首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processes that control aging remain poorly understood. We have exploited mutants in the nematode, Caenorhabditis elegans, that compromise mitochondrial function and scavenging of reactive oxygen species (ROS) to understand their relation to lifespan. We discovered unanticipated roles and interactions of the mitochondrial superoxide dismutases (mtSODs): SOD‐2 and SOD‐3. Both SODs localize to mitochondrial supercomplex I:III:IV. Loss of SOD‐2 specifically (i) decreases the activities of complexes I and II, complexes III and IV remain normal; (ii) increases the lifespan of animals with a complex I defect, but not the lifespan of animals with a complex II defect, and kills an animal with a complex III defect; (iii) induces a presumed pro‐inflammatory response. Knockdown of a molecule that may be a pro‐inflammatory mediator very markedly extends lifespan and health of certain mitochondrial mutants. The relationship between the electron transport chain, ROS, and lifespan is complex, and defects in mitochondrial function have specific interactions with ROS scavenging mechanisms. We conclude that mtSODs are embedded within the supercomplex I:III:IV and stabilize or locally protect it from reactive oxygen species (ROS) damage. The results call for a change in the usual paradigm for the interaction of electron transport chain function, ROS release, scavenging, and compensatory responses.  相似文献   

2.
Superoxide dismutases (SODs) are widely distributed in eukaryotic and prokaryotic species and are responsible for O(2)(.-) scavenging and dismutation to H(2)O(2) and O(2). Mutations in the cytoplasmic (Sod1p) or mitochondrial (Sod2p) form of SODs result in aging, neurodegenerative diseases, and carcinogenesis. Diminished activity of SODs leads to reduced activity of DNA repair pathways, and overexpression of SODs in cells defective for DNA repair increases their level of chromatin damage. Unfortunately, little is understood regarding the interplay between SODs and DNA repair proteins and their role in protecting the genome from oxidative damage. To elucidate the association between yeast SODs and DNA repair mechanisms, a systems biology study was performed employing algorithms of literature data mining and the construction of physical protein-protein interactions from large yeast protein databases. The results obtained in this work allow us to draw two models suggesting that yeast SODs act as O(2)(.-) sensors under conditions of redox imbalance, activating and controlling specific DNA repair mechanisms (e.g., recombinational and excision repair pathways), chromatin remodeling, and synthesis of dNTPs.  相似文献   

3.
The protective role of superoxide dismutases (SODs) against ionizing radiation, which generates reactive oxygen species (ROS) harmful to cellular function, was investigated in the wild-type and in mutant yeast strains lacking cytosolic CuZnSOD (sod1Delta), mitochondrial MnSOD (sod2Delta), or both SODs (sod1Deltasod2Delta). Upon exposure to ionizing radiation, there was a distinct difference between these strains in regard to viability and the level of protein carbonyl content, which is the indicative marker of oxidative damage to protein, intracellular H2O2 level, as well as lipid peroxidation. When the oxidation of 2',7'-dichlorofluorescin was used to examine the hydroperoxide production in yeast cells, the SOD mutants showed a higher degree of increase in fluorescence upon exposure to ionizing radiation as compared to wild-type cells. These results indicated that mutants deleted for SOD genes were more sensitive to ionizing radiation than isogenic wild-type cells. Induction and inactivation of other antioxidant enzymes, such as catalase, glucose 6-phosphate dehydrogenase, and glutathione reductase, were observed after their exposure to ionizing radiation both in wild-type and in mutant cells. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than did mutant cells. These results suggest that both CuZnSOD and MnSOD may play a central role in protecting cells against ionizing radiation through the removal of ROS, as well as in the protection of antioxidant enzymes.  相似文献   

4.
The syntheses of copper, zinc-superoxide dismutase (Cu,Zn-SOD) and manganese-superoxide dismutase (Mn-SOD) in vitro were studied. Both Cu,Zn-SOD and Mn-SOD were preferentially synthesized by free polysomes. Mn-SOD was synthesized as a large precursor (26,000 daltons), which was processed to the mature size (22,500 daltons) by in vitro incubation with a rat liver mitochondrial fraction. On the other hand, Cu,Zn-SOD was synthesized as the mature size product. It was shown that Cu,Zn-SOD and Mn-SOD synthesized in vitro represented 0.018% and 0.016% of the total translation products of free polysomes, respectively.  相似文献   

5.
The cytosolic and mitochondrial forms of Superoxide dismutase have been purified to homogeneity from an inbred line of maize. The cytosolic isozymes SOD-2 and SOD-4 are dimers with a molecular weight of 31,000–33,000, composed of apparently equal subunits, and are remarkably similar with respect to their ultraviolet absorption spectra, antigenic specificity, and sensitivity to cyanide, azide, hydrogen peroxide, and diethyldithiocarbamate. These and other data suggest that both isozymes belong to the family of copper and zinc-containing Superoxide dismutases. The mitochondrial isozyme, SOD-3, is unlike the cytosolic isozymes in every parameter studied and appears to be similar to the mitochondrial manganese-containing Superoxide dismutases purified from other eukaryotic organisms. It is a tetramer with a molecular weight of approximately 90,000, composed of apparently equal subunits, and is insensitive to both 1 mm cyanide and hydrogen peroxide.  相似文献   

6.
Deficiencies in superoxide dismutases (Cu,ZnSOD or Mn-SOD) strongly shorten the life span of yeast cells. The effects of these deficiencies are additive. In contrast, deficiencies in catalases do not influence life span. Our results confirm that free radical processes may be involved in aging.  相似文献   

7.
We have recently reported the first complete amino acid sequence of an iron-containing superoxide dismutase. The iron enzyme is thought to be closely homologous to the manganese-containing superoxide dismutases. The availability of complete amino acid sequence information for four manganese superoxide dismutases and the crystal structures for two iron and two manganese superoxide dismutases prompted us to investigate the degree of homology between the two proteins at various levels. We report that it is not possible to clearly distinguish the two proteins on the basis of their secondary or tertiary structures. It would appear that a small number of single site substitutions are responsible for conferring distinguishing properties between the two proteins. Substitution of glycine 77 and glutamine 154 by a glutamine and an alanine respectively in Photobacterium leiognathi iron superoxide dismutase may distinguish the kinetic and other particular properties of this protein from the manganese protein (and other iron superoxide dismutases). Furthermore the primary structure of both the iron and manganese proteins does not appear to have any homology with any other known amino acid sequence.  相似文献   

8.
The Mn superoxide dismutase from Escherichia coli has been obtained in three crystal forms: (I) from 68% saturated (NH4)2SO4, space group P222 or P2221, a = 47 A?, b = 103 A?, c = 47.5 A?, with one subunit per asymmetric unit; (II) from 50% polyethylene glycol 6000, space group C2221 (with approx. P41212 symmetry), a = 101 A?, b = 108 A?, c = 180 A?, with four subunits (2 molecules) per asymmetric unit; (III) from 52% polyethylene glycol with a different method of preparing the enzyme solution, space group P21212, a = 47 A?, b = 51 A?, c = 188 A?, with two subunits per asymmetric unit.The yeast mitochondrial Mn superoxide dismutase has yielded the same crystal form both from 30% 2-methyl-2,4-pentane diol and from 23% polyethylene glycol 6000: space group P212121, a = 63 A?, b = 115 A?, c = 125 A?, with four subunits (one molecule) per asymmetric unit.A full X-ray crystallographic study of at least one of these enzymes is planned.  相似文献   

9.
Biosynthesis and regulation of superoxide dismutases   总被引:16,自引:0,他引:16  
The past two decades have witnessed an explosion in our understanding of oxygen toxicity. The discovery of superoxide dismutases (SODs) (EC.1.15.1.1), which specifically catalyze the dismutation of superoxide radicals (O2) to hydrogen peroxide (H2O2) and oxygen, has indicated that O2 is a normal and common byproduct of oxygen metabolism. There is an increasing evidence to support the conclusion that superoxide radicals play a major role in cellular injury, mutagenesis, and many diseases. In all cases SODs have been shown to protect the cells against these deleterious effects. Recent advances in molecular biology and the isolation of different SOD genes and SOD c-DNAs have been useful in proving beyond doubt the physiological function of the enzyme. The biosynthesis of SODs, in most biological systems, is under rigorous controls. In general, exposure to increased pO2, increased intracellular fluxes of O2, metal ions perturbation, and exposures to several environmental oxidants have been shown to influence the rate of SOD synthesis in both prokaryotic and eukaryotic organisms. Recent developments in the mechanism of regulation of the manganese-containing superoxide dismutase of Escherichia coli will certainly open new research avenues to better understand the regulation of SODs in other organisms.  相似文献   

10.
11.
We have analyzed the activity of antioxidant and tricarboxylic acid cycle enzymes as well as protein carbonyl content in budding yeast Saccharomyces cerevisiae cells grown in medium with glycerol using wild-strain cells and defective mutants in superoxide dismutases (SODs). The present report demonstrates that the activity of catalase, glucose-6-phosphate dehydrogenase, glutathione reductase, isocitrate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase, on average, was lower in the strains lacking SODs than that in the parental strain. On the other hand, under conditions used in this study, the content of carbonyl groups in proteins was relatively higher in the wild type as compared with SOD-defective strains. It may be suggested that in vivo SOD can demonstrate protective as well as pro-oxidant properties, and the final result depends on particular conditions.  相似文献   

12.
An extensive search resulted in the identification of pamoic acid as an inhibitor of superoxide dismutases. Pamoic acid appeared to rapidly and reversibly inhibit all types of superoxide dismutases and did so in both the cytochrome c reduction and in the dianisidine photooxidation assays, used to measure this activity. It could nevertheless be shown that pamoic acid did not at all inhibit superoxide dismutase but rather diminished the sensitivity of the assays. The mechanism proposed to account for this effect involved oxidation of pamoate, by O2?, to yield a pamoate radical which can then reduce cytochrome c or oxidize pyrogallol. Pamoate thus competes with superoxide dismutase for the available O2?, without affecting the observable effects of that O2? upon cytochrome c or upon pyrogallol. It consequently makes these assays less responsive to superoxide dismutase, while appearing to be without effect in the absence of superoxide dismutase. Several of the predicted consequences of this proposal were affirmed. Other workers, interested in finding inhibitors for superoxide dismutases, are hereby forwarned of this subtle snare.  相似文献   

13.
14.
We have previously reported the purification of polypeptides from soybean which are potent inhibitors of superoxide production by human neutrophils. We now report that neither oxygen uptake nor hydrogen peroxide production by stimulated neutrophils is affected by these inhibitors. Furthermore, the E-1 and E-3 polypeptides inhibit ferricytochrome c reduction by a xanthine oxidase superoxide generation system. The inhibitory activity of E-3 in the model system is blocked by 1 mM KCN while E-1 is only slightly cyanide sensitive. Atomic absorption analysis of E-1 and E-3 polypeptides reveal copper in the latter and manganese in the former. Thus, E-3 is a copper-containing superoxide dismutase while E-1 appears to be a manganese-containing superoxide dismutase.  相似文献   

15.
Predicted secondary structures and optical properties of four manganese-containing superoxide dismutases isolated from Saccharomyces cerevisiae, Bacillus stearothermophilus, Escherichia coli and human liver are compared. The structural predictions are further compared with the known crystal structure of the manganese-containing superoxide dismutase from Thermus thermophilus HB8. The secondary structures of the four dismutases are predicted by the methods of Chou and Fasman (Adv. Enzymol. 47 (1978) 45-148), Garnier et al. (J. Mol. Biol. 120 (1978) 97-120) and Lim (J. Mol. Biol. 88 (1974) 873-894). The three models show satisfactory agreement and predict that the enzymes have a mixed alpha-helix and beta-sheet structure, and that they have homologous structures. The former conclusion is also reached from an analysis of the hydrophobic character of the amino-acid sequences of the four proteins according to Kyte and Doolittle (J. Mol. Biol. 157 (1982) 105-132). The calculation of the secondary structure based on the 185-260 nm circular dichroism spectrum of manganese-containing superoxide dismutase from S. cerevisiae reveals that the enzyme consists of 61% alpha-helix, 13% beta-sheet, 11% turn and 8% random coil conformations, which is in good accordance with the prediction based on the amino-acid sequences. Comparison of the 400-700 nm circular dichroism spectra of manganese-containing superoxide dismutase from S. cerevisiae, E. coli and T. thermophilus demonstrates that manganese atoms have homologous coordination in the three enzymes. This investigation based on primary structures and spectral properties indicates that the four dismutases have the same overall structure. Since the structural predictions are in good agreement with the structure found for the manganese-containing superoxide dismutase from T. thermophilus HB8, it can be concluded that this structure is representative for the four enzymes and probably for manganese-containing superoxide dismutases in general.  相似文献   

16.
Human manganese superoxide dismutase (MnSOD) is characterized by a product inhibition stronger than that observed in bacterial forms of MnSOD. Previous studies show that the conserved, active-site residue Tyr34 mediates product inhibition; however, the protein environment of Tyr34 is different in human and Escherichia coli MnSOD. We have prepared two site-specific mutants of human MnSOD with replacements of Phe66 with Ala and Leu (F66A and F66L, respectively), altering the surroundings of Tyr34. Pulse radiolysis was used to generate superoxide, and measurements of catalysis were taken in single-turnover experiments by observing the visible absorbance of species of MnSOD and under catalytic conditions observing the absorbance of superoxide. The mutation of Phe66 to Leu resulted in a mutant of human MnSOD with weakened product inhibition resembling that of E. coli MnSOD. Moreover, the mechanism of this weakened product inhibition was similar to that in E. coli MnSOD, specifically a decrease in the rate constant for the oxidative addition of superoxide to Mn2+MnSOD leading to the formation of the peroxide-inhibited enzyme. In addition, the crystal structures of both mutants have been determined and compared to those of wild-type human and E. coli MnSOD. The crystallographic data suggest that the solvent structure and its mobility as well as side chain conformations may affect the extent of product inhibition. These data emphasize the role of residue 66 in catalysis and inhibition and provide a structural explanation for differences in catalytic properties between human and certain bacterial forms of MnSOD.  相似文献   

17.
Frataxin is a small conserved mitochondrial protein; in humans, mutations affecting frataxin expression or function result in Friedreich's ataxia. Much of the current understanding of frataxin function comes from informative studies with yeast models, but considerable debates remain with regard to the primary functions of this ubiquitous protein. We exploit the tractable reverse genetics of Trypanosoma brucei in order to specifically consider the importance of frataxin in an early branching lineage. Using inducible RNAi, we show that frataxin is essential in T. brucei and that its loss results in reduced activity of the marker Fe–S cluster-containing enzyme aconitase in both the mitochondrion and cytosol. Activities of mitochondrial succinate dehydrogenase and fumarase also decreased, but the concentration of reactive oxygen species increased. Trypanosomes lacking frataxin also exhibited a low mitochondrial membrane potential and reduced oxygen consumption. Crucially, however, iron did not accumulate in frataxin-depleted mitochondria, and as T. brucei frataxin does not form large complexes, it suggests that it plays no role in iron storage. Interestingly, RNAi phenotypes were ameliorated by expression of frataxin homologues from hydrogenosomes of another divergent protist Trichomonas vaginalis . Collectively, the data suggest trypanosome frataxin functions primarily only in Fe–S cluster biogenesis and protection from reactive oxygen species.  相似文献   

18.
The specific interaction of yeast citrate synthase with yeast mitochondrial inner membranes was characterized with respect to saturability of binding, pH optimum, effect of ionic strength, temperature response, and inhibition by oxalacetate. The binding ability of the inner membranes is inhibited by proteolysis and heat treatment, which implies that the membrane component(s) responsible for binding is a protein. A protein fraction from inner membranes when added to liposomes will bind citrate synthase. In addition, the binding of yeast fumarase, mitochondrial malate dehydrogenase, and cytosolic malate dehydrogenase to yeast inner membranes was examined. For these studies the yeast mitochondrial matrix enzymes, citrate synthase (from two types of yeast), malate dehydrogenase, and fumarase, as well as cytosolic malate dehydrogenase, were purified using rapid new techniques.  相似文献   

19.
We have identified two distinct pools of superoxide dismutase in fractions of human peripheral neutrophils obtained by the isopycnic fractionation of homogenates of the latter with linear sucrose gradients. Superoxide dismutase activity, observed with polyacrylamide gels impregnated with Nitro Blue Tetrazolium, was present in: (1) the mitochondrial fraction [density (rho) 1.169g/ml], containing the high-molecular-weight KCN-resistant enzyme, and (2) the cytoplasm fraction, containing the low-molecular-weight KCN-sensitive enzyme. Superoxide dismutase activity, observed with a quantitative assay involving cytochrome c, was present in: (1) the mitochondria, (2) the cytoplasm, and (3) the azurophil-granule fractions (rho=1.206 and 1.222g/ml). No substantial enzyme activity was observed in specific-granule fractions (rho=1.187g/ml) or in the membranous fraction (rho=1.136g/ml) in either assay. The apparent superoxide dismutase activity observed in the azurophil granules with the cytochrome c assay was attributable not to true superoxide dismutase but to myeloperoxidase, an enzyme found solely in the azurophil granules. In the presence of H(2)O(2), human neutrophil myeloperoxidase oxidized ferrocytochrome c. Thus, in the cytochrome c assay for superoxide dismutase, the oxidation of ferrocytochrome c by myeloperoxidase mimicked the inhibition of reduction of ferricytochrome c by superoxide dismutase. When myeloperoxidase was removed from azurophilgranule fractions by specific immuno-affinity chromatography, both myeloperoxidase and apparent superoxide dismutase activities were removed. It is concluded that there is no detectable superoxide dismutase in either the azurophil or specific granules of human neutrophils. Mitochondrial superoxide dismutase, 15% of the total dismutase activity of the cells, occurred only in fractions of density 1.160g/ml, where isocitrate dehydrogenase and cytochrome oxidase were also observed.  相似文献   

20.
A brief overview of the family of superoxide dismutase (SOD) enzymes and their biomedical significance is presented. Methodology for the purification and electrophoretic analysis of superoxide dismutases is reviewed and discussed, with emphasis on the specific problems raised by the separation of individual superoxide dismutase isoenzymes. Purification methods and their performance, as reported in the literature, are summarised in table form. Generally used methods for measuring SOD activity in vitro and SOD visualisation after electrophoresis are outlined, particularly those relevant to the monitoring of progress of SOD purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号