首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Displacement of the contractile protein tropomyosin from actin filament exposes the myosin-binding sites on actin, resulting in actin-myosin interaction and muscle contraction. The objective of the present study was to better understand the interaction of tropomyosin with heat shock protein (HSP)27 in contraction of smooth muscle cells of the colon. We investigated the possibility of a direct protein-protein interaction of tropomyosin with HSP27 and the role of phosphorylated HSP27 in this interaction. Immunoprecipitation studies on rabbit smooth muscle cells indicate that upon acetylcholine-induced contraction tropomyosin shows increased association with HSP27 phosphorylated at Ser82 and Ser78. Transfection of smooth muscle cells with HSP27 phosphorylation mutants indicated that the association of tropomyosin with HSP27 could be affected by HSP27 phosphorylation. In vitro binding studies with glutathione S-transferase (GST)-tagged HSP27 mutant proteins show that tropomyosin has greater direct interaction to phosphomimic HSP27 mutant compared with wild-type and nonphosphomimic HSP27. Our data suggest that, in response to a contractile agonist, HSP27 undergoes a rapid phosphorylation that may strengthen its interaction with tropomyosin. acetylcholine; fusion proteins; serine  相似文献   

2.
We have investigated the role of heat shock protein 27 (HSP27) phosphorylation and the association of HSP27 with contractile proteins actin, myosin, and tropomyosin. Smooth muscle cells were labeled with [(32)P]orthophosphate. C2-ceramide (0.1 microM), an activator of protein kinase C (PKC), induced a sustained increase in HSP27 phosphorylation that was inhibited by calphostin C. C2-ceramide-induced (0.1 microM) sustained colonic smooth muscle cell contraction was accompanied by significant increases in the association of HSP27 with tropomyosin and in the association of HSP27 with actin. The significant increases occurred at 30 s after stimulation and were sustained at 4 min. Contraction was also associated with strong colocalization of HSP27 with tropomyosin and with actin as observed after immunofluorescent labeling of tropomyosin, actin, and HSP27 followed by confocal microscopy. Transfection of smooth muscle cells with HSP27 phosphorylation mutants indicated that phosphorylation of HSP27 could affect myosin association with actin. In conclusion 1) HSP27 phosphorylation appears to be necessary for reorganization of HSP27 inside the cell and seems to be directly correlated with the PKC signal transduction pathway, and 2) agonist-induced phosphorylation of HSP27 modulates actin-myosin interaction through thin-filament regulation of tropomyosin.  相似文献   

3.
Wu Y  Liu J  Zhang Z  Huang H  Shen J  Zhang S  Jiang Y  Luo L  Yin Z 《Cellular signalling》2009,21(1):143-150
Heat shock protein 27 (HSP27) is an ubiquitiously expressed protein, which has been mediated in various biological functions. Here, we present a novel mechanism utilized by HSP27 in regulating IL-1beta induced NF-small ka, CyrillicB activation. Both over-expression and RNAi experiments indicate that HSP27 physically interacts with tumor necrosis factor receptor-associated factor 6 (TRAF6) and promotes TRAF6 ubiquitination. Over-expressed HSP27 augments IL-1beta induced TRAF6 ubiquitination and Ismall ka, CyrillicB kinase (IKK) activation. On the other hand, IL-1beta stimulation reduces endogenous HSP27/TRAF6 association, but inhibiting HSP27 phosphorylation by using SB202190, an inhibitor of p38, and MAPKAPK2 RNAi increases HSP27/TRAF6 association and thereby enhances TRAF6 ubiquitination, IKK phosphorylation as well as NF-small ka, CyrillicB activation. Furthermore, co-transfection study shows that HSP27 S78/82A, two phosphorylated serine site deficient mutants, but not wild-type HSP27 (HSP27 WT) and HSP27 S15A mutant increases TRAF6 ubiquitination and thereby mediates IL-1beta triggered IKK phosphorylation. Taken together, our data indicate that HSP27 regulates IL-1beta triggered NF-small ka, CyrillicB activation via a feedback loop which includes the interaction between HSP27 phosphorylation and ability of HSP27 to bind with TRAF6. The findings of this study reveal a novel mechanism by which HSP27 controls cytokine stimulation.  相似文献   

4.
Distinct biochemical activities have been reported for small and large molecular complexes of heat shock protein 27 (HSP27), respectively. Using glycerol gradient ultracentrifugation and chemical cross-linking, we show here that Chinese hamster HSP27 is expressed in cells as homotypic multimers ranging from dimers up to 700-kDa oligomers. Treatments with arsenite, which induces phosphorylation on Ser15 and Ser90, provoked a major change in the size distribution of the complexes that shifted from oligomers to dimers. Ser90 phosphorylation was sufficient and necessary for causing this change in structure. Dimer formation was severely inhibited by replacing Ser90 with Ala90 but not by replacing Ser15 with Ala15. Using the yeast two-hybrid system, two domains were identified that were responsible for HSP27 intermolecular interactions. One domain was insensitive to phosphorylation and corresponded to the C-terminal alpha-crystallin domain. The other domain was sensitive to serine 90 phosphorylation and was located in the N-terminal region of the protein. Fusion of this N-terminal domain to firefly luciferase conferred luciferase with the capacity to form multimers that dissociated into monomers upon phosphorylation. A deletion within this domain of residues Arg5-Tyr23, which contains a WDPF motif found in most proteins of the small heat shock protein family, yielded a protein that forms only phosphorylation-insensitive dimers. We propose that HSP27 forms stable dimers through the alpha-crystallin domain. These dimers further multimerize through intermolecular interactions mediated by the phosphorylation-sensitive N-terminal domain.  相似文献   

5.
It is recognized that heat shock protein 27 (HSP27) is highly expressed in heart. In the present study, we investigated whether platelet-derived growth factor (PDGF) phosphorylates HSP27 in mouse myocytes, and the mechanism underlying the HSP27 phosphorylation. Administration of PDGF-BB induced the phosphorylation of HSP27 at Ser-15 and -85 in mouse cardiac muscle in vivo. In primary cultured myocytes, PDGF-BB time dependently phosphorylated HSP27 at Ser-15 and -85. PDGF-BB stimulated the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) among the MAP kinase superfamily. SB203580, a specific inhibitor of p38 MAP kinase, reduced the PDGF-BB-stimulated phosphorylation of HSP27 at both Ser-15 and -85, and phosphorylation of p38 MAP kinase. However, PD98059, a specific inhibitor of MEK, or SP600125, a specific inhibitor of SAPK/JNK, failed to affect the HSP27 phosphorylation. These results strongly suggest that PDGF-BB phosphorylates HSP27 at Ser-15 and -85 via p38 MAP kinase in cardiac myocytes.  相似文献   

6.
It has been shown that anesthetics have effects of cardiac preconditioning. Heat shock proteins (HSPs) function as molecular chaperone. Among them, HSP27, a low-molecular-weight HSP, abundantly exist in heart. However, the relationship between anesthetics and HSP27 in heart is not yet clarified. We investigated whether thrombin induces or phosphorylates HSP27 in primary cultured mouse myocytes and the effect of midazolam on the thrombin-stimulated HSP27 phosphorylation and the mechanism behind it. Thrombin time dependently phosphorylated HSP27 at Ser-15 and Ser-85 while having no effect on the levels of HSP27. Midazolam markedly suppressed the thrombin-induced phosphorylation of HSP27 at both Ser-15 and Ser-85. Thrombin induced the phosphorylation of p44/p42 MAP kinase and p38 MAP kinase without affecting stress-activated protein kinase/c-Jun N-terminal kinase. In addition, midazolam attenuated the phosphorylation of thrombin-induced p38 MAP kinase but not that of p44/p42 MAP kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the thrombin-induced phosphorylation of HSP27 at both Ser-15 and Ser-85. These results strongly suggest that thrombin induces the HSP27 phosphorylation at least through the p38 MAP kinase activation in cardiac myocytes and that midazolam inhibits the thrombin-induced HSP27 phosphorylation via suppression of p38 MAP kinase activation.  相似文献   

7.
The small heat shock protein 27 (Hsp27 or HSPB1) is an oligomeric molecular chaperone in vitro that is associated with several neuromuscular, neurological, and neoplastic diseases. Although aspects of Hsp27 biology are increasingly well known, understanding of the structural basis for these involvements or of the functional properties of the protein remains limited. As all 11 human small heat shock proteins (sHsps) possess an α-crystallin domain, their varied functional and physiological characteristics must arise from contributions of their nonconserved sequences. To evaluate the role of two such sequences in Hsp27, we have studied three Hsp27 truncation variants to assess the functional contributions of the nonconserved N- and C-terminal sequences. The N-terminal variants Δ1-14 and Δ1-24 exhibit little chaperone activity, somewhat slower but temperature-dependent subunit exchange kinetics, and temperature-independent self-association with formation of smaller oligomers than wild-type Hsp27. The C-terminal truncation variants exhibit chaperone activity at 40 °C but none at 20 °C, limited subunit exchange, and temperature-independent self-association with an oligomer distribution at 40 °C that is very similar to that of wild-type Hsp27. We conclude that more of the N-terminal sequence than simply the WPDF domain is essential in the formation of larger, native-like oligomers after binding of substrate and/or in binding of Hsp27 to unfolding peptides. On the other hand, the intrinsically flexible C-terminal region drives subunit exchange and thermally-induced unfolding, both of which are essential to chaperone activity at low temperature and are linked to the temperature dependence of Hsp27 self-association.  相似文献   

8.
The intracellular concentration of the 27-kDa mammalian heat shock protein, HSP27, increases several-fold after heat and other metabolic stresses and is closely associated with the acquisition of thermotolerance. Posttranslational modifications may also affect the function of HSP27. Heat shock of HeLa cell cultures, or treatment with arsenite, phorbol ester, or tumor necrosis factor, caused a rapid phosphorylation of preexisting HSP27 and the appearance of three phosphorylated isoforms, HSP27 B, C, and D. Digestion with trypsin and fractionation of the peptides by reverse phase high performance liquid chromatography revealed three 32P-labeled phosphopeptides. Microsequence analysis identified peak I as Ala76-Leu77-Ser78-Arg79 and peak II as Gln80-Leu81-Ser82-Ser83-Gly84-Val85- Ser86-Glu87-Ile88-Arg89; peak III contained the undigested peptide pair Ala76-Arg89. Ser82 was the major site and Ser78 the minor site of phosphorylation. Mutant proteins with Ser78 or Ser82 altered to glycine or Ser78-Ser82 double mutants were phosphorylated to reduced extents in vivo after heat or arsenite treatment. Ser78 and Ser82 (and Ser15) occur in the sequence motif RXXS, which is recognized by ribosomal protein S6 kinase II. Mitogenic stimulation of serum-deprived, Go-arrested Chinese hamster cells with serum, thrombin, or fibroblast growth factor also stimulated phosphorylation of HSP27 Ser78 and Ser82, and mitogenic stimulation and heat shock activated protein kinase activities that phosphorylated HSP27 and protein S6 in vitro. These results suggest that HSP27 may exert phosphorylation-activated functions linked with growth signaling pathways in unstressed cells. A homeostatic function at this level could protect cells from adverse effects of signal transduction systems which may be activated inappropriately during stress.  相似文献   

9.
We investigated how heat shock protein 27 (HSP27)and its phosphorylation are involved in the action of cholecystokinin(CCK) on the actin cytoskeleton by genetic manipulation of Chinesehamster ovary (CHO) cells stably transfected with the CCK-A receptor. In these cells, as in rat acini, CCK activated p38 mitogen-activated protein (MAP) kinase and increased the phosphorylation of HSP27. Thiseffect could be blocked with the p38 MAP kinase inhibitor SB-203580.Examination by confocal microscopy of cells stained with rhodaminephalloidin showed that CCK dose-dependently induced changes of theactin cytoskeleton, including cell shape changes, which were coincidentwith actin cytoskeleton fragmentation and formation of actin filamentpatches in the cells. To further evaluate the role of HSP27, CHO-CCK-Acells were transfected with expression vectors for either wild-type(wt) or mutant (3A, 3G, and 3D) human HSP27. Overexpression of wt-HSP27and 3D-HSP27 inhibited the effects on the actin cytoskeleton seen afterhigh-dose CCK stimulation. In contrast, overexpression ofnonphosphorylatable mutants, 3A- and 3G-HSP27, or inhibition ofphosphorylation of HSP27 by preincubation of wt-HSP27 transfected cellswith SB-203580 did not protect the actin cytoskeleton. These resultssuggest that phosphorylation of HSP27 is required to stabilize theactin cytoskeleton and to protect the cells from the effects of highconcentrations of CCK.

  相似文献   

10.
We previously reported that prostaglandin D(2) (PGD(2)) stimulates the induction of heat shock protein 27 (HSP27) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether PGD(2) stimulates the phosphorylation of HSP27 in MC3T3-E1 cells exposed to heat shock. In the cultured MC3T3-E1 cells, PGD(2) markedly stimulated the phosphorylation of HSP27 at Ser-15 and Ser-85 in a time-dependent manner. Among the mitogen-activated protein (MAP) kinase superfamily, p44/p42 MAP kinase and p38 MAP kinase were phosphorylated by PGD(2) which had little effect on the phosphorylation of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). The PGD(2)-induced phosphorylation of HSP27 was attenuated by PD169316, an inhibitor of p38 MAP kinase or PD98059, a MEK inhibitor. SP600125, a SAPK/JNK inhibitor did not affect the HSP27 phosphorylation. In addition, PD169316 suppressed the PGD(2)-induced phosphorylation of MAPKAP kinase 2. These results strongly suggest that PGD(2) stimulates HSP27 phosphorylation via p44/p42 MAP kinase and p38 MAP kinase but not SAPK/JNK in osteoblasts.  相似文献   

11.
Lung edema during sepsis is triggered by formation of gaps between endothelial cells followed by macrophage infiltration. Endothelial gap formation has been proposed to involve changes in the structure of the actin filament cytoskeleton. Heat shock protein 27 (HSP27) is believed to modulate actin filament dynamics or structure, in a manner dependent on its phosphorylation status. We hypothesized that HSP27 may play a role in endothelial gap formation, by affecting actin dependent events in endothelial cells. As there has been no report concerning HSP27 in lung edema in vivo, we examined induction and phosphorylation of HSP27 in lung following LPS injection, as a model of sepsis. In lung, HSP27 mainly localized in capillary endothelial cells of the alveolus, and in smooth muscle cells of pulmonary arteries. HSP27 became significantly more phosphorylated at 3 h after LPS treatment, while the distribution of HSP27 remained unchanged. Pre-treatment with anti-TNFalpha antibody, which has been shown to reduce lung injury, blocked increases in HSP27 phosphorylation at 3 h. HSP27 phosphorylation was also increased in cultured rat pulmonary arterial endothelial cells (RPAEC) by treatment with TNFalpha, LPS, or H2O2. This phosphorylation was blocked by pre-treatment with SB203580, an inhibitor of the upstream kinase, p38 MAP kinase. Increased endothelial permeability caused by H2O2 in vitro was also blocked by SB203580. The amount of actin associated with HSP27 was reduced after treatment with LPS, or H2O2. In summary, HSP27 phosphorylation temporally correlated with LPS induced pathological endothelial cell gap formation in vivo and in a cell culture model system. This is the first report of increased HSP27 phosphorylation associated with pathological lung injury in an animal model of sepsis.  相似文献   

12.
Phenylalanine hydroxylase (PAH) is activated by its substrate phenylalanine, and through phosphorylation by cAMP-dependent protein kinase at Ser16 in the N-terminal autoregulatory sequence of the enzyme. The crystal structures of phosphorylated and unphosphorylated forms of the enzyme showed that, in the absence of phenylalanine, in both cases the N-terminal 18 residues including the phosphorylation site contained no interpretable electron density. We used nuclear magnetic resonance (NMR) spectroscopy to characterize this N-terminal region of the molecule in different stages of the regulatory pathway. A number of sharp resonances are observed in PAH with an intact N-terminal region, but no sharp resonances are present in a truncation mutant lacking the N-terminal 29 residues. The N-terminal sequence therefore represents a mobile flexible region of the molecule. The resonances become weaker after the addition of phenylalanine, indicating a loss of mobility. The peptides corresponding to residues 2-20 of PAH have different structural characteristics in the phosphorylated and unphosphorylated forms, with the former showing increased secondary structure. Our results support the model whereby upon phenylalanine binding, the mobile N-terminal 18 residues of PAH associate with the folded core of the molecule; phosphorylation may facilitate this interaction.  相似文献   

13.
14.
Small heat shock proteins (sHSPs) are a family of evolutionary conserved ATP-independent chaperones. These proteins share a common architecture defined by a signature α-crystallin domain (ACD) flanked by highly variable N- and C-terminal extensions. The ACD, which has an immunoglobulin-like fold, plays an important role in sHSP assembly. This domain mediates dimer formation of individual protomers, which then may assemble into larger oligomers. In vertebrate sHSPs, the dimer interface is formed by the symmetrical antiparallel pairing of two β-strands (β7), generating an extended β-sheet on one face of the ACD dimer. Recent structural studies of isolated ACDs from a number of vertebrate sHSPs suggest a variability in the register of the β7/β7 strand interface, which may, in part, give rise to the polydispersity often associated with the full-length proteins. To further analyze the structure of ACD dimers, we have employed a combination of X-ray crystallography and solution small-angle X-ray scattering (SAXS) to study the ACD-containing fragments of human HSPB1 (HSP27) and HSPB6 (HSP20). Unexpectedly, the obtained crystal structure of the HSPB1 fragment does not reveal the typical β7/β7 dimers but, rather, hexamers formed by an asymmetric contact between the β4 and the β7 strands from adjacent ACDs. Nevertheless, in solution, both ACDs form stable dimers via the symmetric antiparallel interaction of β7 strands. Using SAXS, we show that it is possible to discriminate between different putative registers of the β7/β7 interface, with the results indicating that, under physiological conditions, there is only a single register of the strands for both proteins.  相似文献   

15.
We previously reported that transforming growth factor-beta (TGF-beta) stimulates heat shock protein 27 (HSP27) induction through p38 mitogen-activated protein (MAP) kinase and extracellular signal-regulated kinase 1/2 (ERK1/2) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether (-)-epigallocatechin gallate (EGCG), the major polyphenol found in green tea, affects the TGF-beta-stimulated induction of HSP27 in these cells, and its underlying mechanism. EGCG significantly suppressed the HSP27 induction stimulated by TGF-beta in a dose-dependent manner between 10 and 30 microM without affecting the HSP70 levels. TGF-beta with or without EGCG did not affect the advanced oxidation protein products. The TGF-beta-induced phosphorylation of p38 MAP kinase and ERK1/2 was not affected by EGCG. SP600125, a specific inhibitor of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), markedly reduced the HSP27 expression induced by TGF-beta. EGCG significantly suppressed the TGF-beta-induced phosphorylation of SAPK/JNK without affecting the phosphorylation of Smad2. EGCG attenuated the phosphorylation of both MKK4 and TAK1 induced by TGF-beta. These results strongly suggest that EGCG suppresses the TGF-beta-stimulated induction of HSP27 via the attenuation of the SAPK/JNK pathway in osteoblasts, and that this effect is exerted at a point upstream from TAK1.  相似文献   

16.
We investigated the relationship between HSP27 phosphorylation and collagen-stimulated activation of platelets in patients with diabetes mellitus (DM). Platelet-rich plasma was prepared from blood of type 2 DM patients. The platelet aggregation was analyzed in size of aggregates by an aggregometer using a laser scattering method. The protein phosphorylation was analyzed by Western blotting. Phosphorylated-HSP27 and PDGF-AB released from platelets were measured by ELISA. The phosphorylated-HSP27 levels at Ser-78 and Ser-82 induced by collagen were directly proportional to the platelet aggregation. Total HSP27 levels in platelets were decreased concomitantly with the phosphorylation. The released HSP27 levels were significantly correlated with the phosphorylated levels of HSP27 in the platelets stimulated by 0.3 μg/ml collagen. The low dose collagen-stimulated release of HSP27 was detected but relatively small in healthy donors. The released levels of PDGF-AB were in parallel with the levels of released HSP27. Area under the curve (AUC) of small aggregation (9-25 μm) induced by 0.3 μg/ml collagen was inversely proportional to the levels of released HSP27. AUC of large aggregation (50-70 μm) was directly proportional to the levels of released HSP27. Exogenous recombinant phosphorylated- HSP27 hardly affected the aggregation or the released levels of PDGF-AB induced by collagen. These results strongly suggest that HSP27 is released from human platelets accompanied with its phosphorylation induced by collagen, which is correlated with the acceleration of platelet aggregation in type 2 DM patients.  相似文献   

17.
The small molecular weight heat shock protein HSP27 was recently shown to confer a stable thermoresistant phenotype when expressed constitutively in mammalian cells after structural gene transfection. These results suggested that HSP27 may also play an important role in the development of thermotolerance, the transient ability to survive otherwise lethal heat exposure after a mild heat shock. In Chinese hamster O23 cells increased thermoresistance is first detected at 2 h after a triggering treatment of 20 min at 44 degrees C, attains a maximum at 5 hours, and decays thereafter with a half-life of 10 h. We found that the development and decay of transient thermotolerance cannot be solely explained on the basis of changes in the cellular concentration of HSP27. The cellular HSP27 concentration is not increased appreciably at 2 h after heat shock and attains a maximum at 14 h. Similar results were obtained in the case of another heat shock protein, HSP70. HSP70 follows slightly faster kinetics of accumulation (peaks at 10 h) and decays much more rapidly (ti/2 = 4h) than HSP27 (t1/2 = 13h). HSP27 has 3 isoelectric variants A, B, and C of which B and C are phosphorylated. In cells maintained at normal temperature, HSP27A represents more than 90% of all HSP27. Shifting the cell culture temperature from 37 to 44 degrees C induces the incorporation of 32P into the more acidic B and C forms, a process that occurs very rapidly since the reduction in the concentration of the A form and a corresponding increase in the level of B and C is detectable by immunoblot analysis within 2.5 min at 44 degrees C. Analyses performed at various times during development and decay of transient thermotolerance revealed a close relationship between the effect of heat shock on HSP27 phosphorylation and cell ability to survive. For example, fully thermotolerant cells (5 h post-induction) are refractory to induction of HSP27 phosphorylation by a 20-min heat shock. The induction of HSP27 phosphorylation was also studied in a family of clonal cell lines of O23 cells that are thermoresistant as a result of the constitutive expression of a transfected human HSP27 gene. In these thermoresistant cells, phosphorylation of the endogenous hamster HSP27 is induced to a level comparable to that found in the thermosensitive parental cells. However, phosphorylation of the exogenous human protein, which represents more than 80% of total HSP27 in these cells, was much less induced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have recently reported that attenuated phosphorylation of heat shock protein (HSP) 27 correlates with tumor progression in patients with hepatocellular carcinoma (HCC). In the present study, we investigated what kind of kinase regulates phosphorylation of HSP27 in human HCC-derived HuH7 cells. 12-O-tetradecanoylphorbol-13-acetate (TPA) and 1-oleoyl-2-acetylglycerol, direct activators of protein kinase C (PKC), markedly strengthened the phosphorylation of HSP27. Bisindorylmaleimide I, an inhibitor of PKC, suppressed the TPA-induced levels of HSP27 phosphorylation in addition to its basal levels. Knock down of PKCdelta suppressed HSP27 phosphorylation, as well as p38 mitogen-activated protein kinase (MAPK) phosphorylation. SB203580, an inhibitor of p38 MAPK, suppressed the TPA-induced HSP27 phosphorylation. Our results strongly suggest that activation of PKCdelta regulates the phosphorylation of HSP27 via p38 MAPK in human HCC.  相似文献   

19.
Inhibition of Daxx-mediated apoptosis by heat shock protein 27   总被引:33,自引:0,他引:33       下载免费PDF全文
Heat shock protein 27 (HSP27) confers cellular protection against a variety of cytotoxic stresses and also against physiological stresses associated with growth arrest or receptor-mediated apoptosis. Phosphorylation modulates the activity of HSP27 by causing a major change in the supramolecular organization of the protein, which shifts from oligomers to dimers. Here we show that phosphorylated dimers of HSP27 interact with Daxx, a mediator of Fas-induced apoptosis, preventing the interaction of Daxx with both Ask1 and Fas and blocking Daxx-mediated apoptosis. No such inhibition was observed with an HSP27 phosphorylation mutant that is only expressed as oligomers or when apoptosis was induced by transfection of a Daxx mutant lacking its HSP27 binding domain. HSP27 expression had no effect on Fas-induced FADD- and caspase-dependent apoptosis. However, HSP27 blocked Fas-induced translocation of Daxx from the nucleus to the cytoplasm and Fas-induced Daxx- and Ask1-dependent apoptosis. The observations revealed a new level of regulation of the Fas pathway and suggest a mechanism for the phosphorylation-dependent protective function of HSP27 during stress and differentiation.  相似文献   

20.
We previously reported that prostaglandin D2 (PGD2) stimulates heat shock protein 27 (HSP27) induction through p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether (-)-epigallocatechin gallate (EGCG), the major polyphenol found in green tea, affects the induction of HSP27 in these cells and the mechanism. EGCG significantly reduced the HSP27 induction stimulated by PGD2 without affecting the levels of HSP70. The PGD2-induced phosphorylation of p38 MAP kinase or SAPK/JNK was not affected by EGCG. On the contrary, EGCG markedly suppressed the PGD2-induced phosphorylation of p44/p42 MAP kinase and MEK1/2. However, the PGD2-induced phosphorylation of Raf-1 was not inhibited by EGCG. These results strongly suggest that EGCG suppresses the PGD2-stimulated induction of HSP27 at the point between Raf-1 and MEK1/2 in osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号