首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylmercury (MeHg) is the most toxic form of mercury which is bioaccumulated in the aquatic food chain. It has been shown that one of the main targets of MeHg toxicity is the brain, but there is little knowledge of the molecular mechanisms of its toxic effects. In this work we used a proteomics analysis to determine the changes in the brain proteome of juvenile beluga (Huso huso) exposed to dietary MeHg. The juvenile beluga were fed the diet containing 0.8 ppm MeHg for 70 days. Proteins of the brain tissue were analyzed using two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry. We found eight proteins with significant altered expression level in the fish brain exposed to MeHg. These proteins are involved in different cell functions including cell metabolism, protein folding, cell division, and signal transduction. Our results support the idea that MeHg exerts its toxicity through oxidative stress induction and apoptotic effects. They also suggest that chronic MeHg exposure would induce an important metabolic deficiency in the brain. These findings provide basic information to understand possible mechanisms of MeHg toxicity in aquatic ecosystems.  相似文献   

2.
Farina M  Rocha JB  Aschner M 《Life sciences》2011,89(15-16):555-563
Neurological disorders are common, costly, and can cause enduring disability. Although mostly unknown, a few environmental toxicants are recognized causes of neurological disorders and subclinical brain dysfunction. One of the best known neurotoxins is methylmercury (MeHg), a ubiquitous environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. In the aquatic environment, MeHg is accumulated in fish, which represent a major source of human exposure. Although several episodes of MeHg poisoning have contributed to the understanding of the clinical symptoms and histological changes elicited by this neurotoxicant in humans, experimental studies have been pivotal in elucidating the molecular mechanisms that mediate MeHg-induced neurotoxicity. The objective of this mini-review is to summarize data from experimental studies on molecular mechanisms of MeHg-induced neurotoxicity. While the full picture has yet to be unmasked, in vitro approaches based on cultured cells, isolated mitochondria and tissue slices, as well as in vivo studies based mainly on the use of rodents, point to impairment in intracellular calcium homeostasis, alteration of glutamate homeostasis and oxidative stress as important events in MeHg-induced neurotoxicity. The potential relationship among these events is discussed, with particular emphasis on the neurotoxic cycle triggered by MeHg-induced excitotoxicity and oxidative stress. The particular sensitivity of the developing brain to MeHg toxicity, the critical role of selenoproteins and the potential protective role of selenocompounds are also discussed. These concepts provide the biochemical bases to the understanding of MeHg neurotoxicity, contributing to the discovery of endogenous and exogenous molecules that counteract such toxicity and provide efficacious means for ablating this vicious cycle.  相似文献   

3.
In the aquatic environment, mercury is readily methylated into its most toxic form of methylmercury. In this form, it enters the aquatic food chain and its concentrations increase in subsequent links, which decreases the quality of fish meat and poses risks to consumer health. Concentrations of methylmercury (MeHg) and total mercury (THg) were determined in the muscle tissues of 64 eel specimens measuring from 59 to 95 cm in length as functions of specimen size and weight. Risks posed to consumers by eel from different length classes were also assessed. The mean concentration of THg in all of the eel examined was 0.179 mg kg?1, but the range was from 0.028 to 0.487 mg kg?1. The mean concentration of MeHg was 0.147 mg kg?1, and the range was also wide from 0.023 to 0.454 mg kg?1. Accumulated MeHg and THg increased with eel body length. The percentage share of MeHg in THg also changed with specimen length, and there was a positive correlation between the concentrations of MeHg and THg. Risk assessment was performed based on the doses of THg and MeHg ingested with fish for several specimen length classes. Consuming the meat of eel measuring 80 cm in length increased the estimated weekly intake (EWI) of THg and MeHg twofold in comparison to that from specimens 60 cm in length and fourfold in specimens exceeding 90 cm in length. The percentage shares of the EWI in the tolerable weekly intake and the target hazard quotient coefficient also increased proportionally. Generally, concentrations of MeHg and THg in eel are below current limits and pose no risk to consumer health as long as the consumption of larger specimens is avoided.  相似文献   

4.
Pyrroloquinoline quinone (PQQ) is a novel redox cofactor and also exists in various foods. In vivo as well as in vitro experimental studies have shown that PQQ functions as an essential nutrient or antioxidant. Methylmercury (MeHg), as a highly toxic environmental pollutant, could elicit central nervous system (CNS) damage. Considering the antioxidant properties of PQQ, this study was aimed to evaluate the effect of PQQ on MeHg-induced neurotoxicity in the PC12 cells. The results showed that, after pre-treatment of PC12 cells with PQQ prior to MeHg exposure, the MeHg-induced cytotoxicity was significantly attenuated and then the percentage of apoptotic cells and the arrest of S-phase in cell cycle were correspondingly reduced. Moreover, PQQ significantly decreased the production of ROS, suppressed the lipid peroxidation and increased the antioxidant enzyme activities in PC12 cells exposed to MeHg. These observations highlighted the potential of PQQ in offering protection against MeHg-induced neuronal toxicity.  相似文献   

5.
Methylmercury (MeHg) is an extremely important environmental toxicant posing serious health risks to human health and a big source of environmental pollutant. Numerous evidence available showing a link between nervous system toxicity and MeHg exposure. Other forms of mercury are reason of metabolic toxic effects and alteration of DNA in the human body. The sources of exposure could be occupational or other environmental settings. In the present study MeHg was orally gavaged to mice, at doses of 2.5, 5, and 10 mg/kg for 4 weeks. Fasting hyperglycemia, activity of hepatic phoshphoenolpyruvate carboxykinase and glucose 6-phoshphate were reported high as compared to control group. Inflammatory markers like, tumor necrosis factor α, the actual end product of inflammatory mediators’ cascade pathway was also raised in comparison to control group. Hyperinsulinemia observed in serum showed clear understanding of mercury induced insulin resistance. Moreover, tissue damage due to increased oxidative stress markers like, hepatic lipid peroxidation, 8-deoxygunosine, reactive oxygen species, and carbonyl groups was significantly higher as compared to control group. MeHg caused a significant reduction in antioxidant markers like ferric reducing antioxidant power and total thiol molecules. The present study highlighted that activity of key enzymes involved in glucose metabolism is changed, owing to MeHg induced toxicity in the liver. Induction of similar toxic effects assumed to be stimulated by the production of high quantity free radicals.  相似文献   

6.
7.
Interest in organoselenide chemistry and biochemistry has increased in the past three decades, mainly due to their chemical and biological activities. Here, we investigated the protective effect of the organic selenium compound diphenyl diselenide (PhSe)2 (5 μmol/kg), in a mouse model of methylmercury (MeHg)-induced brain toxicity. Our group has previously demonstrated that the oral and repeated administration (21 days) of MeHg (40 mg/L) induced MeHg brain accumulation at toxic concentrations, and a pattern of severe cortical and cerebellar biochemical and behavioral. In order to assess neurotoxicity, the neurochemical parameters, namely, mitochondrial complexes I, II, II–III and IV, glutathione peroxidase (GPx) and glutathione reductase (GR) activities, the content of thiobarbituric acid-reactive substances (TBA-RS), 8-hydroxy-2′-deoxyguanosine (8-OHdG), and brain-derived neurotrophic factor (BDNF), as well as, metal deposition were investigated in mouse cerebral cortex. Cortical neurotoxicity induced by brain MeHg deposition was characterized by the reduction of complexes I, II, and IV activities, reduction of GPx and increased GR activities, increased TBA-RS and 8-OHdG content, and reduced BDNF levels. The daily treatment with (PhSe)2 was able to counteract the inhibitory effect of MeHg on mitochondrial activities, the increased oxidative stress parameters, TBA-RS and 8-OHdG levels, and the reduction of BDNF content. The observed protective (PhSe)2 effect could be linked to its antioxidant properties and/or its ability to reduce MeHg deposition in brain, which was here histochemically corroborated. Altogether, these data indicate that (PhSe)2 could be consider as a neuroprotectant compound to be tested under neurotoxicity.  相似文献   

8.
Over the years, indiscriminate usage of pesticides has resulted in situations which are not conducive for a good environment. In aquatic toxicology, fishes have been developed as established models for studying toxic responses of xenobiotics including pesticides. Pendimethalin (PD), an herbicide, is widely present in the aquatic environment, but little is known regarding its potential neurotoxicity in fish. The present study was conducted on Channa punctata Bloch exposed to sub-lethal doses of PD (0.5 and 0.8 ppb) for 96 h. The exposure resulted in alterations in epinephrine levels in the fish brain. Epinephrine levels decreased significantly in a dose dependent manner with increase in the PD exposure. A marked decrease in the activity of acetylcholinesterase along with reduction in Na+-K+-ATPase and monoamine oxidase activity was also observed. In comparison with the corresponding controls, the sub-lethal doses of PD also caused significant changes in the oxidative stress markers (lipid peroxidation and carbonyl derivatives of protein oxidative destruction levels) and antioxidant defenses (reduced glutathione levels, catalase, glutathione-s-transferase activity) in brain tissue. Our results reflect that a detailed investigation is warranted regarding the toxicity potential of PD.  相似文献   

9.
Methylmercury (MeHg) is a potent environmental pollutant, which elicits significant toxicity in humans. The central nervous system (CNS) is the primary target of toxicity, and is particularly vulnerable during development. Maternal exposure to MeHg via consumption of fish and seafood can have irreversible effects on the neurobehavioral development of children, even in the absence of symptoms in the mother. It is well documented that developmental MeHg exposure may lead to neurological alterations, including cognitive and motor dysfunction. The neurotoxic effects of MeHg on the developing brain have been extensively studied. The mechanism of toxicity, however, is not fully understood. No single process can explain the multitude of effects observed in MeHg-induced neurotoxicity. This review summarizes the most current knowledge on the effects of MeHg during nervous system development considering both, in vitro and in vivo experimental models. Considerable attention was directed towards the role of glutamate and calcium dyshomeostasis, mitochondrial dysfunction, as well as the effects of MeHg on cytoskeletal components/regulators.  相似文献   

10.
Low productivity in aquatic ecosystems is associated with reduced individual growth of fish and increased concentrations of methylmercury (MeHg) in fish and their prey. However, many stream-dwelling fish species can use terrestrially-derived food resources, potentially subsidizing growth at low-productivity sites, and, because terrestrial resources have lower MeHg concentrations than aquatic resources, preventing an increase in diet-borne MeHg accumulation. We used a large-scale field study to evaluate relationships among terrestrial subsidy use, growth, and MeHg concentrations in two stream-dwelling fish species across an in-stream productivity gradient. We sampled young-of-the-year brook trout (Salvelinus fontinalis) and Atlantic salmon (Salmo salar), potential competitors with similar foraging habits, from 20 study sites in streams in New Hampshire and Massachusetts that encompassed a wide range of aquatic prey biomass. Stable isotope analysis showed that brook trout used more terrestrial resources than Atlantic salmon. Over their first growing season, Atlantic salmon tended to grow larger than brook trout at sites with high aquatic prey biomass, but brook grew two-fold larger than Atlantic salmon at sites with low aquatic prey biomass. The MeHg concentrations of brook trout and Atlantic salmon were similar at sites with high aquatic prey biomass and the MeHg concentrations of both species increased at sites with low prey biomass and high MeHg in aquatic prey. However, brook trout had three-fold lower MeHg concentrations than Atlantic salmon at low-productivity, high-MeHg sites. These results suggest that differential use of terrestrial resource subsidies reversed the growth asymmetry between potential competitors across a productivity gradient and, for one species, moderated the effect of low in-stream productivity on MeHg accumulation.  相似文献   

11.
Methylmercury is a neurotoxicant that is found in fish and rice. MeHg's toxicity is mediated by blockage of -SH and -SeH groups of proteins. However, the identification of MeHg's targets is elusive. Here we focus on the chemistry of MeHg in the abiotic and biotic environment. The toxicological chemistry of MeHg is complex in metazoans, but at the atomic level it can be explained by exchange reactions of MeHg bound to –S(e)H with another free –S(e)H group (R1S(e)-HgMe + R2-S(e)H ↔ R1S(e)H + R2-S(e)-HgMe). This reaction was first studied by professor Rabenstein and here it is referred as the “Rabenstein's Reaction”. The absorption, distribution, and excretion of MeHg in the environment and in the body of animals will be dictated by Rabenstein's reactions. The affinity of MeHg by thiol and selenol groups and the exchange of MeHg by Rabenstein's Reaction (which is a diffusion controlled reaction) dictates MeHg's neurotoxicity. However, it is important to emphasize that the MeHg exchange reaction velocity with different types of thiol- and selenol-containing proteins will also depend on protein-specific structural and thermodynamical factors. New experimental approaches and detailed studies about the Rabenstein's reaction between MeHg with low molecular mass thiol (LMM-SH) molecules (cysteine, GSH, acetyl-CoA, lipoate, homocysteine) with abundant high molecular mass thiol (HMM-SH) molecules (albumin, hemoglobin) and HMM-SeH (GPxs, Selenoprotein P, TrxR1-3) are needed. The study of MeHg migration from –S(e)-Hg- bonds to free –S(e)H groups (Rabenstein's Reaction) in pure chemical systems and neural cells (with special emphasis to the LMM-SH and HMM-S(e)H molecules cited above) will be critical to developing realistic constants to be used in silico models that will predict the distribution of MeHg in humans.  相似文献   

12.
The potential toxicity of mercury (Hg) content in fish has been widely evaluated by the scientific community, with Methylmercury (MeHg) being the only legislated species (1 mg kg−1, maximum concentration allowed in predatory fish). On the other hand, selenium (Se) is recognized to decrease its toxicity when both elements are simultaneously administrated. In the present paper, the total content of Se and Hg and their species in fish of high consumption, such as tuna, swordfish, and sardine, have been evaluated. The percentage of MeHg is higher than 90% of total Hg content. The results show that, for all of them, the Se/Hg ratio is significantly higher than one, being the maximum ratio for sardine. As only studying the bioaccessible fraction the extent of a toxic effect caused by an element can be predicted, the bioaccessibility of both analytes through an in vitro digestion method has been carried out. The results show that MeHg in all fishes is very low bioaccessible in both gastric and intestinal digestion. Because the MeHg bioaccessible fraction might be correlated to the Se content, the potential toxicity cannot be only related to the total Hg content but also to Se/Hg ratio.  相似文献   

13.
Methyl mercury (MeHg) is a developmental neurotoxin that causes irreversible cognitive damage in offspring of gestationally exposed mothers. Currently, no preventive drugs are established against MeHg developmental neurotoxicity. The neuroprotective effect of gestational administration of a flavanoid against in utero toxicity of MeHg is not explored much. Hence, the present study validated the effect of a bioactive flavanoid, fisetin, on MeHg developmental neurotoxicity outcomes in rat offspring at postnatal weaning age. Pregnant Wistar rats were simultaneously given MeHg (1.5 mg/kg b.w.) and two doses of fisetin (10 and 50 mg/kg b.w. in two separate groups) orally from gestational day (GD) 5 till parturition. Accordingly, after parturition, on postnatal day (PND) 24, weaning F1 generation rats were studied for motor and cognitive behavioural changes. Biochemical and histopathological changes were also studied in the cerebral cortex, cerebellum and hippocampus on PND 25. Administration of fisetin during pregnancy prevented behavioural impairment due to transplacental MeHg exposure in weaning rats. Fisetin decreased the levels of oxidative stress markers, increased enzymatic and non-enzymatic antioxidant levels and increased the activity of membrane-bound ATPases and cholinergic function in F1 generation rats. In light microscopic studies, fisetin treatment protected the specific offspring brain regions from significant morphological aberrations. Between the two doses of fisetin studied, 10 mg/kg b.w. was found to be more satisfactory and effective than 50 mg/kg b.w. The present study shows that intake of fisetin during pregnancy in rats ameliorated in utero MeHg exposure-induced neurotoxicity outcomes in postnatal weaning F1 generation rats.  相似文献   

14.
As a highly toxic environmental pollutant, methylmercury (MeHg) can cause neurotoxicity in animals and humans. Considering the antioxidant property of grape seed proanthocyanidin extracts (GSPE), this study was aimed to evaluate the effect of GSPE on MeHg-induced neurotoxicity in rats. Rats were exposed to MeHg by intraperitoneal injection (4, 12 μmol/kg, respectively) and GSPE was administered by gavage (250 mg/kg) 2 h later. After a 4-week treatment, phosphate-activated glutaminase, glutamine synthetase, glutathione peroxidase and superoxide dismutase activities, glutamate, glutamine, malondialdehyde and glutathione contents in cerebral cortex were measured. Reactive oxygen species (ROS) and apoptosis were also estimated in cells. The results showed that the MeHg-induced neurotoxicity was significantly attenuated. GSPE significantly decreased the production of ROS, counteracted oxidative damage and increased the antioxidants and antioxidant enzymes activities in rats prior to MeHg exposure. Moreover, the effects on the rate of apoptotic cells and the disturbance of glutamate homeostasis were correspondingly modulated. These observations highlighted the potential of GSPE in offering protection against MeHg-induced neurotoxicity.  相似文献   

15.
Methylmercury (MeHg) is a persistent environmental toxin present in seafood that can compromise the developing nervous system in humans. The effects of MeHg toxicity varies among individuals, despite similar levels of exposure, indicating that genetic differences contribute to MeHg susceptibility. To examine how genetic variation impacts MeHg tolerance, we assessed developmental tolerance to MeHg using the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP). We found significant genetic variation in the effects of MeHg on development, measured by eclosion rate, giving a broad sense heritability of 0.86. To investigate the influence of dietary factors, we measured MeHg toxicity with caffeine supplementation in the DGRP lines. We found that caffeine counteracts the deleterious effects of MeHg in the majority of lines, and there is significant genetic variance in the magnitude of this effect, with a broad sense heritability of 0.80. We performed genome-wide association (GWA) analysis for both traits, and identified candidate genes that fall into several gene ontology categories, with enrichment for genes involved in muscle and neuromuscular development. Overexpression of glutamate-cysteine ligase, a MeHg protective enzyme, in a muscle-specific manner leads to a robust rescue of eclosion of flies reared on MeHg food. Conversely, mutations in kirre, a pivotal myogenic gene identified in our GWA analyses, modulate tolerance to MeHg during development in accordance with kirre expression levels. Finally, we observe disruptions of indirect flight muscle morphogenesis in MeHg-exposed pupae. Since the pathways for muscle development are evolutionarily conserved, it is likely that the effects of MeHg observed in Drosophila can be generalized across phyla, implicating muscle as an additional hitherto unrecognized target for MeHg toxicity. Furthermore, our observations that caffeine can ameliorate the toxic effects of MeHg show that nutritional factors and dietary manipulations may offer protection against the deleterious effects of MeHg exposure.  相似文献   

16.
We report here some results of a long-term (19 month) study with cats fed methylmercury (MeHg) in nutritionally balanced diets based on fish. By using either freshwater pike (low in Se) or canned tuna (high in Se) as the major protein source, basal diets with low levels of MeHg were prepared having different Se content, all Se being of natural origin. The basal diets produced no signs of toxicity or pathological changes over the l9-month period. In cats fed basal diets spiked with medium or high levels of MeHg, evidence for delayed onset of toxic effects from the added MeHg was observed with the tuna diets compared to pike diets. In brain, muscle, and blood, the activity of GSH peroxidase, a selenoenzyme, was decreased by Hg. In liver, substantial accumulation of Hg with Se occured (molar Hg/Se ratio approximately 1.4 to 1.8) but GSH peroxidase activity was unaffected. We suggest that the coaccumulation of Hg and Se in liver measures the extent to which MeHg has been metabolically transformed by metabolism to Hg++, and inactivated by deposition as a Hg/Se complex of low bioavailability. The accumulation of Hg and Se in liver was much greater in cats fed tuna compared to pike, out of proportion to the relatively small differences in Hg and Se content of the tuna and pike basal diets. Some mechanisms are described by which selenium, vitamin E, and other factors might facilitate MeHg breakdown to inorganic Hg during long term low level exposure to MeHg.  相似文献   

17.
Copper is used in treatment mixtures to control fungal diseases in vineyards plants. High concentrations of copper are inducing antioxidant stress in some aquatic ecosystems, and potential bioaccumulation in aquatic organisms has prompted the demand for alternative use of low toxic molecules in culture treatments. Chitosan is a biomolecule with antifungal and heavy metal ion chelating properties that may be used as a biopesticide. In this study, we investigate the potential toxicity of chitosan for aquatic animal health, alone or associated with copper. Carp (Cyprinus carpio L.) were exposed to different chitosan concentrations (from 37.5 to 375 mg/l) or to two sublethal copper concentrations (0.1 and 0.25 mg/l) or to chitosan and copper (75 and 0.1 mg/l, respectively). Antioxidant enzyme activities were enhanced in chitosan treated fish after 4 days and depressed after 8 days. This phenomenon indicated a non-negligible toxicity of chitosan in fish physiology. However, the mixture copper-chitosan seems to induce a lower degree of oxidative stress than each fungicide alone. These observations show that chitosan is a potentially noxious molecule for some fish and any industrial and/or agricultural uses of this compound will have to address this problem.  相似文献   

18.
Mercury compounds exert toxic effects via interaction with many vital enzymes involved in antioxidant regulation, such as selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Selenium supplementation can reactivate the mercury-inhibited TrxR and recover the cell viability in vitro. To gain an insight on how selenium supplementation affects mercury toxicity in vertebrates, we investigated the effects of selenium on the mercury accumulation and TrxR and GPx activities in a fish model. Juvenile zebra-seabreams were exposed either to methylmercury (MeHg) or inorganic mercury (Hg(2+)) in the presence or absence of sodium selenite (Se) for 28 days followed by 14 days of depuration. Mercury accumulation was found to be 10-fold higher under MeHg exposure than under Hg(2+) exposure. Selenium supplementation caused a half decrease of the accumulation of MeHg but did not influence Hg(2+) accumulation. Exposure to both mercurials led to a decrease of the activity of TrxR (<50% of control) in all organs. Se supplementation coincident with Hg(2+) exposure protected the thioredoxin system in fish liver. However, supplementation of Se during the depuration phase had no effects. The activity of GPx was only affected in the brain of fishes upon the exposure to MeHg and coexposure to MeHg and Se. Selenium supplementation has a limited capacity to prevent mercury effects in brain and kidney. These results demonstrate that Se supplementation plays a protective role in a tissue-specific manner and also highlight the importance of TrxR as a main target for mercurials in vivo.  相似文献   

19.
Mangiferin (MGN), a C-glucosylxanthone was investigated for its ability to protect against methylmercury (MeHg) induced neurotoxicity by employing IMR-32 (human neuroblastoma) cell line. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and clonogenic cell survival assays confirmed the efficacy of MGN supplementation in attenuating MeHg-induced cytotoxicity. Pre-treatment with MGN significantly (p < 0.01) inhibited MeHg-induced DNA damage (micronuclei, olive tail moment and % tail DNA) thereby demonstrating MGN’s antigenotoxic potential. Also, pre-treatment with MGN significantly reduced MeHg-induced oxidative stress, intra-cellular Ca2+ influx and inhibited depolarization of mitochondrial membrane. MGN pre-treated cells demonstrated a significant (p < 0.05) increase in the GSH and GST levels followed by a significant (p < 0.05) decrease in malondialdehyde (MDA) formation. In addition, inhibition of MeHg induced apoptotic cell death by MGN was demonstrated by microscopic, Annexin-V FITC and DNA fragmentation assays and further confirmed by western blot analysis. The present findings indicated the protective effect of MGN against MeHg induced toxicity, which may be attributed to its anti-genotoxic, anti-apoptotic and anti-lipid peroxidative potential plausibly because of its free radical scavenging ability, which reduced the oxidative stress and in turn facilitated the down-regulation of mitochondrial apoptotic signalling pathways.  相似文献   

20.
BackgroundMethylmercury (MeHg) is a ubiquitous environmental pollutant, with the nervous system as its main target; however, the neurotoxic mechanisms of MeHg have not been fully elucidated, and no effective therapeutic and preventive drugs are available to mitigate its toxicity. Recent evidence suggests a reduction in the toxicity of MeHg by natural plant extracts.Scope of reviewThe aim of this review is to provide an overview of effective natural plant extracts and their putative biochemical mechanisms for blocking gut absorption, enhancing excretion and minimizing toxic effects of MeHg.Major conclusionsNatural plant extracts may act as potential therapeutics in response to MeHg exposure. The roles plant components play in the reduction of MeHg toxicity may be multifaceted including: (1) attenuating neurobehavioral deficits; (2) facilitating demethylation of MeHg to inorganic mercury; (3) reducing MeHg absorption from the gastrointestinal tract; (4) redistributing MeHg to less sensitive target organs and tissues; (5) promoting enterohepatic circulation of MeHg to increase its biliary and intestinal excretion; (6) restoring intracellular redox status.General significanceThe possible protective effects of natural plant components contribute to the understanding of mechanisms of MeHg toxicity and to the development of novel therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号