首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of BCL-2 within an unstructured loop inhibits its antiapoptotic effect. We found that phosphorylated BCL-2 predominantly localized to the endoplasmic reticulum (ER) and tested whether phosphorylation would control its activity at this organelle, where Ca(2+) dynamics serve as a critical control point for apoptosis. Phosphorylation greatly inhibits the ability of BCL-2 to lower [Ca(2+)](er) and protect against Ca(2+)-dependent death stimuli. Cells expressing nonphosphorylatable BCL-2(AAA) exhibited increased leak of Ca(2+) from the ER and further diminished steady-state [Ca(2+)](er) stores when compared to cells expressing BCL-2(wt). Consequently, when BCL-2 is phosphorylated, Ca(2+) discharge from the ER is increased, with a secondary increase in mitochondrial Ca(2+) uptake. We also demonstrate that phosphorylation of BCL-2 inhibits its binding to proapoptotic family members. This inhibitory mechanism manifested at the ER, where phosphorylated BCL-2 was unable to bind proapoptotic members. [Ca(2+)](er) proved coordinate with the capacity of BCL-2 to bind proapoptotic BH3-only members, further integrating the apoptotic pathway and Ca(2+) modulation. Unexpectedly, the regulation of ER Ca(2+) dynamics is a principal avenue whereby BCL-2 phosphorylation alters susceptibility to apoptosis.  相似文献   

2.
We report on N-acetylgalactosaminyltransferase (UDPacetylgalactosamine--protein acetylgalactosaminyltransferase; EC 2.4.1.41) activity in herpes simplex virus type 1 (HSV-1)-infected BHK and RicR14 cells, a line of ricin-resistant BHK cells defective in N-acetylglucosaminyltransferase I. The enzyme catalyzed the transfer of [14C]N-acetylgalactosamine (GalNAc) from UDP-[14C]GalNAc into HSV glycoproteins, as identified by immunoprecipitation. The sugar was selectively incorporated into the immature forms of herpesvirus glycoproteins pgC, pgD, and gA-pgB, which are known to contain N-linked glycans of the high-mannose type. The high incorporation of [14C]GalNAc into endogenous acceptors of HSV-1-infected RicR14 cells was consistent with the accumulation of immature forms of HSV glycoproteins which occurs in these cells. Mild alkaline borohydride treatment of glycoproteins labeled via GalNAc transferase showed that the transferred GalNAc was O-linked and represented the first sugar added to the peptide backbone.  相似文献   

3.
4.
5.
6.
O-glycosylation of mucin is initiated by the attachment of N-acetyl-D-galactosamine (GalNAc) to serine or threonine residues in mucin core polypeptides by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). It is not well understood how GalNAc attachment is regulated by multiple ppGalNAc-Ts in each cell. In the present study, the expression levels of murine ppGalNAc-Ts (mGalNAc-Ts), T1, T2, T3, T4, T6, and T7 were compared between mouse colon carcinoma colon 38 cells and variant SL4 cells, selected for their metastatic potentials, by using the competitive RT-PCR method. The expression levels of mGalNAc-T1, T2, and T7 were slightly higher in the SL4 cells than in the colon 38 cells, whereas the expression level of mGalNAc-T3 in the SL4 cells was 1.5% of that in the colon 38 cells. Products of enzymatic incorporations of GalNAc residues into FITC-PTTTPITTTTK peptide by the use of microsome fractions of these cells as the enzyme source were separated and characterized for the number of attached GalNAc residues and their positions. The maximum number of attached GalNAc residues was 6 and 4 when the microsome fractions of the colon 38 cells and SL4 cells were used, respectively. When the microsome fractions of the colon 38 cells were treated with a polyclonal antibody raised against mGalNAc-T3, the maximum number of incorporated GalNAc residues was 4. These results strongly suggest that mGalNAc-T3 in colon 38 cells is involved in additional transfer of GalNAc residues to this peptide.  相似文献   

7.
Familial tumoral calcinosis refers to a group of disorders inherited in an autosomal recessive fashion. Hyperphosphatemic tumoral calcinosis is characterized by increased re-absorption of phosphate through the renal proximal tubule, resulting in elevated phosphate concentration and deposition of calcified deposits in cutaneous and subcutaneous tissues, as well as, occasionally, in visceral organs. The disease was found to result from mutations in at least 3 genes: GALNT3, encoding a glycosyltransferase termed ppGalNacT3, FGF23 encoding a potent phosphaturic protein, and KL encoding Klotho. Recent data showed that ppGalNacT3 mediates O-glycosylation of FGF23, thereby allowing for its secretion and possibly protecting it from proteolysis-mediated inactivation. Klotho was found to serve as a co-receptor for FGF23, thereby integrating the genetic data into a single physiological system. The elucidation of the molecular basis of HFTC shed new light upon the mechanisms regulating phosphate homeostasis, suggesting innovative therapeutic strategies for the management of hyperphosphatemia in common acquired conditions such as chronic renal failure.  相似文献   

8.
Proteins that are expressed outside the cell must be synthesized, folded, and assembled in a way that ensures they can function in their designate location. Accordingly, these proteins are primarily synthesized in the endoplasmic reticulum (ER), which has developed a chemical environment more similar to that outside the cell. This organelle is equipped with a variety of molecular chaperones and folding enzymes that both assist the folding process, while at the same time exerting tight quality control measures that are largely absent outside the cell. A major post-translational modification of ER-synthesized proteins is disulfide bridge formation, which is catalyzed by the family of protein disulfide isomerases. As this covalent modification provides unique structural advantages to extracellular proteins, multiple pathways to disulfide bond formation have evolved. However, the advantages that disulfide bonds impart to these proteins come at a high cost to the cell. Very recent reports have shed light on how the cell can deal with or even exploit the side reactions of disulfide bond formation to maintain homeostasis of the ER and its folding machinery.  相似文献   

9.
Simple mucin-type cancer-associated O-glycan structures, such as the Tn antigen (GalNAc-O-Ser/Thr), are expressed by certain helminth parasites. These antigens are involved in several types of receptor-ligand interactions, and they are potential targets for immunotherapy. The aim of this work was to study the initiation pathway of mucin-type O-glycosylation in Fasciola hepatica, performing a biochemical and immunohistochemical characterisation of Tn and sialyl-Tn antigens, and evaluating the ppGaNTase activity, which catalyses the first step in O-glycan biosynthesis. Using ELISA, both Tn and sialyl-Tn antigens were detected predominantly in the somatic and deoxycholate extracts. Immunofluorescence analysis revealed that Tn antigen is preferentially expressed in testis, while sialyl-Tn glycoproteins were more widely distributed, being present in parenchymal cells, basal membrane of the tegument, and apical surface of epithelial cells lining the caeca. On the basis of their electrophoretic mobility, Tn glycoproteins were resolved as six components of 10, 37, 76, 125, 170 and 205 kDa, and sialyl-Tn components showed an apparent molecular mass of 28 and 32 kDa, and two broad bands of 90-110 and 170-190 kDa. The observation that only the 76 kDa Tn-glycoprotein remained in the 0.6 N perchloric acid-soluble fraction suggests that it could be a good candidate for mucin characterisation in this parasite. The ppGaNTase activity showed its maximal activity at pH 7-7.5 and 37 degrees C, showing that Mn(2+) was the best divalent cation activator. Using a panel of nine synthetic peptides as acceptor substrates, we found that F. hepatica ppGaNTase was able to glycosylate both threonines and serines, the best substrates being the peptides derived from the tandem repeat region of human mucins (MUC2 and MUC6), and from Trypanosoma cruzi and Trypanosoma brucei glycoproteins. The results reported here constitute the first evidence on O-glycosylation pathways in F. hepatica, and may help to identify new biological characteristics of this parasite as well as of the host-parasite relationship.  相似文献   

10.
Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, which catalyses the synthesis of the SM analogue ceramide phosphoethanolamine (CPE) in the ER lumen. Strikingly, SMSr produces only trace amounts of CPE, i.e., 300-fold less than SMS1-derived SM. Nevertheless, blocking its catalytic activity causes a substantial rise in ER ceramide levels and a structural collapse of the early secretory pathway. We find that the latter phenotype is not caused by depletion of CPE but rather a consequence of ceramide accumulation in the ER. Our results establish SMSr as a key regulator of ceramide homeostasis that seems to operate as a sensor rather than a converter of ceramides in the ER.  相似文献   

11.
12.
The scavenger receptor class B type 1 (SR-B1) facilitates uptake of cholesterol and carotenoids into the plasma membrane (PM) of mammalian cells. Downstream of SR-B1, ASTER-B protein mediates the nonvesicular transport of cholesterol to mitochondria for steroidogenesis. Mitochondria also are the place for the processing of carotenoids into diapocarotenoids by β-carotene oxygenase-2. However, the role of these lipid transport proteins in carotenoid metabolism has not yet been established. Herein, we showed that the recombinant StART-like lipid-binding domain of ASTER-A and B preferentially binds oxygenated carotenoids such as zeaxanthin. We established a novel carotenoid uptake assay and demonstrated that ASTER-B expressing A549 cells transport zeaxanthin to mitochondria. In contrast, the pure hydrocarbon β-carotene is not transported to the organelles, consistent with its metabolic processing to vitamin A in the cytosol by β-carotene oxygenase-1. Depletion of the PM from cholesterol by methyl-β-cyclodextrin treatment enhanced zeaxanthin but not β-carotene transport to mitochondria. Loss-of-function assays by siRNA in A549 cells and the absence of zeaxanthin accumulation in mitochondria of ARPE19 cells confirmed the pivotal role of ASTER-B in this process. Together, our study in human cell lines established ASTER-B protein as key player in nonvesicular transport of zeaxanthin to mitochondria and elucidated the molecular basis of compartmentalization of the metabolism of nonprovitamin A and provitamin A carotenoids in mammalian cells.  相似文献   

13.
Mucin type O-glycosylation begins with the transfer of GalNAc to serine and threonine residues on proteins by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminlytransferases. These enzymes all contain a lectin-like (QXW)(3) repeat sequence at the C terminus that consists of three tandem repeats (alpha, beta, and gamma). The putative lectin domain of one of the most ubiquitous isozymes, GalNAc-T1, is reportedly not functional. In this report, we have reevaluated the role of the GalNAc-T1 lectin domain. Deletion of the lectin domain resulted in a complete loss of enzymatic activity. We also found that GalNAc-T1 has two activities distinguished by their sensitivities to inhibition with free GalNAc; one activity is sensitive, and the other is resistant. In our experiments, the former activity is represented by the O-glycosylation of apomucin, an acceptor that contains multiple glycosylation sites, and the latter is represented by synthetic peptides that contain a single glycosylation site. Site-directed mutagenesis of the lectin domain selectively reduced the former activity and identified Asp(444) in the alpha repeat as the most important site for GalNAc recognition. A further reduction of the GalNAc-inhibitable activity was observed when both Asp(444) and the corresponding aspartate residues in the beta and the gamma repeats were mutated. This suggests a cooperative involvement of each repeat unit in the glycosylation of polypeptides with multiple acceptor sites.  相似文献   

14.
15.
Mutations in the gene encoding the glycosyltransferase polypeptide GalNAc-T3, which is involved in initiation of O-glycosylation, were recently identified as a cause of the rare autosomal recessive metabolic disorder familial tumoral calcinosis (OMIM 211900). Familial tumoral calcinosis is associated with hyperphosphatemia and massive ectopic calcifications. Here, we demonstrate that the secretion of the phosphaturic factor fibroblast growth factor 23 (FGF23) requires O-glycosylation, and that GalNAc-T3 selectively directs O-glycosylation in a subtilisin-like proprotein convertase recognition sequence motif, which blocks processing of FGF23. The study suggests a novel posttranslational regulatory model of FGF23 involving competing O-glycosylation and protease processing to produce intact FGF23.  相似文献   

16.
The endoplasmic reticulum (ER) provides an environment optimized for oxidative protein folding through the action of Ero1p, which generates disulfide bonds, and Pdi1p, which receives disulfide bonds from Ero1p and transfers them to substrate proteins. Feedback regulation of Ero1p through reduction and oxidation of regulatory bonds within Ero1p is essential for maintaining the proper redox balance in the ER. In this paper, we show that Pdi1p is the key regulator of Ero1p activity. Reduced Pdi1p resulted in the activation of Ero1p by direct reduction of Ero1p regulatory bonds. Conversely, upon depletion of thiol substrates and accumulation of oxidized Pdi1p, Ero1p was inactivated by both autonomous oxidation and Pdi1p-mediated oxidation of Ero1p regulatory bonds. Pdi1p responded to the availability of free thiols and the relative levels of reduced and oxidized glutathione in the ER to control Ero1p activity and ensure that cells generate the minimum number of disulfide bonds needed for efficient oxidative protein folding.  相似文献   

17.
A brain-liver circuit regulates glucose homeostasis   总被引:9,自引:0,他引:9  
Increased glucose production (GP) is the major determinant of fasting hyperglycemia in diabetes mellitus. Previous studies suggested that lipid metabolism within specific hypothalamic nuclei is a biochemical sensor for nutrient availability that exerts negative feedback on GP. Here we show that central inhibition of fat oxidation leads to selective activation of brainstem neurons within the nucleus of the solitary tract and the dorsal motor nucleus of the vagus and markedly decreases liver gluconeogenesis, expression of gluconeogenic enzymes, and GP. These effects require central activation of ATP-dependent potassium channels (K(ATP)) and descending fibers within the hepatic branch of the vagus nerve. Thus, hypothalamic lipid sensing potently modulates glucose metabolism via neural circuitry that requires the activation of K(ATP) and selective brainstem neurons and intact vagal input to the liver. This crosstalk between brain and liver couples central nutrient sensing to peripheral nutrient production and its disruption may lead to hyperglycemia.  相似文献   

18.
Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER-mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders.  相似文献   

19.
Kiss RS  You Z  Genest J  Behm DJ  Giaid A 《Peptides》2011,32(5):956-963
Urotensin II (UII) is a vasoactive peptide with pleotropic activity. Interestingly, UII levels are elevated in hyperlipidemic patients, and UII induces lipase activity in some species. However, the exact role UII plays in cholesterol homeostasis remains to be elucidated. UII knockout (UII KO) mice were generated and a plasma lipoprotein profile, and hepatocytes and macrophages cholesterol uptake, storage and synthesis was determined. UII KO had a decreased LDL cholesterol profile and liver steatosis compared to wildtype mice (WT). UII KO macrophages demonstrated enhanced ACAT activity and LDL uptake in the short term (up to 4 h), of which more LDL-delivered exogenously derived cholesterol was incorporated into cholesteryl ester (CE) than the WT macrophages. UII KO macrophages generated more than two times the amount of de novo endogenously synthesized cholesterol, and of this cholesterol more than two times the relative amount was esterified to CE. In comparison, results in hepatocytes demonstrated that far more exogenously derived cholesterol was incorporated into CE in the WT cells, generating almost ten times the amount of CE than UII KO. WT cells synthesize de novo almost ten times the amount of cholesterol than UIIKO, and of that cholesterol, almost two times the amount of CE in WT than UII KO hepatocytes. In addition, more ApoB lipoproteins were secreted from WT than UII KO hepatocytes. These results demonstrate a fundamental difference between macrophages and hepatocytes in terms of cholesterol homeostasis, and suggest an important role for UII in modulating cholesterol regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号