首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Cys peroxiredoxins belonging to the Prx1 subfamily are Cys-based peroxidases that control the intracellular levels of H2O2 and seem to assume a chaperone function under oxidative stress conditions. The regulation of their peroxidase activity as well as the observed functional switch from peroxidase to chaperone involves changes in their quaternary structure. Multiple factors can modulate the oligomeric transitions of 2-Cys peroxiredoxins such as redox state, post-translational modifications, and pH. However, the molecular basis for the pH influence on the oligomeric state of these enzymes is still elusive. Herein, we solved the crystal structure of a typical 2-Cys peroxiredoxin from Leishmania in the dimeric (pH 8.5) and decameric (pH 4.4) forms, showing that conformational changes in the catalytic loop are associated with the pH-induced decamerization. Mutagenesis and biophysical studies revealed that a highly conserved histidine (His113) functions as a pH sensor that, at acidic conditions, becomes protonated and forms an electrostatic pair with Asp76 from the catalytic loop, triggering the decamerization. In these 2-Cys peroxiredoxins, decamer formation is important for the catalytic efficiency and has been associated with an enhanced sensitivity to oxidative inactivation by overoxidation of the peroxidatic cysteine. In eukaryotic cells, exposure to high levels of H2O2 can trigger intracellular pH variations, suggesting that pH changes might act cooperatively with H2O2 and other oligomerization-modulator factors to regulate the structure and function of typical 2-Cys peroxiredoxins in response to oxidative stress.  相似文献   

2.
Thiol-based peroxiredoxins (Prxs) are conserved throughout all kingdoms. We have found that a conserved typical 2-Cys Prx-like protein (PaPrx) from Pseudomonas aeruginosa bacteria displays diversity in its structure and apparent molecular weight (MW), and can act alternatively as a peroxidase and molecular chaperone. We have also identified a regulatory factor involved in this structural and functional switching. Exposure of P. aeruginosa to hydrogen peroxide (H2O2) causes PaPrx to convert from a high MW (HMW) complex to a low MW (LMW) form, which triggers a chaperone to peroxidase functional switch. This structural switching is primarily guided by either the thioredoxin (Trx) or glutathione (GSH) systems. Furthermore, comparison of our structural data [native and non-reducing polyacrylamide gel electrophoresis (PAGE) analysis, size exclusion chromatography (SEC) analysis, and electron microscopy (EM) observations] and enzymatic analyses (peroxidase and chaperone assay) revealed that the formation of oligomeric HMW complex structures increased chaperone activity of PaPrx. These results suggest that multimerization of PaPrx complexes promotes chaperone activity, and dissociation of the complexes into LMW species enhances peroxidase activity. Thus, the dual functions of PaPrx are clearly associated with their ability to form distinct protein structures.  相似文献   

3.
Protein disulfide isomerase (PDI), the chief endoplasmic reticulum (ER) resident oxidoreductase chaperone that catalyzes maturation of disulfide-bond-containing proteins is involved in the pathogenesis of both Parkinson’s (PD) and Alzheimer’s (AD) diseases. S-nitrosylation of PDI cysteines due to nitrosative stress is associated with cytosolic debris accumulation and Lewy-body aggregates in PD and AD brains. We demonstrate that the polyphenolic phytochemicals curcumin and masoprocol can rescue PDI from becoming S-nitrosylated and maintain its catalytic function under conditions mimicking nitrosative stress by forming stable NOx adducts. Furthermore, both polyphenols intervene to prevent the formation of PDI-resistant polymeric misfolded protein forms that accumulate upon exposure to oxidative stress. Our study suggests that curcumin and masoprocol can serve as lead-candidate prophylactics for reactive oxygen species induced chaperone damage, protein misfolding and neurodegenerative disease; importantly, they can play a vital role in sustaining traffic along the ER’s secretory pathway by preserving functional integrity of PDI.  相似文献   

4.
Human peroxiredoxins 1 and 2, also known as Prx1 and Prx2, are more than 90% homologous in their amino acid sequences. Prx1 and Prx2 are elevated in various cancers and are shown to influence diverse cellular processes. Although their growth regulatory role has traditionally been attributed to the peroxidase activity, the physiological significance of this function is unclear because the proteins are highly susceptible to inactivation by H(2)O(2). A chaperone activity appears to emerge when their peroxidase activity is lost. Structural studies suggest that they may form a homodimer or doughnut-shaped homodecamer. However, little information is available whether human Prx1 and Prx2 are duplicative in structure and function. We noted that Prx1 contains a cysteine (Cys(83)) at the putative dimer-dimer interface, which is absent in Prx2. We studied the role of Cys(83) in regulating the peroxidase and chaperone activities of Prx1, because the redox status of Cys(83) might influence the oligomeric structure and consequently the functions of Prx1. We show that Prx1 is more efficient as a molecular chaperone, whereas Prx2 is better suited as a peroxidase enzyme. Substituting Cys(83) with Ser(83) (Prx1C83S) results in dramatic changes in the structural and functional characteristics of Prx1 in a direction similar to those of Prx2. Here we also report the first crystal structure of human Prx1 and the presence of the Cys(83)-Cys(83) bond at the dimer-dimer interface of decameric Prx1. These findings are consistent with the hypothesis that human Prx1 and Prx2 possess unique functions and regulatory mechanisms and that Cys(83) bestows a distinctive identity to Prx1.  相似文献   

5.
Paraoxonase (PON1) is working in vivo in a particular dynamic environment including HDL particles and associated molecules. To decipher the respective and/or concomitant role of the different cofactors involved in this molecular organization, an approach using multiple experimental techniques based on capillary electrophoresis and classical kinetics or kinetics under high pressure was implemented. The effects of calcium and phosphate as protein or plasma cofactor, of human phosphate binding protein (HPBP) as enzyme chaperone, and of a PON1 inhibitor as an active site stabilizer, on the catalytic activities and functional oligomerization of PON1 were scrutinized. PON1 displays two distinct catalytic behaviors, one against esters and lactones, the other against organophosphorus compounds; its functional states and catalytic activities against these substrates are differently modulated by the molecular environment; PON1 exists under several active multimeric forms; the binding of HPBP amends the size of the oligomeric states and exerts a stabilizing effect on the activities of PON1; PON1 functional properties are modulated by HPBP, calcium and phosphate. This integrative approach using several optimized analytical techniques allowed performing comparison of catalytic properties and oligomeric states of functional PON1 in different enzyme preparations. Relevance of these data to understand in vivo physiological PON1 functioning is mandatory.  相似文献   

6.
The glutathione peroxidase homologs (GPxs) efficiently reduce hydroperoxides using electrons from glutathione (GSH), thioredoxin (Trx), or protein disulfide isomerase (PDI). Trx is preferentially used by the GPxs of the majority of bacteria, invertebrates, plants, and fungi. GSH or PDI, instead, is preferentially used by vertebrate GPxs that operate by Sec or Cys catalysis, respectively. Mammalian GPx7 and GPx8 are unique homologs that contain a peroxidatic Cys (CP). Being reduced by PDI and located within the endoplasmic reticulum (ER), these enzymes have been involved in oxidative protein folding. Kinetic analysis indicates that oxidation of PDI by recombinant GPx7 occurs at a much faster rate than that of GSH. Nonetheless, activity measurement suggests that, at physiological concentrations, a competition between these two substrates takes place, with the rate of PDI oxidation by GPx7 controlled by the concentration of GSH, whereas the GSSG produced in the competing reaction contributes to the ER redox buffer. A mechanism has been proposed for GPx7 involving two Cys residues, in which an intramolecular disulfide of the CP is formed with an alleged resolving Cys (CR) located in the strongly conserved FPCNQ motif (C86 in humans), a noncanonical position in GPxs. Kinetic measurements and comparison with the other thiol peroxidases containing a functional CR suggest that a resolving function of C86 in the catalytic cycle is very unlikely. We propose that GPx7 is catalytically active as a 1-Cys-GPx, in which CP both reduces H2O2 and oxidizes PDI, and that the CP-C86 disulfide has instead the role of stabilizing the oxidized peroxidase in the absence of the reducing substrate.  相似文献   

7.
Many proteins have been isolated from eukaryotes as redox-sensitive proteins, but whether these proteins are present in prokaryotes is not clear. Redox-sensitive proteins contain disulfide bonds, and their enzymatic activity is modulated by redox in vivo. In the present study, we used thiol affinity purification and mass spectrometry to isolate and identify 19 disulfide-bond-containing proteins in Pseudomonas putida exposed to potential oxidative damages. Among these proteins, we found that a typical 2-Cys Prx-like protein (designated PpPrx) displays diversity in structure and apparent molecular weight (MW) and can act as both a peroxidase and a molecular chaperone. We also identified a regulatory factor involved in this structural and functional switching. Exposure of pseudomonads to hydrogen peroxide (H2O2) caused the protein structures of PpPrx to convert from high MW complexes to low MW forms, triggering a chaperone-to-peroxidase functional switch. This structural switching was primarily guided by the thioredoxin system. Thus, the peroxidase efficiency of PpPrx is clearly associated with its ability to form distinct protein structures in response to stress.  相似文献   

8.
Protein disulfide isomerase (PDI), an essential folding catalyst and chaperone of the endoplasmic reticulum (ER), has four structural domains (a-b-b'-a'-) of approximately equal size. Each domain has sequence or structural homology with thioredoxin. Sedimentation equilibrium and velocity experiments show that PDI is an elongated monomer (axial ratio 5.7), suggesting that the four thioredoxin domains are extended. In the presence of physiological levels (<1 mM) of Zn(2+) and other thiophilic divalent cations such as Cd(2+) and Hg(2+), PDI forms a stable dimer that aggregates into much larger oligomeric forms with time. The dimer is also elongated (axial ratio 7.1). Oligomerization involves the interaction of Zn(2+) with the cysteines of PDI. PDI has active sites in the N-terminal (a) and C-terminal (a')thioredoxin domains, each with two cysteines (CGHC). Two other cysteines are found in one of the internal domains (b'). Cysteine to serine mutations show that Zn(2+)-dependent dimerization occurs predominantly by bridging an active site cysteine from either one of the active sites with one of the cysteines in the internal domain (b'). The dimer incorporates two atoms of Zn(2+) and exhibits 50% of the isomerase activity of PDI. At longer times and higher PDI concentrations, the dimer forms oligomers and aggregates of high molecular weight (>600 kDa). Because of a very high concentration of PDI in the ER, its interaction with divalent ions could play a role in regulating the effective concentration of these metal ions, protecting against metal toxicity, or affecting the activity of other (ER) proteins that use Zn(2+) as a cofactor.  相似文献   

9.
Except for its redox properties, cytochrome c is an inert protein. However, dissociation of the bond between methionine-80 and the heme iron converts the cytochrome into a peroxidase. Dissociation is accomplished by subjecting the cytochrome to various conditions, including proteolysis and hydrogen peroxide (H2O2)-mediated oxidation. In affected cells of various neurological diseases, including Parkinson's disease, cytochrome c is released from the mitochondrial membrane and enters the cytosol. In the cytosol cytochrome c is exposed to cellular proteases and to H2O2 produced by dysfunctional mitochondria and activated microglial cells. These could promote the formation of the peroxidase form of cytochrome c. In this study we investigated the catalytic and cytolytic properties of the peroxidase form of cytochrome c. These properties are qualitatively similar to those of other heme-containing peroxidases. Dopamine as well as sulfhydryl group-containing metabolites, including reduced glutathione and coenzyme A, are readily oxidized in the presence of H2O2. This peroxidase also has cytolytic properties similar to myeloperoxidase, lactoperoxidase, and horseradish peroxidase. Cytolysis is inhibited by various reducing agents, including dopamine. Our data show that the peroxidase form of cytochrome c has catalytic and cytolytic properties that could account for at least some of the damage that leads to neuronal death in the parkinsonian brain.  相似文献   

10.
《Biophysical journal》2022,121(7):1289-1298
Get3/4/5 chaperone complex is responsible for targeting C-terminal tail-anchored membrane proteins to the endoplasmic reticulum. Despite the availability of several crystal structures of independent proteins and partial structures of subcomplexes, different models of oligomeric states and structural organization have been proposed for the protein complexes involved. Here, using native mass spectrometry (Native-MS), coupled with intact dissociation, we show that Get4/5 exclusively forms a tetramer using both Get5/5 and a novel Get4/4 dimerization interface. Addition of Get3 to this leads to a hexameric (Get3)2-(Get4)2-(Get5)2 complex with closed-ring cyclic architecture. We further validate our claims through molecular modeling and mutational abrogation of the proposed interfaces. Native-MS has become a principal tool to determine the state of oligomeric organization of proteins. The work demonstrates that for multiprotein complexes, native-MS, coupled with molecular modeling and mutational perturbation, can provide an alternative route to render a detailed view of both the oligomeric states as well as the molecular interfaces involved. This is especially useful for large multiprotein complexes with large unstructured domains that make it recalcitrant to conventional structure determination approaches.  相似文献   

11.
Ascorbate peroxidase is one of the major enzymes regulating the levels of H2O2 in plants and plays a crucial role in maintaining root nodule redox status. We used fully developed and mature nitrogen fixing root nodules from soybean plants to analyze the effect of exogenously applied nitric oxide, generated from the nitric oxide donor 2,2′-(hydroxynitrosohydrazono)bis-ethanimine, on the enzymatic activity of soybean root nodule ascorbate peroxidase. Nitric oxide caused an increase in the total enzymatic activity of ascorbate peroxidase. The nitric oxide-induced changes in ascorbate peroxidase enzymatic activity were coupled to altered nodule H2O2 content. Further analysis of ascorbate peroxidase enzymatic activity identified three ascorbate peroxidase isoforms for which augmented enzymatic activity occurred in response to nitric oxide. Our results demonstrate that nitric oxide regulates soybean root nodule ascorbate peroxidase activity. We propose a role of nitric oxide in regulating ascorbate-dependent redox status in soybean root nodule tissue.Key words: antioxidant enzymes, ascorbate peroxidase, nitric oxide, oxidative stress, reactive oxygen species, redox homeostasis, soybean root nodules  相似文献   

12.
Park JW  Piszczek G  Rhee SG  Chock PB 《Biochemistry》2011,50(15):3204-3210
Reversible protein glutathionylation, a redox-sensitive regulatory mechanism, plays a key role in cellular regulation and cell signaling. Peroxiredoxins (Prxs), a family of peroxidases that is involved in removing H(2)O(2) and organic hydroperoxides, are known to undergo a functional change from peroxidase to molecular chaperone upon overoxidation of its catalytic cysteine. The functional change is caused by a structural change from low molecular weight oligomers to high molecular weight complexes that possess molecular chaperone activity. We reported earlier that Prx I can be glutathionylated at three of its cysteine residues, Cys52, -83, and -173 [Park et al. (2009) J. Biol. Chem., 284, 23364]. In this study, using analytical ultracentrifugation analysis, we reveal that glutathionylation of Prx I, WT, or its C52S/C173S double mutant shifted its oligomeric status from decamers to a population consisting mainly of dimers. Cys83 is localized at the putative dimer-dimer interface, implying that the redox status of Cys83 may play an important role in stabilizing the oligomeric state of Prx I. Studies with the Prx I (C83S) mutant show that while Cys83 is not essential for the formation of high molecular weight complexes, it affects the dimer-decamer equilibrium. Glutathionylation of the C83S mutant leads to accumulation of dimers and monomers. In addition, glutathionylation of Prx I, both the WT and C52S/C173S mutants, greatly reduces their molecular chaperone activity in protecting citrate synthase from thermally induced aggregation. Together, these results reveal that glutathionylation of Prx I promotes changes in its quaternary structure from decamers to smaller oligomers and concomitantly inactivates its molecular chaperone function.  相似文献   

13.
During host cell infection, Trypanosoma cruzi parasites are exposed to reactive oxygen and nitrogen species. As part of their antioxidant defense systems, they express two tryparedoxin peroxidases (TXNPx), thiol-dependent peroxidases members of the peroxiredoxin family. In this work, we report a kinetic characterization of cytosolic (c-TXNPx) and mitochondrial (m-TXNPx) tryparedoxin peroxidases from T. cruzi. Both c-TXNPx and m-TXNPx rapidly reduced hydrogen peroxide (k = 3.0 × 107 and 6 × 106 M−1 s−1 at pH 7.4 and 25 °C, respectively) and peroxynitrite (k = 1.0 × 106 and k = 1.8 × 107 M−1 s−1 at pH 7.4 and 25 °C, respectively). The reductive part of the catalytic cycle was also studied, and the rate constant for the reduction of c-TXNPx by tryparedoxin I was 1.3 × 106 M−1 s−1. The catalytic role of two conserved cysteine residues in both TXNPxs was confirmed with the identification of Cys52 and Cys173 (in c-TXNPX) and Cys81 and Cys204 (in m-TXNPx) as the peroxidatic and resolving cysteines, respectively. Our results indicate that mitochondrial and cytosolic TXNPxs from T. cruzi are highly efficient peroxidases that reduce hydrogen peroxide and peroxynitrite, and contribute to the understanding of their role as virulence factors reported in vivo.  相似文献   

14.
Keyhole limpet hemocyanin (KLH) is widely used as an immune stimulant and hapten carrier derived from a marine mollusc Megathura crenulata. To provide details of the stability and equilibrium of KLH, different intermediate species were investigated with a series of biophysical techniques: circular dichroism, binding of hydrophobic dye, 1-anilino-8-naphthalene sulfonic acid, acrylamide-induced fluorescence quenching, thermal stability and dynamic light scattering. KLH in its native state at pH 7.4 exists in the stable didecameric form with hydrodynamic radii (R h) of 28.22 nm, which is approximately equal to a molecular mass of 8.8 ± 0.6 MDa. The experimental results demonstrated the presence of two structurally distinct species in the conformational transition of KLH under acidic conditions. One species populates at pH 2.8, characterized as decameric (4.8 ± 0.2 MDa; R h = 22.02 nm), molten globule-like state, while the other accumulates at pH 1.2 and is characterized as a tetramer (2.4 ± 0.8 MDa; R h = 16.47 nm) with more organized secondary and tertiary structures. Our experimental manipulation of the oligomeric states of KLH has provided data that correlate well with the known oligomeric forms obtained from total KLH formed in vivo and extends our understanding of multimer formation by KLH. The results are of particular interest in light of the important role of the mechanistic pathway of pH-dependent structural changes of Hc stability in the biochemical and medical applications of these respiratory proteins.  相似文献   

15.
Escherichia coli FucU (Fucose Unknown) is a dual fucose mutarotase and ribose pyranase, which shares 44% sequence identity with its human counterpart. Herein, we report the structures of E. coli FucU and mouse FucU bound to l-fucose and delineate the catalytic mechanisms underlying the interconversion between stereoisomers of fucose and ribose. E. coli FucU forms a decameric toroid with each active site formed by two adjacent subunits. While one subunit provides most of the fucose-interacting residues including a catalytic tyrosine residue, the other subunit provides a catalytic His-Asp dyad. This active-site feature is critical not only for the mutarotase activity toward l-fucose but also for the pyranase activity toward d-ribose. Structural and biochemical analyses pointed that mouse FucU assembles into four different oligomeric forms, among which the smallest homodimeric form is most abundant and would be the predominant species under physiological conditions. This homodimer has two fucose-binding sites that are devoid of the His-Asp dyad and catalytically inactive, indicating that the mutarotase and the pyranase activities appear dispensable in vertebrates. The defective assembly of the mouse FucU homodimer into the decameric form is due to an insertion of two residues at the N-terminal extreme, which is a common aspect of all the known vertebrate FucU proteins. Therefore, vertebrate FucU appears to serve for as yet unknown function through the quaternary structural alteration.  相似文献   

16.
2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous peroxidases with important roles in cellular antioxidant defense and hydrogen peroxide-mediated signaling. Post-translational modifications of conserved cysteines cause the transition from low to high molecular weight oligomers, triggering the functional change from peroxidase to molecular chaperone. However, it remains unclear how non-covalent interactions of 2-Cys Prx with metabolites modulate the quaternary structure. Here, we disclose that ATP and Mg(2+) (ATP/Mg) promote the self-polymerization of chloroplast 2-Cys Prx (polypeptide 23.5 kDa) into soluble higher order assemblies (>2 MDa) that proceed to insoluble aggregates beyond 5 mM ATP. Remarkably, the withdrawal of ATP or Mg(2+) brings soluble oligomers and insoluble aggregates back to the native conformation without compromising the associated functions. As confirmed by transmission electron microscopy, ATP/Mg drive the toroid-like decamers (diameter 13 nm) to the formation of large sphere-like particles (diameter ~30 nm). Circular dichroism studies on ATP-labeled 2-Cys Prx reveal that ATP/Mg enhance the proportion of β-sheets with the concurrent decrease in the content of α-helices. In line with this observation, the formation of insoluble aggregates is strongly prevented by 2,2,2-trifluoroethanol, a cosolvent employed to induce α-helical conformations. We further find that the response of self-polymerization to ATP/Mg departs abruptly from that of the associated peroxidase and chaperone activities when two highly conserved residues, Arg(129) and Arg(152), are mutated. Collectively, our data uncover that non-covalent interactions of ATP/Mg with 2-Cys Prx modulate dynamically the quaternary structure, thereby coupling the non-redox chemistry of cell energy with redox transformations at cysteine residues.  相似文献   

17.
Wood ZA  Poole LB  Hantgan RR  Karplus PA 《Biochemistry》2002,41(17):5493-5504
2-Cys peroxiredoxins (Prxs) are a large and diverse family of peroxidases which, in addition to their antioxidant functions, regulate cell signaling pathways, apoptosis, and differentiation. These enzymes are obligate homodimers (alpha(2)), utilizing a unique intermolecular redox-active disulfide center for the reduction of peroxides, and are known to form two oligomeric states: individual alpha(2) dimers or doughnut-shaped (alpha(2))(5) decamers. Here we characterize both the oligomerization properties and crystal structure of a bacterial 2-Cys Prx, Salmonella typhimurium AhpC. Analytical ultracentrifugation and dynamic light scattering show that AhpC's oligomeric state is redox linked, with oxidization favoring the dimeric state. The 2.5 A resolution crystal structure (R = 18.5%, R(free) = 23.9%) of oxidized, decameric AhpC reveals a metastable oligomerization intermediate, allowing us to identify a loop that adopts distinct conformations associated with decameric and dimeric states, with disulfide bond formation favoring the latter. This molecular switch contains the peroxidatic cysteine and acts to buttress the oligomerization interface in the reduced, decameric enzyme. A structurally detailed catalytic cycle incorporating these ideas and linking activity to oligomeric state is presented. Finally, on the basis of sequence comparisons, we suggest that the enzymatic and signaling activities of all 2-Cys Prxs are regulated by a redox-sensitive dimer to decamer transition.  相似文献   

18.
Cysteine glutathione peroxidases (CysGPxs) control oxidative stress levels by reducing hydroperoxides at the expense of cysteine thiol (‐SH) oxidation, and the recovery of their peroxidatic activity is generally accomplished by thioredoxin (Trx). Corynebacterium glutamicum mycothiol peroxidase (Mpx) is a member of the CysGPx family. We discovered that its recycling is controlled by both the Trx and the mycothiol (MSH) pathway. After H2O2 reduction, a sulfenic acid (‐SOH) is formed on the peroxidatic cysteine (Cys36), which then reacts with the resolving cysteine (Cys79), forming an intramolecular disulfide (S‐S), which is reduced by Trx. Alternatively, the sulfenic acid reacts with MSH and forms a mixed disulfide. Mycoredoxin 1 (Mrx1) reduces the mixed disulfide, in which Mrx1 acts in combination with MSH and mycothiol disulfide reductase as a biological relevant monothiol reducing system. Remarkably, Trx can also take over the role of Mrx1 and reduce the Mpx‐MSH mixed disulfide using a dithiol mechanism. Furthermore, Mpx is important for cellular survival under H2O2 stress, and its gene expression is clearly induced upon H2O2 challenge. These findings add a new dimension to the redox control and the functioning of CysGPxs in general.  相似文献   

19.
Protein thiol modifications visualized in vivo   总被引:5,自引:2,他引:3       下载免费PDF全文
Thiol-disulfide interconversions play a crucial role in the chemistry of biological systems. They participate in the major systems that control the cellular redox potential and prevent oxidative damage. In addition, thiol-disulfide exchange reactions serve as molecular switches in a growing number of redox-regulated proteins. We developed a differential thiol-trapping technique combined with two-dimensional gel analysis, which in combination with genetic studies, allowed us to obtain a snapshot of the in vivo thiol status of cellular proteins. We determined the redox potential of protein thiols in vivo, identified and dissected the in vivo substrate proteins of the major cellular thiol-disulfide oxidoreductases, and discovered proteins that undergo thiol modifications during oxidative stress. Under normal growth conditions most cytosolic proteins had reduced cysteines, confirming existing dogmas. Among the few partly oxidized cytosolic proteins that we detected were proteins that are known to form disulfide bond intermediates transiently during their catalytic cycle (e.g., dihydrolipoyl transacetylase and lipoamide dehydrogenase). Most proteins with highly oxidized thiols were periplasmic proteins and were found to be in vivo substrates of the disulfide-bond-forming protein DsbA. We discovered a substantial number of redox-sensitive cytoplasmic proteins, whose thiol groups were significantly oxidized in strains lacking thioredoxin A. These included detoxifying enzymes as well as many metabolic enzymes with active-site cysteines that were not known to be substrates for thioredoxin. H2O2-induced oxidative stress resulted in the specific oxidation of thiols of proteins involved in detoxification of H2O2 and of enzymes of cofactor and amino acid biosynthesis pathways such as thiolperoxidase, GTP-cyclohydrolase I, and the cobalamin-independent methionine synthase MetE. Remarkably, a number of these proteins were previously or are now shown to be redox regulated.  相似文献   

20.
Peroxiredoxin 2, a typical 2-Cys peroxiredoxin, is the third most abundant protein in erythrocytes. It is understood that the physiologically functional state of peroxiredoxin 2 is the monomer, and that its role in scavenging low levels of H(2)O(2) results in the formation of disulfide-linked dimers, which are reversibly reduced to monomers by the thioredoxin-thioredoxin reductase system. Additionally, peroxiredoxins are highly susceptible to sulfinic acid formation through reactions with various peroxides. This overoxidized form, which is thought to convert peroxiredoxins into molecular chaperones and to be accompanied by a transition to polymeric forms, can be reversed by sulfiredoxins. However, physiological conformational changes and the antioxidant role of erythrocyte peroxiredoxin 2 are still unclear because there is low sulfiredoxin and thioredoxin-thioredoxin reductase activity in erythrocytes. In this study, we examined the structural and redox states of peroxiredoxin 2 in fresh hemolysates and estimated the activities of native and overoxidized peroxiredoxin 2 purified from red blood cells to clear the physiological roles of peroxiredoxin 2 in erythrocyte. Our findings demonstrate that native peroxiredoxin 2 exists as high molecular weight (>160 kDa) oligomers and that decamers or higher order molecular weight oligomers (260-460 kDa) have peroxidase activity. We further showed that peroxiredoxin 2 oligomers, which were predominantly composed of monomers in the reduced form, exert a chaperone activity equal to that of overoxidized peroxiredoxin 2 polymers. These results provide the novel insight that redox-active peroxiredoxin 2 functions in human red blood cells as high molecular weight oligomers that possess peroxidase and chaperone activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号