首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously discussed the action of 1 α,25-(OH)2D3, (24R) 24,25-(OH)2 D3 and (25S) 25,26-(OH)2D3 on parathyrin secretion by isolated rat parathyroid cells. In this work, we have compared these effects with those obtained with 1 α -OH D3, 25-OH D3 and 1 α -OH D2.In decreasing order, the activities were : 1 α,25-(OH)2D3> 1 α -OH D3 (24R) 24,25-(OH)2D3 > 25-OH D3 > (25S) 25,26(OH)2D3> 1 α -OH D2. The presence of two hydroxyl groups with one hydroxyl group in α position seems to have the higher activity to inhibit the parathyroid secretion. At least, the nature of the side chain conformation also plays a part upon the effect of PTH release.  相似文献   

2.
Many of the effects of 1α,25-(OH)2D3 and 24R,25-(OH)2D3 on costochondral chondrocytes are mediated by the protein kinase C (PKC) signal transduction pathway. 1α,25-(OH)2D3 activates PKC in costochondral growth zone chondrocytes through a specific membrane receptor (1α,25-mVDR), involving rapid increases in diacylglycerol via a phospholipase C (PLC)-dependent mechanism. 24R,25-(OH)2D3 activates PKC in resting zone chondrocytes. Although diacylglycerol is increased by 24R,25-(OH)2D3, PLC is not involved, suggesting a phospholipase D (PLD)-dependent mechanism. Here, we show that resting zone and growth zone cells express mRNAs for PLD1a, PLD1b, and PLD2. Both cell types have PLD activity, but levels are higher in resting zone cells. 24R,25-(OH)2D3, but not 24S,25-(OH)2D3 or 1α,25-(OH)2D3, stimulates PLD activity in resting zone cells within 3 min via nongenomic mechanisms. Neither 1α,25-(OH)2D3 nor 24R,25-(OH)2D3 affected PLD in growth zone cells. Basal and 24R,25-(OH)2D3-stimulated PLD were inhibited by the PLD inhibitors wortmannin and EDS. Inhibition of phosphatidylinositol 3-kinase (PI 3-kinase), PKC, phosphatidylinositol-specific PLC (PI-PLC), and phosphatidylcholine-specific PLC (PC-PLC) had no effect on PLD activity. Thus, 24R,25-(OH)2D3 stimulates PLD, and PI 3-kinase, PI-PLC and PKC are not involved, whereas PLD is required for stimulation of PKC by 24R,25-(OH)2D3. Pertussis toxin, GDPβS, and GTPγS had no effect on 24R,25-(OH)2D3-dependent PLD when added to cell cultures, indicating that G-proteins are not involved. These data show that PKC activation in resting zone cells is mediated by PLD and suggest that a functional 24R,25-(OH)2D3-mVDR is required. The results also support the conclusion that the 24R,25-(OH)2D3-responsive PLD is PLD2, since this PLD isoform is G-protein-independent.  相似文献   

3.
4.
The biological activity of 1α,24R,25-trihydroxyvitamin D3 [1α,24R,25(OH)3D3] was elevated in comparison to the hormonally active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], in the rachitic chick in terms of its ability to (a) stimulate intestinal calcium absorption, (b) mobilize bone calcium, (c) induce intestinal calcium binding protein, (d) modulate the level of enzyme activity of the renal 25-OH-D3-1-hydroxylase system, and (e) interact with the intestinal cystosol-chromatin receptor system for the 1α,25(OH)2D3 receptor system. In each of these assays, the relative ratio of activity of 1α,24R,25(OH)3D3 to 1α,25(OH)2D3was (a) 25–50, (b) ca. 20, (c) 10, (d) 50, and (e) 36%, respectively.  相似文献   

5.
The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not only converted to 1,25(OH)2D3, but also to 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) which may have bioactivity as well. Therefore we used a primary human osteoblast model to examine whether 25(OH)D3 itself can affect osteoblast function using CYP27B1 silencing and to investigate whether 24R,25(OH)2D3 can affect osteoblast function. We showed that primary human osteoblasts responded to both 25(OH)D3 and 1,25(OH)2D3 by reducing their proliferation and enhancing their differentiation by the increase of alkaline phosphatase, osteocalcin and osteopontin expression. Osteoblasts expressed CYP27B1 and CYP24 and synthesized 1,25(OH)2D3 and 24R,25(OH)2D3 dose-dependently. Silencing of CYP27B1 resulted in a decline of 1,25(OH)2D3 synthesis, but we observed no significant differences in mRNA levels of differentiation markers in CYP27B1-silenced cells compared to control cells after treatment with 25(OH)D3. We demonstrated that 24R,25(OH)2D3 increased mRNA levels of alkaline phosphatase, osteocalcin and osteopontin. In addition, 24R,25(OH)2D3 strongly increased CYP24 mRNA. In conclusion, the vitamin D metabolites 25(OH)D3, 1,25(OH)2D3 and 24R,25(OH)2D3 can affect osteoblast differentiation directly or indirectly. We showed that primary human osteoblasts not only respond to 1,25(OH)2D3, but also to 24R,25(OH)2D3 by enhancing osteoblast differentiation. This suggests that 25(OH)D3 can affect osteoblast differentiation via conversion to the active metabolite 1,25(OH)2D3, but also via conversion to 24R,25(OH)2D3. Whether 25(OH)D3 has direct actions on osteoblast function needs further investigation.  相似文献   

6.
The metabolism of 1α,25-dihydroxyvitamin D2 (1α,25(OH)2D2) by human CYP24A1 was examined using the recombinant enzyme expressed in Escherichia coli cells. HPLC analysis revealed that human CYP24A1 produces at least 10 metabolites, while rat CYP24A1 produces only three metabolites, indicating a remarkable species-based difference in the CYP24A1-dependent metabolism of 1α,25(OH)2D2 between humans and rats. LC-MS analysis and periodate treatment of the metabolites strongly suggest that human CYP24A1 converts 1α,25(OH)2D2 to 1α,24,25,26(OH)4D2, 1α,24,25,28(OH)4D2, and 24-oxo-25,26,27-trinor-1α(OH)D2 via 1α,24,25(OH)3D2. These results indicate that human CYP24A1 catalyzes the C24-C25 bond cleavage of 1α,24,25(OH)2D2, which is quite effective in the inactivation of the active form of vitamin D2. The combination of hydroxylation at multiple sites and C-C bond cleavage could form a large number of metabolites. Our findings appear to be useful to predict the metabolism of vitamin D2 and its analogs in the human body.  相似文献   

7.
Oxidative phosphorylation and 1 α,25-dihydroxyvitamin D3 [lα,25-(OH)2D3]synthesis in isolated mitochondria were decreased by the addition of strontium. Calcium effected a similar inhibition of 1α,25-(OH)2D3 synthesis which correlated with cation-induced mitochondrial swelling. The ultrastructural changes were found to be a consequence of experimental conditions and not a prerequisite for suppressed 1α,25-(OH)2D3 synthesis. Dietary administration of strontium or calcium also resulted in a decreased rate of 1α,25-(OH)2D3 synthesis; however, the decrease in 1-hydroxylase activity was accompanied by an induction of mitochondrial 25-hydroxyvitamin D3 24-hydroxylase activity. Such an in vivo-prompted mitochondrial response occurred in the absenee of morphological changes or extensive loss of oxidative phosphorylation activity. In contrast, no induction of 24-hydroxylase activity could be observed in acute studies using isolated mitochondria. Therefore, the in vitro action of calcium and strontium does not appear to reflect the in vivo mechanism whereby the cations act to change renal 25-hydroxyvitamin D3 (25-OHD3) hydroxylation. Results from in vitro studies corcerning the action of calcium to alter renal 25-OHD3 metabolism should be interpreted in light of the cation's capacity to decrease oxidative phosphorylation and the subsequent intramitochondrial generation of NADPH.  相似文献   

8.
Vitamin D-like steroids added to the culture medium induce a specific calcium-binding protein (CaBP) in embryonic chick duodenum maintained in organ culture. This system provides a biologically relevant assay, i.e., a physiological response in a principle target organ, for the study of the relative biopotency of vitamin D metabolites and analogs. A number of fluoro analogs of vitamin D3 (D3) and its metabolites were assayed in the present study. Analogs fluorinated in the lα position (1α-F-D3) or in both the 1α and 25 positions (1α,25-F2-D3) were markedly more potent than vitamin D3 itself although 1α,25-F2-D3 was only 17th as potent as 1α-F-D3. The 25-fluoro analog (25-F-D3) was a very weak inducer; only 145th as potent as vitamin D3. The 25-fluoro analog of 1α-hydroxyvitamin D3 (1α-OH-25-F-D3) was less potent than its nonfluorinated counterpart. Although 25-fluorination reduced biopotency in all other analogs tested, 24R-OH-25-F-D3 was about 15 times more potent than 24R,25-(OH)2-D3. Of considerable interest was the effect of difluorination at the 24-carbon position: both 24,24-F2-25-OH-D3 and 24,24-F2-1α,25-(OH)2-D3 were about four times as potent as their nonfluorinated counterparts. The 24,24-F2-1α,25-(OH)2-D3 is, therefore, the most potent vitamin D3 analog yet tested in this system i.e., it is four times more potent than the most potent naturally occurring vitamin D3 metabolite, 1α,25-(OH)2-D3.  相似文献   

9.
Simultaneous and accurate measurement of circulating vitamin D metabolites is critical to studies of the metabolic regulation of vitamin D and its impact on health and disease. To that end, we have developed a specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method that permits the quantification of major circulating vitamin D3 metabolites in human plasma. Plasma samples were subjected to a protein precipitation, liquid–liquid extraction, and Diels–Alder derivatization procedure prior to LC–MS/MS analysis. Importantly, in all human plasma samples tested, we identified a significant dihydroxyvitamin D3 peak that could potentially interfere with the determination of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] concentrations. This interfering metabolite has been identified as 4β,25-dihydroxyvitamin D3 [4β,25(OH)2D3] and was found at concentrations comparable to 1α,25(OH)2D3. Quantification of 1α,25(OH)2D3 in plasma required complete chromatographic separation of 1α,25(OH)2D3 from 4β,25(OH)2D3. An assay incorporating this feature was used to simultaneously determine the plasma concentrations of 25OHD3, 24R,25(OH)2D3, 1α,25(OH)2D3, and 4β,25(OH)2D3 in healthy individuals. The LC–MS/MS method developed and described here could result in considerable improvement in quantifying 1α,25(OH)2D3 as well as monitoring the newly identified circulating metabolite, 4β,25(OH)2D3.  相似文献   

10.
The metabolism of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] in the rat has been studied under both in vivo and in vitro conditions. A time course study of the appearance of 1α,25-dihydroxyvitamin D3-26,23-lactone in the plasma following intravenous or oral administration of 1α,25(OH)2D3 suggests that the small intestine may take part in production of the 1α,25(OH)2D3-26,23-lactone. In an in vitro study using a homogenate of rat small intestinal mucosa, 1α,25(OH)2D3 undergoes further metabolism to give more polar metabolite(s) which comigrate with authentic 1α,24,25-trihydroxyvitamin D3 [1α,24,25(OH)3D3] on Sephadex LH-20 column chromatography. The metabolic profile obtained after high-pressure liquid chromatography reveals two major classes of metabolites, designated Peaks X and Y. Peak X is an unidentified metabolite of 1α,25(OH)2D3. Peak Y is chromatographically identical with 1α,25-dihydroxyvitamin D3-26,23-lactone which has been recently isolated from the plasma of rats and dogs as a major metabolite produced in vivo from either 1α,25(OH)2D3 or 1α-hydroxyvitamin D3 (N. Ohnuma, K. Bannai, H. Yamaguchi, Y. Hashimoto, and A. W. Norman, 1980, Arch. Biochem. Biophys.204, 387). The enzyme activity which produces metabolites X and Y in the rat intestinal homogenates is induced in vitamin D-replete rats by pretreatment of the animals with intravenous 1.25 μg/kg doses of 1α,25-dihydroxyvitamin D3, 6 to 8 h previously.  相似文献   

11.
12.
AimsLigands for the vitamin D receptor (VDR) regulate apolipoprotein A-I (apo A-I) gene expression in a tissue-specific manner. The vitamin D metabolite 24, 25-dihydroxycholecalciferol (24, 25-(OH)2D3) has been shown to possess unique biological effects. To determine if 24, 25-(OH)2D3 modulates apo A-I gene expression, HepG2 hepatocytes and Caco-2 intestinal cells were treated with 24, 25-(OH)2D3 or its precursor 25-OHD3.Main methodsApo A-I protein levels and mRNA levels were measured by Western and Northern blotting, respectively. Changes in apo A-I promoter activity were measured using the chlorampenicol acetytransferase assay.Key findingsTreatment with 24, 25-(OH)2D3, but not 25-OHD3, inhibited apo A-I secretion in HepG2 and Caco-2 cells and apo A-I mRNA levels and apo A-I promoter activity in HepG2 cells. To determine if 24, 25-(OH)2D3 represses apo A-I gene expression through site A, the nuclear receptor binding element that is essential for VDRs effects on apo A-I gene expression, HepG2 cells were transfected with plasmids containing or lacking site A. While the site A-containing plasmid was suppressed by 24, 25-(OH)2D3, the plasmid lacking site A was not. Likewise, treatment with 24, 25-(OH)2D3 suppressed reporter gene expression in cells transfected with a plasmid containing site A in front of a heterologous promoter. Finally, antisense-mediated VDR depletion failed to reverse the silencing effects of 24, 25-(OH)2D3 on apo A-I expression.SignificanceThese results suggest that the vitamin D metabolite 24, 25-(OH)2D3 is an endogenous regulator of apo A-I synthesis through a VDR-independent signaling mechanism.  相似文献   

13.
《Endocrine practice》2012,18(3):399-402
ObjectiveTo examine the effect of 50 000 IU-vitamin D2 supplementation in a clinical setting on serum total 25-hydroxyvitamin D (25[OH]D), 25-hydroxyvitamin D2 (25[OH]D2), and 25-hydroxyvitamin D3 (25[OH]D3).MethodsThis retrospective cohort study was performed in an urban tertiary referral hospital in Boston, Massachusetts. Patients who had been prescribed 50 000 IU vitamin D2 repletion and maintenance programs were identified through a search of our electronic medical record. Baseline and follow-up total serum 25(OH)D, 25(OH)D2, and 25(OH)D3 levels were compared.ResultsWe examined the medical records of 48 patients who had been prescribed 50 000 IU vitamin D2 in our clinic. Mean ± standard deviation baseline total 25(OH) D was 31.0 ± 10.6 ng/mL and rose to 48.3 ± 13.4 ng/mL after treatment (P <.001). 25(OH)D2 increased from 4.2 ± 4.3 ng/mL to 34.6 ± 12.3 ng/mL after treatment (P <.001), for an average of 158 days (range, 35-735 days). Serum 25(OH)D3 decreased from 26.8 ± 10.8 ng/mL to 13.7 ± 7.9 ng/mL (P <.001).ConclusionsFifty thousand IU vitamin D2 repletion and maintenance therapy substantially increases total 25(OH)D and 25(OH)D2 despite a decrease in serum 25(OH)D3. This treatment program is an appropriate and effective strategy to treat and prevent vitamin D deficiency.(Endocr Pract. 2012;18:399-402)  相似文献   

14.
R and S isomers of 24-OH-D3 and 24,25-(OH)2D3 were tested for their effects on bone resorption in vitro. 24(R), 25-(OH)2D3 was more active than 24(S),25-(OH)2D3. Likewise, 24(R)-OH-D3 was more active than 24(S)-OH-D3. The bone resorbing activity of 24(R)-OH-D3 was equivalent to that of 25-OH-D3; 24(R),25-(OH)2D3 was somewhat less potent. The results indicate that there is discrimination between the isomers of these compounds at the level of the responding tissue.  相似文献   

15.
25‐Hydroxyvitamin D3 (25(OH)D3) is a prohormone and a major vitamin D metabolite. The discovery of (25(OH)D3) 1α‐hydroxylase in many vitamin D target organs has yielded an increased interest in defining the role(s) of 25(OH)D3 in these tissues. The etiology of cancer appears to be complex and multi‐factorial. Cellular stress (e.g., DNA damage, hypoxia, oncogene activation) has been identified as one of the key factors responsible for initiating the carcinogenesis process. In this study, we investigated whether 25(OH)D3 protects breast epithelial cells from cellular stress using an established breast epithelial cell line MCF12F. To better elucidate the role of 25(OH)D3 in the stress response, we used multiple in vitro stress models including serum starvation, hypoxia, oxidative stress, and apoptosis induction. Under all these stress conditions, 25(OH)D3 (250 nmol/L) treatment significantly protected cells against cell death. Low‐serum stress induced p53 expression accompanied with downregulation of PCNA, the presence of 25(OH)D3 consistently inhibited the alteration of p53 and PCNA, suggesting that these molecules were involved in the stress process and may be potential target genes of 25(OH)D3. miRNA microarray analysis demonstrated that stress induced by serum starvation caused significant alteration in the expression of multiple miRNAs including miR182, but the presence of 25(OH)D3 effectively reversed this alteration. These data suggest that there is a significant protective role for 25(OH)D3 against cellular stress in the breast epithelial cells and these effects may be mediated by altered miRNA expression. J. Cell. Biochem. 110: 1324–1333, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Synthesis of 1α,25-dihydroxyvitamin D3-3β-bromoacetate (1,25(OH)2D3-3-BE), a potential anti-cancer agent is presented. We also report that mechanism of action of 1,25(OH)2D3-3-BE may involve reduction of its catabolism, as evidenced by the reduced and delayed expression of 1α,25-dihydroxyvitamin D3-24-hydroxylase (CYP24) gene in cellular assays.  相似文献   

17.
Sebocytes are sebum-producing cells that form the sebaceous glands. We investigated the role of sebocytes as target cells for vitamin D metabolites and the existence of an enzymatic machinery for the local synthesis and metabolism of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3, calcitriol], the biologically active vitamin D metabolite, in these cell types. Expression of vitamin D receptor (VDR), vitamin D-25-hydroxylase (25OHase), 25-hydroxyvitamin D-1α-hydroxylase (1αOHase), and 1,25-dihydroxyvitamin D-24-hydroxylase (24OHase) was detected in SZ95 sebocytes in vitro using real time quantitative polymerase chain reaction. Splice variants of 1αOHase were identified by nested touchdown polymerase chain reaction. We demonstrated that incubation of SZ95 sebocytes with 1,25(OH)2D3 resulted in a cell culture condition-, time-, and dose-dependent modulation of cell proliferation, cell cycle regulation, lipid content and interleukin-6/interleukin-8 secretion in vitro. RNA expression of VDR and 24OHase was upregulated along with vitamin D analogue treatment. Although several other splice variants of 1αOHase were detected, our findings indicate that the full length product represents the major 1αOHase gene product in SZ95 cells. In conclusion, SZ95 sebocytes express VDR and the enzymatic machinery to synthesize and metabolize biologically active vitamin D analogues. Sebocytes represent target cells for biologically active metabolites. Our findings indicate that the vitamin D endocrine system is of high importance for sebocyte function and physiology. We conclude that sebaceous glands represent potential targets for therapy with vitamin D analogues or for pharmacological modulation of 1,25(OH)2D3 synthesis/metabolism.  相似文献   

18.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] receptor was characterized after partial purification of thymus cytosol by ammonium sulfate fractionation. The 1,25-(OH)2D3 receptor sediments at 3.7S in 5–20% sucrose gradients. The binding of 1,25-(OH)2D3 in thymic cytosol was a saturable process with high affinity (Kd = 0.12?0.48 nM) at 4°C. Competition for 1,25-(OH)2[3H]D3 receptor by nonradioactive analogs demonstrated the affinities of these analogs to be in order; 1,25-(OH)2D3 = 1,24R,25-(OH)3D3 = 1,25S,26-(OH)3D3 = 1,25R,26-(OH)3D3 > 1,25-(OH)2D3-26,23 lactone > 25-OHD3 > 23R,25-(OH)2D3 > 24R,25-(OH)2D3 > 23S,25-(OH)2D3 ? 25-OHD3-26,23 lactone. The receptor bound to DNA cellulose columns in low salt buffer and eluted as a single peak at 0.21 M KCl. These findings provide evidence that the thymus possesses a 1,25-(OH)2D3 receptor with properties indistinguishable from 1,25-(OH)2D3 receptors in other tissues.  相似文献   

19.
We have recently reported that annexin II serves as a membrane receptor for 1α,25‐(OH)2D3 and mediates the rapid effect of the hormone on intracellular calcium. The purpose of these studies was to characterize the binding of the hormone to annexin II, determine the specificity of binding, and assess the effect of calcium on binding. The binding of [14C]‐1α,25‐(OH)2D3 bromoacetate to purified annexin II was inhibited by 1α,25‐(OH)2D3 in a concentration‐dependent manner. Binding of the radiolabeled ligand to annexin II was markedly diminished by 1α,25‐(OH)2D3 at 24 μM, 18 μM, and 12 μM and blunted by 6 μM and 3 μM. At a concentration of 12 μM, 1β,25‐(OH)2D3 also diminished the binding of [14C]‐1α,25‐(OH)2D3 bromoacetate to annexin II, but cholecalciferol, 25‐(OH)D3, and 24,25‐(OH)2D3 did not. Saturation analyses of the binding of [3H]‐1α,25‐(OH)2D3 to purified annexin II showed a KD of 5.5 × 10−9 M, whereas [3H]‐1β,25‐(OH)2D3 exhibited a KD of 6.0 × 10−9 M. Calcium, which binds to the carboxy terminal domain of annexin II, had a concentration‐dependent effect on [14C]‐1α,25‐(OH)2D3 bromoacetate binding to annexin II, with 600 nM calcium being able to inhibit binding of the radiolabeled analog. The inhibitory effect of calcium was prevented by EDTA. Homocysteine, which binds to the amino terminal domain of annexin II, had no effect on the binding of the bromoacetate analog to the protein. The data indicate that 1α,25‐(OH)2D3 binding to annexin II is specific and suggest that the binding site may be located on the carboxy terminal domain of the protein. The ability of 1β,25‐(OH)2D3 to inhibit the binding of [14C]‐1α,25(OH)2D3 bromoacetate to annexin II provides a biochemical explanation for the ability of the 1β‐epimer to inhibit the rapid actions of the hormone in vitro. J. Cell. Biochem. 80:259–265, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

20.
The actions of the hormonal form of vitamin D, 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3], are mediated by both genomic and nongenomic mechanisms. Several vitamin D synthetic analogs have been developed in order to identify and characterize the site(s) of action of 1α,25-(OH)2D3 in many cell types including osteoblastic cells. We have compared the effects of 1α,25-(OH)2D3 and a novel 1α,25-(OH)2D3 bromoester analog (1,25-(OH)2-BE) that covalently binds to vitamin D receptors. Rat osteosarcoma cells that possess (ROS 17/2.8) or lack (ROS 24/1) the classic intracellular vitamin D receptor were studied to investigate genomic and nongenomic actions. In ROS 17/2.8 cells plated at low density, the two vitamin D compounds (1 × 10−8 M) caused increased cell proliferation, as assessed by DNA synthesis and total cell counts. Northern blot analysis revealed that the mitogenic effect of both agents was accompanied by an increase in steady-state osteocalcin mRNA levels, but neither agent altered alkaline phosphatase mRNA levels in ROS 17/2.8 cells. ROS 17/2.8 cells responded to 1,25-(OH)2-BE but not the natural ligand with a significant increase in osteocalcin secretion after 72, 96, 120, and 144 hr of treatment. Treatment of ROS 17/2.8 cells with the bromoester analog also resulted in a significant decrease in alkaline phosphatase-specific activity. To compare the nongenomic effects of 1α,25-(OH)2D3 and 1,25-(OH)2-BE, intracellular calcium was measured in ROS 24/1 cells loaded with the fluorescent calcium indicator Quin 2. At 2 × 10−8 M, both 1α,25-(OH)2D3 and 1,25-(OH)2-BE increased intracellular calcium within 5 min. Both the genomic and nongenomic actions of 1,25-(OH)2-BE are similar to those of 1α,25-(OH)2D3, and since 1,25-(OH)2-BE has more potent effects on osteoblast function than the naturally occurring ligand due to more stable binding, this novel vitamin D analog may be useful in elucidating the structure and function of cellular vitamin D receptors. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号