences of 16S rRNA and rpoB genes showed that these strains formed two different groups associated with members of the genus Neptuniibacter. DNA–DNA hybridization (DDH) and Average Nucleotide Identity (ANI) demonstrated that the isolates constituted two novel species of this genus, which can be phenotypically differentiated from their closest relatives. The names Neptuniibacter marinus sp. nov. and Neptuniibacter pectenicola sp. nov are proposed, with ATR 1.1T (=CECT 8938T = DSM 100783T) and LFT 1.8T (=CECT 8936T = DSM 100781T) as respective type strains.  相似文献   

6.
Four novel Gram-stain-positive, non spore forming and fructose-6-phosphate phosphoketolase-positive strains were isolated from the faeces of a cotton top tamarin (Saguinus oedipus) and an emperor tamarin (Saguinus imperator). Phylogenetic analyses based on 16S rRNA revealed that bifidobacterial strains TRE 1T exhibit close phylogenetic relatedness to Bifidobacterium catulorum DSM 103154 (96.0%) and Bifidobacterium tissieri DSM 100201 (96.0%); TRE DT and TRE HT were closely related to Bifidobacterium longum subsp. longum ATCC 15708T with similarity values of 97.4% and 97.5%, respectively; TRI 7T was closely related to Bifidobacterium tissieri DSM 100201 (96.0%). The Average Nucleotide Identity (ANI) and in silico DDH (isDDH) analysis with closest neighbour supported an independent phylogenetic position of all strains with values ranged from 74 to 85% for ANI and from 24 to 28% for isDDH. DNA base composition of the four strains was in the range of 58.3–63.5 mol% G + C. Based on the phylogenetic, genotypic and phenotypic data, the strains TRE 1T, TRE DT, TRE HT and TRI 7T clearly represent four novel taxa within the genus Bifidobacterium for which the names Bifidobacterium primatium sp. nov. (type strain TRE 1T = DSM 100687T = JCM 30945T), Bifidobacterium scaligerum sp. nov. (type strain TRE DT = DSM 103140T = JCM 31792T), Bifidobacterium felsineum sp. nov. (type strain TRE HT = DSM 103139T = JCM 31789T) and Bifidobacterium simiarum sp. nov. (type strain TRI 7T = DSM 103153T = JCM 31793) are proposed.  相似文献   

7.
Fifteen bifidobacterial strains were obtained from faeces of Rousettus aegyptiacus; after grouping them by RAPD PCR only eight were selected and characterized. Analysis of 16S rRNA and of five housekeeping (hsp60, rpoB, clpC, dnaJ, dna G) genes revealed that these eight strains were classified into five clusters: Cluster I (RST 8 and RST 16T), Cluster II (RST 9T and RST 27), Cluster III (RST 7 and RST 11), Cluster IV (RST 19), Cluster V (RST 17) were closest to Bifidobacterium avesanii DSM 100685T (96.3%), Bifidobacterium callitrichos DSM 23973T (99.2% and 99.7%), Bifidobacterium tissieri DSM 100201T (99.7 and 99.2%), Bifidobacterium reuteri DSM 23975 T (98.9%) and Bifidobacterium myosotis DSM 100196T (99.3%), respectively. Strains in Cluster I and strain RST 9 in Cluster II could not be placed within any recognized species while the other ones were identified as known species. The average nucleotide identity values between two novel strains, RST 16T and RST 9T and their closest relatives were lower than 79% and 89%, respectively. In silico DNA–DNA hybridization values for those closest relatives were 32.5 and 42.1%, respectively. Phenotypic and genotypic tests demonstrated that strains in Cluster I and RST 9T in Cluster II represent two novel species for which the names Bifidobacterium vespertilionis sp. nov. (RST 16T = BCRC 81138T = NBRC 113380T = DSM 106025T ; RST 8 = BCRC 81135 = NBRC 113377) and Bifidobacterium rousetti sp. nov. (RST 9T = BCRC 81136T = NBRC 113378T = DSM 106027T) are proposed.  相似文献   

8.
Two novel strains C4III282T and C4III291 were isolated from seawater collected a site off the Taketomi coral reef. Phylogenetic analysis based on the 16S rRNA sequences revealed that the two strains belong to the genus Vibrio. MLSA using eight protein-coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) showed that C4III282T and C4III291 are closely related to the members of the Ponticus clade, namely Vibrio panuliri JCM 19500T, Vibrio ponticus DSM 16217T, and “Vibrio rhodolitus” G98. ANI and in silico DDH values with members of the Ponticus clade were 77.6-78.7% and 22.2-23.1, respectively. The name Vibrio taketomensis sp. nov. is proposed with C4III282T (CAIM 1928T = DSM 106943T = JCM 33434T) as the type strain.  相似文献   

9.
Three strains of rhizobia isolated from effective root nodules of pea (Pisum sativum L.) collected from the Indian trans-Himalayas were characterized using 16S rRNA, atpD and recA genes. Phylogeny of the 16S rRNA genes revealed that the newly isolated strains were members of the genus Rhizobium with ≥99.9% sequence similarity to the members within the “Rhizobium leguminosarum” group. Phylogenetic analyses based on the concatenated sequences of atpD and recA gene, and 92 core genes extracted from the genome sequences indicated that strains JKLM 12A2T and JKLM 13E are grouped as a separate clade closely related to R. laguerreae FB206T. In contrast, the strain JKLM 19E was placed with “R. hidalgonense” FH14T. Whole-genome average nucleotide identity (ANI) values were 97.6% within strains JKLM 12A2T and JKLM 13E, and less than 94% with closely related species. The digital DNA-DNA hybridization (dDDH) values were 81.45 within the two strains and less than 54.8% to closely related species. The major cellular fatty acids were C18:1w7c in summed feature 8, C14:0 3OH/C16:1 iso I in summed feature 2, and C18:0. The DNA G + C content of JKLM 12A2T and JKLM 13E was 60.8 mol%. The data on genomic, chemotaxonomic, and phenotypic characteristics indicates that the strains JKLM 12A2T and JKLM 13E represent a novel species, Rhizobium indicum sp. nov. The type strain is JKLM 12A2T (= MCC 3961T = KACC 21380T = JCM 33658T). However, the strain JKLM 19E represents a member of “R. hidalgonense” and the symbiovar viciae.  相似文献   

10.
Strain 28bB2TT is a sulfate-reducing bacterium isolated in a previous study, obtained from a p-xylene-degrading enrichment culture. Physiological, phylogenetic and genomic characterizations of strain 28bB2TT were performed to establish the taxonomic status of the strain. Cells of strain 28bB2TT were short oval-shaped (0.8–1.2 × 1.2–2.7 μm), motile, and Gram-negative. For growth, the optimum pH was pH 6.5–7.0 and the optimum temperature was 28–32 °C. Strain 28bB2TT oxidized toluene but could not utilize p-xylene. Sulfate and thiosulfate were used as electron acceptors. The G + C content of the genomic DNA was 53.8 mol%. The genome consisted of an approximately 8.3 Mb of chromosome and two extrachromosomal elements. On the basis of 16S rRNA gene analysis, strain 28bB2TT was revealed to belong to the genus Desulfosarcina, with high sequence identities to Desulfosarcina ovata oXyS1T (99.5%) and Desulfosarcina cetonica DSM 7267T (98.7%). Results of Average Nucleotide Identity (ANI) calculation and digital DNA–DNA hybridization (dDDH) analysis showed that the strain 28bB2TT should be classified as a subspecies under D. ovata. Based on physiological and phylogenetic data, strain 28bB2TT (=NBRC 106234 =DSM 23484) is proposed as the type strain of a novel species in genus Desulfosarcina, Desulfosarcina ovata subsp. sediminis subsp. nov.  相似文献   

11.
Two strains of sulfate-reducing bacteria (J.5.4.2-L4.2.8T and J.3.6.1-H7) were isolated from a pyrite-forming enrichment culture and were compared phylogenetically and physiologically to the closest related type strain Desulfovibrio sulfodismutans DSM 3696T. The isolated strains were vibrio-shaped, motile rods that stained Gram-negative. Growth occurred from 15 to 37 °C and within a pH range of 6.5–8.5. Both strains used sulfate, thiosulfate, sulfite, and dimethyl sulfoxide (DMSO) as electron acceptor when grown with lactate. Lactate was incompletely oxidized to acetate. Formate and H2 were used as electron donor in the presence of acetate. Dismutation of thiosulfate and pyrosulfite was observed. The two new isolates differed from D. sulfodismutans by the utilization of DMSO as electron acceptor, 82% genome-wide average nucleotide identity (ANI) and 32% digital DNA-DNA hybridization (dDDH), thus representing a novel species. The type strain of the type species Desulfovibrio desulfuricans Essex6T revealed merely 88% 16S rRNA gene identity and 49% genome-wide average amino acid identity (AAI) to the new isolates as well as to D. sulfodismutans. Furthermore, the dominance of menaquinone MK-7 over MK-6 and the dominance of ai-C15:0 fatty acids were observed not only in the two new isolated strains but also in D. sulfodismutans. Therefore, the definition of a new genus is indicated for which the name Desulfolutivibrio is proposed. We propose for strains J.5.4.2-L4.2.8T and J.3.6.1-H7 the name Desulfolutivibrio sulfoxidireducens gen. nov. sp. nov. with strain J.5.4.2-L4.2.8T defined as type strain. In addition, we propose the reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov.  相似文献   

12.
In this study we analysed three bacterial strains coded L10.10T, A4R1.5 and A4R1.12, isolated in the course of a study of quorum-quenching bacteria occurring in Antarctic soil. The 16S rRNA gene sequence was identical in the three strains and showed 99.7% pairwise similarity with respect to the closest related species Pseudomonas weihenstephanensis WS4993T. Therefore, the three strains were classified within the genus Pseudomonas. Analysis of housekeeping genes (rpoB, rpoD and gyrB) sequences showed similarities of 84-95% with respect to the closest related species of Pseudomonas, confirming its phylogenetic affiliation. The ANI values were less than 86% to the closest related species type strains. The respiratory quinone is Q9. The major fatty acids are C16:0, C16:1 ω7c/ C16:1 ω6c in summed feature 3 and C18:1 ω7c / C18:1 ω6c in summed feature 8. The strains are oxidase- and catalase-positive. Growth occurs at 4–30 °C, and at pH 4.0–10. The DNA G+C content is 58.2–58.3 mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains L10.10T, A4R1.5 and A4R1.12 into a novel species of Pseudomonas, for which the name P. versuta sp. nov. is proposed. The type strain is L10.10T (LMG 29628T, DSM 101070T).  相似文献   

13.
Pseudomonas are known from their flexible degradation capabilities and their engagement in xenobiotic biotransformation and bioremediation in habitats like soil, active sludge, plant surfaces, and freshwater or marine environments. Here we present taxonomic characterization of three efficient sodium dodecyl sulfate degrading strains: AP3_10, AP3_20 and AP3_22T belonging to the genus Pseudomonas, recently isolated from peaty soil used in a biological wastewater treatment plant. Sequence analyses of 16S rRNA and housekeeping genes: gyrB, rpoD and rpoB showed that the three closely related isolates classify within the Pseudomonas jessenii subgroup. ANIb or dDDH genomic comparisons of AP3_22T (type strain DSM 105098T = PCM 2904T) supported by biochemical tests showed that the isolates differ significantly from their closest relatives. The combined genotypic, phenotypic and chemotaxonomic data strongly support the classification of the three strains: AP3_10, AP3_20 and AP3_22T as a novel species of Pseudomonas, for which we propose the name Pseudomonas laurylsulfatovorans sp. nov. with AP3_22T as the type strain.  相似文献   

14.
Four bacterial strains designated 410T, 441, 695T and 736 were isolated from maize root in Beijing, P. R. China. Based on 16S rRNA gene phylogeny, the four strains formed two clusters in the genus Caulobacter. Since strain 441 was a clonal variety of strain 410T, only three strains were selected for further taxonomic studies. The whole genome average nucleotide identity (ANI) value between strains 410T and 695T was 94.65%, and both strains shared less than 92.10% ANI values with their close phylogenetic neighbors Caulobacter vibrioides DSM 9893T, Caulobacter segnis ATCC 21756T and Caulobacter flavus CGMCC 1.15093T. Strains 410T and 695T contained Q-10 as the sole ubiquinone and their major fatty acids were C16:0, 11-methyl C18:1ω 0, 11-methyl C18: 1ω7c, summed feature 3 (C16:1ω7c and/or C16:1ω 1ω7c and/or C16: 1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω 1ω7c and/or C18: 1ω6c). Their major polar lipids consisted of glycolipids and phosphatidylglycerol, and phenotypic tests differentiated them from their closest phylogenetic neighbors. Based on the results obtained, it is proposed that the three strains represent two novel species, for which the names Caulobacter zeae sp. nov. (type strain 410T = CGMCC 1.15991 = DSM 104304) and Caulobacter radicis sp. nov. (type strain 695T = CGMCC 1.16556 = DSM 106792) are proposed.  相似文献   

15.
Four endophytic bacterial strains were isolated from root, stem and leaf of maize planted in different regions of northern China. The four strains possessed almost identical 16S rRNA gene sequences. However, REP-PCR fingerprint patterns discriminated that they were not from one clonal origin. Furthermore, the average nucleotide identity (ANI) values among them were higher than 95%, suggesting they all belong to one species. Based on 16S rRNA gene phylogeny, the four strains were clustered together with Pantoea rodasii LMG 26273T and Pantoea rwandensis LMG 26275T, but on a separate branch. Multilocus sequence analysis (MLSA) indicated that the four strains form a novel Pantoea species. Authenticity of the novel species was confirmed by ANI comparisons between strain 596T and its closest relatives, since obtained values were considerably below the proposed thresholds for the species delineation. The genome size of 596T was 5.1Mbp, comprising 4896 predicted genes with DNA G + C content of 57.8 mol%. The respiratory quinone was ubiquinone-8 (Q-8) and the polar lipid profile consisted of phosphatidylethanolamin, diphosphatidylglycerol, phosphatidylglycerol, unidentified aminophospholipid and unidentified phospholipid. The major fatty acids of strain 596T were C16:0, summed feature 2 (C12:0 aldehyde), summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, the four isolates are considered to represent a novel species of the genus Pantoea, for which the name Pantoea endophytica sp. nov., is proposed, with 596T (= DSM 100,785T = CGMCC 1.15280T) as type strain.  相似文献   

16.
Two novel Gram-staining positive, rod-shaped, moderately halotolerant, endospore forming bacterial strains 5.5LF 38TD and 5.5LF 48TD were isolated and taxonomically characterized from a landfill in Chandigarh, India. The analysis of 16S rRNA gene sequences of the strains confirmed their closest identity to Bacillus thermotolerans SgZ-8T with 99.9% sequence similarity. A comparative phylogenetic analysis of strains 5.5LF 38TD, 5.5LF 48TD and B. thermotolerans SgZ-8T confirmed their separation into a novel genus with B. badius and genus Domibacillus as the closest phylogenetic relatives. The major fatty acids of the strains are iso-C15:0 and iso-C16:0 and MK-7 is the only quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The digital DNA-DNA hybridization (DDH) and ortho average nucleotide identity (ANI) values calculated through whole genome sequences indicated that the three strains showed low relatedness with their phylogenetic neighbours. Based on evidences from phylogenomic analyses and polyphasic taxonomic characterization we propose reclassification of the species B. thermotolerans into a novel genus named Quasibacillus thermotolerans gen. nov., comb. nov with the type strain SgZ-8T (= CCTCC AB2012108T = KACC 16706T). Further our analyses also revealed that B. encimensis SGD-V-25T is a later heterotypic synonym of Bacillus badius DSM 23T.  相似文献   

17.
Ten bacterial isolates belonging to the genus Vagococcus were obtained from Malian sour milk fènè produced from spontaneously fermented cow milk. However, these isolates could not be assigned to a species upon initial comparative 16S rRNA gene sequence analysis and were therefore further characterized. Rep-PCR fingerprinting of the isolates yielded four strain clusters represented by strains CG-21T (=DSM 21459T), 24CA, CM21 and 9H. Sequence identity of the 16S rRNA gene of DSM 21459T to its closest relative species Vagococcus penaei was 97.9%. Among the four rep strain clusters, DSM 21459T and 24CA shared highest 16S rRNA gene sequence identity of 99.6% while CM21 and 9H shared 98.6–98.8% with DSM 21459T and V. penaei CD276T. DSM 21459T and 24CA were thus subjected to a polyphasic typing approach. The genome of DSM 21459T featured a G + C content of 34.1 mol% for a 2.17-bp chromosome and a 15-kbp plasmid. Average nucleotide identity (ANI) of DSM 21459T to Vagococcus fluvialis bH819, V. penaei CD276T were 72.88%, 72.63%, respectively. DNA–DNA hybridization (DDH) similarities of strain DSM 21459T to other Vagococcus species were <42.0%. ANI and DDH findings strongly supported the 16S rRNA gene phylogenetic tree delineations. The fatty acid patterns of DSM 21459T was palmitic acid (C 16:0, 24.5%), oleic acid (C 18:1-ω9c, 32.8%), stearic acid (C 18:0, 18.9%). General physiological characterization of DSM 21459T and 24CA were consistent with those of the genus Vagococcus. Strain DSM 21459T and further strains are therefore considered to belong to a novel species, for which the nomenclature Vagococcus teuberi sp. nov. is proposed. The type strain is named CG-21T (=DSM 21459T and LMG 24695T).  相似文献   

18.
Two novel anaerobic alkaliphilic strains, designated as LacTT and LacVT, were isolated from the Prony Bay Hydrothermal Field (PBHF, New Caledonia). Cells were motile, Gram-positive, terminal endospore-forming rods, displaying a straight to curved morphology during the exponential phase. Strains LacTT and LacVT were mesophilic (optimum 30 °C), moderately alkaliphilic (optimum pH 8.2 and 8.7, respectively) and halotolerant (optimum 2% and 2.5% NaCl, respectively). Both strains were able to ferment yeast extract, peptone and casamino acids, but only strain LacTT could use sugars (glucose, maltose and sucrose). Both strains disproportionated crotonate into acetate and butyrate. Phylogenetic analysis revealed that strains LacTT and LacVT shared 96.4% 16S rRNA gene sequence identity and were most closely related to A. peptidifermentans Z-7036, A. namsaraevii X-07-2 and A. hydrothermalis FatMR1 (95.7%–96.3%). Their genome size was of 3.29 Mb for strain LacTT and 3.06 Mb for strain LacVT with a G + C content of 36.0 and 33.9 mol%, respectively. The ANI value between both strains was 73.2 %. Finally, strains LacTT (=DSM 100337 = JCM 30643) and LacVT (=DSM 100017 = JCM 30644) are proposed as two novel species of the genus Alkaliphilus, order Clostridiales, phylum Firmicutes, Alkaliphilus serpentinus sp. nov. and Alkaliphilus pronyensis sp. nov., respectively. The genomes of the three Alkaliphilus species isolated from PBHF were consistently detected in the PBHF chimney metagenomes, although at very low abundance, but not significantly in the metagenomes of other serpentinizing systems (marine or terrestrial) worldwide, suggesting they represent indigenous members of the PBHF microbial ecosystem.  相似文献   

19.
Two phylogenetically distinct Vibrionaceae strains C4II189T and C4V358T isolated from reef seawater off Ishigaki Island, Japan, in 2014 were studied with advanced genome-based taxonomy approaches. All aspects of phylogenetic (16S rRNA phylogeny, MLSA), phenotypic and genetic (ANI, DDH, AAI, and the number of core genes) cohesions between the two identified species were high enough to propose them as members of a new genus within the family Vibrionaceae. Consequently, an eighth genus Thaumasiovibrio gen. nov. is proposed that contains two new species Thaumasiovibrio occultus sp. nov. strain C4II189T (=DSM 101554T = JCM 31629T) (type species) and Thaumasiovibrio subtropicus sp. nov. strain C4V358T (=DSM 101555T = JCM 31630T). Thaumasiovibrio species were phylogenetically distinct from the other Vibrionaceae species based on pyrH gene sequences. The combination of catalase negative, sensitivity to vibriostatic agent O/129, and green colony formation on TCBS for the phylogenetically affiliated strains was the diagnostic features for the current tentative identification of this genus.  相似文献   

20.
Analysis of spoilage-associated microbiota of modified-atmosphere packaged poultry meat revealed four different bacterial isolates that could not be assigned to known species. They showed a Gram-negative staining behavior, were facultatively aerobic, non-motile with variable cell morphology. Phylogenetic analysis of 16S rDNA and gyrB, rpoD and recA revealed a distinct lineage within the genus Photobacterium with Photobacterium (P.) iliopiscarium DSM 9896T, P. phosphoreum DSM 15556T, P. kishitanii DSM 19954T, P. piscicola LMG 27681T and P. aquimaris DSM 23343T as closest relatives.The designated type strain TMW 2.2021T is non-luminous and grew at 0–20 °C (optimum 10–15 °C), within pH 5.0–8.5 (optimum 6–8) and in the presence of 0.5–3% (w/v) NaCl (optimum 1%). Major cellular fatty acids of TMW 2.2021T were summed feature 3 (C16:1ω7c/iso-C15 3-OH), C16:0, C18:1ω7c and summed feature 2 (C12:0 aldehyde and C10.928 unknown). Quinone analysis revealed Q-8 as sole respiratory ubiquinone. The genome of TMW 2.2021T has a size of 4.56 Mb and a G + C content of 38.49 mol%. The ANI value between TMW 2.2021T and the type strain of closest relative P. iliopiscarium DSM 9896T was 91.43%. Fingerprinting on the base of M13-RAPD-PCR band pattern and MALDI-TOF MS profiles allowed intraspecies differentiation between our isolates but also supported their distinct lineage to a novel species. Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, strain TMW 2.2021T and further strains represent a novel species of the genus Photobacterium, for which the name Photobacterium carnosum sp. nov. is proposed. The type strain is TMW 2.2021T (=DSM 105454T = CECT 9394T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号