首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosomes compartmentalize many metabolic enzymes in glycosomes, peroxisome-related microbodies that are essential to parasite survival. While it is understood that these dynamic organelles undergo profound changes in protein composition throughout life cycle differentiation, the adaptations that occur in response to changes in environmental conditions are less appreciated. We have adopted a fluorescent-organelle reporter system in procyclic Trypanosoma brucei by expressing a fluorescent protein (FP) fused to a glycosomal targeting sequence (peroxisome-targeting sequence 2 [PTS2]). In these cell lines, PTS2-FP is localized within import-competent glycosomes, and organelle composition can be analyzed by microscopy and flow cytometry. Using this reporter system, we have characterized parasite populations that differ in their glycosome composition. In glucose-rich medium, two parasite populations are observed; one population harbors glycosomes bearing the full repertoire of glycosome proteins, while the other parasite population contains glycosomes that lack the usual glycosome-resident proteins but do contain the glycosome membrane protein TbPEX11. Interestingly, these cells lack TbPEX13, a protein essential for the import of proteins into the glycosome. This bimodal distribution is lost in low-glucose medium. Furthermore, we have demonstrated that changes in environmental conditions trigger changes in glycosome protein composition. These findings demonstrate a level of procyclic glycosome diversity heretofore unappreciated and offer a system by which glycosome dynamics can be studied in live cells. This work adds to our growing understanding of how the regulation of glycosome composition relates to environmental sensing.  相似文献   

2.
Controversy exists in the literature over the involvement of the endoplasmic reticulum (ER) in the delivery of membrane proteins to peroxisomes. In this study, the involvement of the ER in the trafficking of two Arabidopsis (Arabidopsis thaliana) peroxisomal membrane proteins was investigated using confocal laser scanning microscopy of living cells expressing fusions between enhanced yellow fluorescent protein (eYFP) and AtPEX2 and AtPEX10. The fusion proteins were always detected in peroxisomes and cytosol irrespective of the location of the eYFP tag or the level of expression. The cytosolic fluorescence was not due to cleavage of the eYFP reporter from the C-terminal fusion proteins. Blocking known ER transport routes using the fungal metabolite Brefeldin A or expressing dominant negative mutants of Sar1 or RabD2a had no effect on the trafficking of AtPEX2 and AtPEX10 to peroxisomes. We conclude that AtPEX2 and AtPEX10 are inserted into peroxisome membranes directly from the cytosol.  相似文献   

3.
Proteasome is the main intracellular organelle involved in the proteolytic degradation of abnormal, misfolded, damaged or oxidized proteins 1, 2. Maintenance of proteasome activity was implicated in many key cellular processes, like cell''s stress response 3, cell cycle regulation and cellular differentiation 4 or in immune system response 5. The dysfunction of the ubiquitin-proteasome system has been related to the development of tumors and neurodegenerative diseases 4, 6. Additionally, a decrease in proteasome activity was found as a feature of cellular senescence and organismal aging 7, 8, 9, 10. Here, we present a method to measure ubiquitin-proteasome activity in living cells using a GFP-dgn fusion protein. To be able to monitor ubiquitin-proteasome activity in living primary cells, complementary DNA constructs coding for a green fluorescent protein (GFP)–dgn fusion protein (GFP–dgn, unstable) and a variant carrying a frameshift mutation (GFP–dgnFS, stable 11) are inserted in lentiviral expression vectors. We prefer this technique over traditional transfection techniques because it guarantees a very high transfection efficiency independent of the cell type or the age of the donor. The difference between fluorescence displayed by the GFP–dgnFS (stable) protein and the destabilized protein (GFP-dgn) in the absence or presence of proteasome inhibitor can be used to estimate ubiquitin-proteasome activity in each particular cell strain. These differences can be monitored by epifluorescence microscopy or can be measured by flow cytometry.  相似文献   

4.
5.
Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest1, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association 2, 3. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells 2. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions 4-7. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease 7. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations).Download video file.(77M, mov)  相似文献   

6.
In recent years, biotechnological conversion of the alternative carbon source acetate has attracted much attention. So far, acetate has been mainly used for microbial production of bioproducts with bulk applications. In this study, we aimed to investigate the potential of acetate as carbon source for heterologous protein production using the acetate-utilizing platform organism Corynebacterium glutamicum. For this purpose, expression of model protein eYFP with the promoter systems T7lac and tac was characterized during growth of C. glutamicum on acetate as sole carbon source. The results indicated a 3.3-fold higher fluorescence level for acetate-based eYFP production with T7 expression strain MB001(DE3) pMKEx2-eyfp compared to MB001 pEKEx2-eyfp. Interestingly, comparative eyfp expression studies on acetate or glucose revealed an up to 83% higher biomass-specific production for T7 RNAP-dependent eYFP production using acetate as carbon source. Furthermore, high-level protein accumulation on acetate was demonstrated for the first time in a high cell density cultivation process with pH-coupled online feeding control, resulting in a final protein titer of 2.7 g/L and product yield of 4 g per 100 g cell dry weight. This study presents a first proof of concept for efficient microbial upgrading of potentially low-cost acetate into high-value bioproducts, such as recombinant proteins.  相似文献   

7.
8.
Birschwilks M  Sauer N  Scheel D  Neumann S 《Planta》2007,226(5):1231-1241
Arabidopsis thaliana and Cuscuta spec. represent a compatible host–parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host–parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP–ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP–ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP–ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.  相似文献   

9.
A new approach is described to quantify the number of enzyme molecules, such as Candia antarctica lipase B, that are displayed on the cell surface of Pichia pastoris. Enhanced green fluorescent protein (EGFP) and Candida antarctica lipase B (CALB) were fused and displayed on the surface of P. pastoris by linking to the anchor flocculation functional domain of FLO1p from Saccharomyces cerevisiae. Confocal laser scanning microscopy, flow cytometry, and fluorescence spectrophotometry were used to monitor the fluorescence intensity of fused EGFP. Combined with the corresponding protein concentration detected in the medium, a standard curve describing the relationship between the fusion protein concentration and fluorescence intensity were obtained and could be used to number CALB displayed on the cell surface. The results showed that approx. 104 molecules of CALB molecules were immobilized on the single P. pastoris cell wall based on FS anchor system.  相似文献   

10.
Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons. Although tremendous progress has been made in understanding the protein machinery that drives fusion of SVs with the presynaptic membrane, little progress has been made in understanding changes in the membrane structure that accompany this process. We used lipid monolayers of defined composition to mimic biological membranes, which were probed by x-ray reflectivity and grazing incidence x-ray diffraction. These techniques allowed us to successfully monitor structural changes in the membranes at molecular level, both in response to injection of SVs in the subphase below the monolayer, as well as to physiological cues involved in neurotransmitter release, such as increases in the concentration of the membrane lipid PIP2, or addition of physiological levels of Ca2+. Such structural changes may well modulate vesicle fusion in vivo.  相似文献   

11.
Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed.  相似文献   

12.
Cellular targeting of lycopene biosynthetic enzymes was investigated in Pichia pastoris X-33. Three lycopene pathway enzymes, CrtE, CrtB, and CrtI, were fused to fluorescent EGFPs with or without a peroxisomal targeting sequence (PTS1) and then expressed in P. pastoris. When P. pastoris was grown in YPD, the PTS1 fusion enzymes were found to be localized in peroxisomes, whereas the enzymes not fused with PTS1 were equally distributed throughout the entire cell. A similar targeting pattern was also observed in P. pastoris strains that were grown in peroxisome-proliferating medium, YPOT. Analysis of the fluorescent images of isolated peroxisomes showed that the PTS1 fused enzymes were dominantly present in peroxisomes whereas small amount of the enzymes not fused with PTS1 were non-specifically sent to peroxisomes. These results indicate that PTS1 specifically target lycopene pathway enzymes into peroxisomes and this targeting pathway was strong enough to overcome their inherent targeting program. In conclusion, we first showed that carotenogenic enzymes can be targeted into the specific cellular location of recombinant hosts and this targeting strategy can serve as the basis for the subsequent development of sophisticated pathway engineering in microorganisms.  相似文献   

13.
Dynamic changes in intracellular calcium concentration in response to various stimuli regulates many cellular processes such as proliferation, differentiation, and apoptosis1. During apoptosis, calcium accumulation in mitochondria promotes the release of pro-apoptotic factors from the mitochondria into the cytosol2. It is therefore of interest to directly measure mitochondrial calcium in living cells in situ during apoptosis. High-resolution fluorescent imaging of cells loaded with dual-excitation ratiometric and non-ratiometric synthetic calcium indicator dyes has been proven to be a reliable and versatile tool to study various aspects of intracellular calcium signaling. Measuring cytosolic calcium fluxes using these techniques is relatively straightforward. However, measuring intramitochondrial calcium levels in intact cells using synthetic calcium indicators such as rhod-2 and rhod-FF is more challenging. Synthetic indicators targeted to mitochondria have blunted responses to repetitive increases in mitochondrial calcium, and disrupt mitochondrial morphology3. Additionally, synthetic indicators tend to leak out of mitochondria over several hours which makes them unsuitable for long-term experiments. Thus, genetically encoded calcium indicators based upon green fluorescent protein (GFP)4 or aequorin5 targeted to mitochondria have greatly facilitated measurement of mitochondrial calcium dynamics. Here, we describe a simple method for real-time measurement of mitochondrial calcium fluxes in response to different stimuli. The method is based on fluorescence microscopy of ''ratiometric-pericam'' which is selectively targeted to mitochondria. Ratiometric pericam is a calcium indicator based on a fusion of circularly permuted yellow fluorescent protein and calmodulin4. Binding of calcium to ratiometric pericam causes a shift of its excitation peak from 415 nm to 494 nm, while the emission spectrum, which peaks around 515 nm, remains unchanged. Ratiometric pericam binds a single calcium ion with a dissociation constant in vitro of ~1.7 μM4. These properties of ratiometric pericam allow the quantification of rapid and long-term changes in mitochondrial calcium concentration. Furthermore, we describe adaptation of this methodology to a standard wide-field calcium imaging microscope with commonly available filter sets. Using two distinct agonists, the purinergic agonist ATP and apoptosis-inducing drug staurosporine, we demonstrate that this method is appropriate for monitoring changes in mitochondrial calcium concentration with a temporal resolution of seconds to hours. Furthermore, we also demonstrate that ratiometric pericam is also useful for measuring mitochondrial fission/fragmentation during apoptosis. Thus, ratiometric pericam is particularly well suited for continuous long-term measurement of mitochondrial calcium dynamics during apoptosis.  相似文献   

14.
Many fluorescent proteins have been created to act as genetically encoded biosensors. With these sensors, changes in fluorescence report on chemical states in living cells. Transition metal ions such as copper, nickel, and zinc are crucial in many physiological and pathophysiological pathways. Here, we engineered a spectral series of optimized transition metal ion-binding fluorescent proteins that respond to metals with large changes in fluorescence intensity. These proteins can act as metal biosensors or imaging probes whose fluorescence can be tuned by metals. Each protein is uniquely modulated by four different metals (Cu2+, Ni2+, Co2+, and Zn2+). Crystallography revealed the geometry and location of metal binding to the engineered sites. When attached to the extracellular terminal of a membrane protein VAMP2, dimeric pairs of the sensors could be used in cells as ratiometric probes for transition metal ions. Thus, these engineered fluorescent proteins act as sensitive transition metal ion-responsive genetically encoded probes that span the visible spectrum.  相似文献   

15.
The major membrane phospholipid classes, described thus far, include phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), and phosphatidylinositol (PtdIns). Here, we demonstrate the natural occurrence and genetic origin of an exclusive and rather abundant lipid, phosphatidylthreonine (PtdThr), in a common eukaryotic model parasite, Toxoplasma gondii. The parasite expresses a novel enzyme PtdThr synthase (TgPTS) to produce this lipid in its endoplasmic reticulum. Genetic disruption of TgPTS abrogates de novo synthesis of PtdThr and impairs the lytic cycle and virulence of T. gondii. The observed phenotype is caused by a reduced gliding motility, which blights the parasite egress and ensuing host cell invasion. Notably, the PTS mutant can prevent acute as well as yet-incurable chronic toxoplasmosis in a mouse model, which endorses its potential clinical utility as a metabolically attenuated vaccine. Together, the work also illustrates the functional speciation of two evolutionarily related membrane phospholipids, i.e., PtdThr and PtdSer.  相似文献   

16.
17.
Peroxisomes are functionally diverse organelles that are wholly dependent on import of nuclear-encoded proteins. The signals that direct proteins into these organelles are either found at the C-terminus (type 1 peroxisomal targeting signal; PTS1) or N-terminus (type 2 peroxisomal targeting signal; PTS2) of the protein. Based on a limited number of tests in heterologous systems, PTS1 signals appear to be conserved across species. To further test the generality of this conclusion and to establish the extent to which the PTS1 signals can be relied on for biotechnological purposes across species, we tested two PTS1 signals for their ability to target fluorescent proteins in diverse plant species. Transient assays following microprojectile bombardment showed that the six amino acid PTS1 sequence (RAVARL) from spinach glycolate oxidase effectively targets green fluorescent fusion protein to the leaf peroxisomes in all 20 crops tested, including four monocots (sugarcane, wheat, corn and onion) and 16 dicots (carrot, cucumber, broccoli, tomato, lettuce, turnip, radish, cauliflower, cabbage, capsicum, celery, tobacco, petunia, beetroot, eggplant and coriander). Similarly, results indicated that the 10 amino acid PTS1 sequence (IHHPRELSRL) from pumpkin malate synthase effectively targets red fluorescent fusion protein to the leaf peroxisomes in all four crops tested including monocot (sugarcane) and dicot (cabbage, celery and pumpkin) species. These signal sequences should be useful metabolic engineering tools to direct recombinant proteins to the leaf peroxisomes in diverse plant species of biotechnological interest.  相似文献   

18.
Phosphoenolpyruvate (PEP)-dependent phosphorylation experiments have indicated that the grampositive bacteriumStaphylococcus carnosus possesses an EIICBA fusion protein specific for glucose. Here we report the cloning of a 7 kb genomic DNA fragment containing two genes,glcA andglcB, coding for the glucose-specific PTS transporters EIIGlc1 and EIIGlc2 which are 69% identical. The translation products derived from the nucleotide sequence consist of 675 and 692 amino acid residues and have calculated molecular weights of 73 025 and 75 256, respectively. Both genes can be stably maintained inEscherichia coli cells and restore the ability to ferment glucose toptsG deletion mutants ofE. coli. This demonstrates the ability of the PTS proteins HPr and/or EIIAGlc of a gram-negative organism (E. coli) to phosphorylate an EIICBAGlc from a gram-positive organism (S. carnosus).  相似文献   

19.
Phosphoenolpyruvate (PEP)-dependent phosphorylation experiments have indicated that the grampositive bacteriumStaphylococcus carnosus possesses an EIICBA fusion protein specific for glucose. Here we report the cloning of a 7 kb genomic DNA fragment containing two genes,glcA andglcB, coding for the glucose-specific PTS transporters EIIGlc1 and EIIGlc2 which are 69% identical. The translation products derived from the nucleotide sequence consist of 675 and 692 amino acid residues and have calculated molecular weights of 73 025 and 75 256, respectively. Both genes can be stably maintained inEscherichia coli cells and restore the ability to ferment glucose toptsG deletion mutants ofE. coli. This demonstrates the ability of the PTS proteins HPr and/or EIIAGlc of a gram-negative organism (E. coli) to phosphorylate an EIICBAGlc from a gram-positive organism (S. carnosus).  相似文献   

20.

Background

While the static structure of the intracellular Ca2+ release channel, the ryanodine receptor type 1 (RyR1) has been determined using cryo electron microscopy, relatively little is known concerning changes in RyR1 structure that accompany channel gating. Förster resonance energy transfer (FRET) methods can resolve small changes in protein structure although FRET measurements of RyR1 are hampered by an inability to site-specifically label the protein with fluorescent probes.

Methodology/Principal Findings

A novel site-specific labeling method is presented that targets a FRET acceptor, Cy3NTA to 10-residue histidine (His) tags engineered into RyR1. Cy3NTA, comprised of the fluorescent dye Cy3, coupled to two Ni2+/nitrilotriacetic acid moieties, was synthesized and functionally tested for binding to His-tagged green fluorescent protein (GFP). GFP fluorescence emission and Cy3NTA absorbance spectra overlapped significantly, indicating that FRET could occur (Förster distance = 6.3 nm). Cy3NTA bound to His10-tagged GFP, quenching its fluorescence by 88%. GFP was then fused to the N-terminus of RyR1 and His10 tags were placed either at the N-terminus of the fused GFP or between GFP and RyR1. Cy3NTA reduced fluorescence of these fusion proteins by 75% and this quenching could be reversed by photobleaching Cy3, thus confirming GFP-RyR1 quenching via FRET. A His10 tag was then placed at amino acid position 1861 and FRET was measured from GFP located at either the N-terminus or at position 618 to Cy3NTA bound to this His tag. While minimal FRET was detected between GFP at position 1 and Cy3NTA at position 1861, 53% energy transfer was detected from GFP at position 618 to Cy3NTA at position 1861, thus indicating that these sites are in close proximity to each other.

Conclusions/Significance

These findings illustrate the potential of this site-specific labeling system for use in future FRET-based experiments to elucidate novel aspects of RyR1 structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号