首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
IL-1β is believed to play a pathogenic role in the development of pancreatitis. Expression of human IL-1β in pancreatic acinar cells produces chronic pancreatitis, characterized by extensive intrapancreatic inflammation, atrophy, and fibrosis. To determine if activation of trypsinogen is important in the pathogenesis of chronic pancreatitis in this model, we crossed IL-1β transgenic [Tg(IL1β)] mice with mice expressing a trypsin inhibitor that is normally produced in rat pancreatic acinar cells [pancreatic secretory trypsin inhibitor (PTSI) I]. We previously demonstrated that transgenic expression of PSTI-I [Tg(Psti1)] increased pancreatic trypsin inhibitor activity by 190%. Tg(IL1β) mice were found to have marked pancreatic inflammation, characterized by histological changes, including acinar cell loss, inflammatory cell infiltration, and fibrosis, as well as elevated myeloperoxidase activity and elevated pancreatic trypsin activity, as early as 6 wk of age. In contrast to Tg(IL1β) mice, pancreatitis was significantly less severe in dual-transgenic [Tg(IL1β)-Tg(Psti1)] mice expressing IL-1β and PSTI-I in pancreatic acinar cells. These findings indicate that overexpression of PSTI-I reduces the severity of pancreatitis and that pancreatic trypsin activity contributes to the pathogenesis of an inflammatory model of chronic pancreatitis.  相似文献   

2.
Pancreatic acinar cells are critical in gastrointestinal physiology and pancreatitis and may be involved in pancreatic cancer. Previously, a short rat pancreatic elastase promoter has been widely utilized to control acinar cell transgene expression. However, this partial sequence does not confer robust and stable expression. In this study, we tested the hypothesis that a transgene employing bacterial-artificial-chromosome (BAC) technology to express a tamoxifen-regulated Cre recombinase from a full-length mouse elastase gene (BAC-Ela-CreErT) would be more robust and stable. When founders were crossed with Rosa26 reporter mice nearly 100% of acini expressed beta-galactosidase after tamoxifen treatment. The expression was specific for pancreatic acinar cells and these characteristics have remained stable for 2 years. However, because of high levels of expression in differentiated acinar cells, this construct is tamoxifen independent in approximately 50% of adult acinar cells. This model of pancreatic acinar specific Cre expression is a powerful tool for future transgenic and knockout studies.  相似文献   

3.
Autophagy is mostly a nonselective bulk degradation system within cells. Recent reports indicate that autophagy can act both as a protector and killer of the cell depending on the stage of the disease or the surrounding cellular environment (for review see Cuervo, A.M. 2004. Trends Cell Biol. 14:70-77). We found that cytoplasmic vacuoles induced in pancreatic acinar cells by experimental pancreatitis were autophagic in origin, as demonstrated by microtubule-associated protein 1 light chain 3 expression and electron microscopy experiments. To analyze the role of macroautophagy in acute pancreatitis, we produced conditional knockout mice lacking the autophagy-related 5 gene in acinar cells. Acute pancreatitis was not observed, except for very mild edema in a restricted area, in conditional knockout mice. Unexpectedly, trypsinogen activation was greatly reduced in the absence of autophagy. These results suggest that autophagy exerts devastating effects in pancreatic acinar cells by activation of trypsinogen to trypsin in the early stage of acute pancreatitis through delivering trypsinogen to the lysosome.  相似文献   

4.
Transgenic mouse lines expressing a soluble form of human nectin-2 (hNectin-2Ig Tg) exhibited distinctive elevation of amylase and lipase levels in the sera. In this study, we aimed to clarify the histopathology and to propose the transgenic mouse lines as new animal model for characteristic pancreatic exocrine defects. The significant increase of amylase and lipase levels in sera of the transgenic lines approximately peaked at 8 weeks old and thereafter, plateaued or gradually decreased. The histopathology in transgenic acinar cells was characterized by intracytoplasmic accumulation of abnormal proteins with decrease of normal zymogen granules. The hNectin-2Ig expression was observed in the cytoplasm of pancreatic acinar cells, which was consistent with zymogen granules. However, signals of hNectin-2Ig were very weak in the transgenic acinar cells with the abnormal cytoplasmic accumulaion. The PCNA-positive cells increased in the transgenic pancreas, which suggested the affected acinar cells were regenerated. Acinar cells of hNectin-2Ig Tg had markedly small number of zymogen granules with remarkable dilation of the endoplasmic reticulum (ER) lumen containing abundant abnormal proteins. In conclusion, hNectin-2Ig Tg is proposed as a new animal model for characteristic pancreatic exocrine defects, which are due to the ER stress induced by expression of mutated cell adhesion molecule that is a soluble form of human nectin-2.  相似文献   

5.
The pathogenic mechanisms of autoimmune pancreatitis (AIP), an increasingly recognized, immune-mediated form of chronic pancreatitis, have so far remained elusive. Treatment options for AIP are currently limited and disease relapse is frequent. Still, AIP can be characterized by specific clinical and histologic features. It has turned out that as described in other autoimmune diseases the generation of tertiary lymphoid organs is also a hallmark of patients with AIP. We have recently demonstrated that pancreata derived from human AIP patients display overexpression of lymphotoxin (LT) α and β and LTβR-target genes expressed by immune cells but also by irradiation resistant cells of the pancreas (e.g. acinar cells). Expression of LT α and β on acinar cells in murine pancreata Tg(Ela1-Lta,b) mice led to chronic pancreatitis and sufficed to reproduce key features of human AIP including the development of autoimmunity and AIP associated secondary extra pancreatic pathologies. Here, we review how aberrant and ectopic expression of LT α and β can induce inflammation and autoimmune diseases in general and how this knowledge might specifically lead to an alternative treatment for patients suffering from autoimmune pancreatitis.  相似文献   

6.
Hereditary chronic pancreatitis (HCP) is a very rare form of early onset chronic pancreatitis. With the exception of the young age at diagnosis and a slower progression, the clinical course, morphological features and laboratory findings of HCP do not differ from those of patients with alcoholic chronic pancreatitis. As well, diagnostic criteria and treatment of HCP resemble that of chronic pancreatitis of other causes. The clinical presentation is highly variable and includes chronic abdominal pain, impairment of endocrine and exocrine pancreatic function, nausea and vomiting, maldigestion, diabetes, pseudocysts, bile duct and duodenal obstruction, and rarely pancreatic cancer. Fortunately, most patients have a mild disease. Mutations in the PRSS1 gene, encoding cationic trypsinogen, play a causative role in chronic pancreatitis. It has been shown that the PRSS1 mutations increase autocatalytic conversion of trypsinogen to active trypsin, and thus probably cause premature, intrapancreatic trypsinogen activation disturbing the intrapancreatic balance of proteases and their inhibitors. Other genes, such as the anionic trypsinogen (PRSS2), the serine protease inhibitor, Kazal type 1 (SPINK1) and the cystic fibrosis transmembrane conductance regulator (CFTR) have been found to be associated with chronic pancreatitis (idiopathic and hereditary) as well. Genetic testing should only be performed in carefully selected patients by direct DNA sequencing and antenatal diagnosis should not be encouraged. Treatment focuses on enzyme and nutritional supplementation, pain management, pancreatic diabetes, and local organ complications, such as pseudocysts, bile duct or duodenal obstruction. The disease course and prognosis of patients with HCP is unpredictable. Pancreatic cancer risk is elevated. Therefore, HCP patients should strongly avoid environmental risk factors for pancreatic cancer.  相似文献   

7.
Ohmuraya M  Yamamura K 《Autophagy》2008,4(8):1060-1062
Autodigestion of the pancreas by its own prematurely activated digestive proteases is thought to be an important event in the onset of acute pancreatitis. Although lysosomal hydrolases, such as cathepsin B, play a key role in intrapancreatic trypsinogen activation, it remains unclear where and how trypsinogen meets these lysosomal enzymes. Autophagy is an intracellular bulk degradation system in which cytoplasmic components are directed to the lysosome/vacuole by a membrane-mediated process. To analyze the role of autophagy in acute pancreatitis, we produced a conditional knockout mouse that lacks the autophagy-related (Atg) gene Atg5 in the pancreatic acinar cells. The severity of acute pancreatitis induced by cerulein is greatly reduced in these mice. In addition, Atg5-deficient acinar cells show a significantly decreased level of trypsinogen activation. These data suggest that autophagy exerts a detrimental effect in pancreatic acinar cells by activation of trypsinogen to trypsin. We propose a theory in which autophagy accelerates trypsinogen activation by lysosomal hydrolases under acidic conditions, thus triggering acute pancreatitis in its early stage.  相似文献   

8.
《Autophagy》2013,9(8):1060-1062
Auto-digestion of the pancreas by its own prematurely activated digestive proteases is thought to be an important event in the onset of acute pancreatitis. Although lysosomal hydrolases, such as cathepsin B, play a key role in intrapancreatic trypsinogen activation, it remains unclear where and how trypsinogen meets these lysosomal enzymes. Autophagy is an intracellular bulk degradation system in which cytoplasmic components are directed to the lysosome/vacuole by a membrane-mediated process. To analyze the role of autophagy in acute pancreatitis, we produced a conditional knockout mouse that lacks the autophagy-related (Atg) gene Atg5 in the pancreatic acinar cells. The severity of acute pancreatitis induced by cerulein is greatly reduced in these mice. In addition, Atg5-deficient acinar cells show a significantly decreased level of trypsinogen activation. These data suggest that autophagy exerts a detrimental effect in pancreatic acinar cells by activation of trypsinogen to trypsin. We propose a theory in which autophagy accelerates trypsinogen activation by lysosomal hydrolases under acidic conditions, thus triggering acute pancreatitis in its early stage.

Addendum to: Hashimoto D, Ohmuraya M, Hirota M, Yamamoto A, Suyama K, Ida S, Okumura Y, Takahashi E, Kido H, Araki K, Baba H, Mizushima N, Yamamura K. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 2008; 181:1065-72.  相似文献   

9.
10.
用基因产物直接测序法对2个遗传性胰腺炎家系中胰腺炎患者(共有4例成员)的胰蛋白酶原基因(cationic trypsinogen,PRSS1)5个外显子进行测序,并分析其各自的临床特征.在4例胰腺炎患者中均出现了PRSS1基因杂合突变,但两家系PRSS1基因突变的位点不同,且临床表现差异较大,其中家系1出现6例糖尿病患者且发病年龄较家系2明显延迟,平均发病年龄为29岁,分析其PRSS1基因发现3号外显子336位碱基存在G→A杂合性突变,为中性突变,表达的氨基酸从赖氨酸(Lys)→赖氨酸(Lys),同时在同一外显子的361位碱基还存在另一个G→A杂合性突变,造成121位的丙氨酸(Ala)被苏氨酸(Thr)所取代,胰蛋白酶原的空间结构发生改变,其与抑制因子的结合位点消失,"保护失败"而产生有活性的胰蛋白酶,造成胰腺自身的消化.而家系2未发现糖尿病患者,其胰腺炎患者的血清肿瘤标志物不增高,先证者(Ⅲ8)在胰腺炎发病过程中表现为CD4 T/CD8 Tcell和乙肝表面抗体(anti-HBs)随病程进展逐渐降低,而Ⅲ7不表现出此现象,分析其PRSS1基因发现3号外显子361位碱基同样存在G→A(c.361G→A)突变,而且在415位还存在一个杂合性突变点T→A(c.415T→A),其中c.415T→A不存在于Ⅲ7.胰蛋白酶原基因存在多种形式的突变,而且与临床表型相关.  相似文献   

11.
To examine mechanisms that might be related to biliary pancreatitis, we examined the effects of pancreatic duct ligation (PDL) with pancreatic stimulation in vivo. PDL alone caused no increase in pancreatic levels of trypsinogen activation peptide (TAP), trypsin, or chymotrypsin and did not initiate pancreatitis. Although bombesin caused zymogen activation within the pancreas, the increases were slight and it did not cause pancreatitis. However, the combination of PDL with bombesin resulted in prominent increases in pancreatic TAP, trypsin, chymotrypsin, and the appearance of TAP in acinar cells and caused pancreatitis. Disruption of the apical actin network in the acinar cell was observed when PDL was combined with bombesin but not with PDL or bombesin alone. These studies suggest that when PDL is combined with pancreatic acinar cell stimulation, it can promote zymogen activation, the retention of active enzymes in acinar cells, and the development of acute pancreatitis.  相似文献   

12.
The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T−/−), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T−/− mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.  相似文献   

13.
14.
15.
16.
Type I interferon constitutes an essential component of the combinational therapy against viral disease. Acute pancreatitis is one side effect of type I interferon-based therapy, implying that activation of type I interferon signaling affects the homeostasis and integrity of pancreatic acinar cells. Here, we investigated the role of type I interferon signaling in pancreatic acinar cells using a caerulein-induced murine model of acute pancreatitis. Pancreas-specific ablation of interferon (alpha and beta) receptor 1 (Ifnar1) partially protected animals from caerulein-induced pancreatitis, as demonstrated by reduced tissue damage. Profiling of infiltrating immune cells revealed that this dampened tissue damage response correlated with the number of macrophages in the pancreas. Pharmacologic depletion of macrophages reversed the protective effect of Ifnar1 deficiency. Furthermore, expression of chemokine (C-C motif) ligand 2 (Ccl2), a potent factor for macrophage recruitment, was significantly increased in the Ifnar1-deficient pancreas. Thus, type I interferon signaling in pancreatic acinar cells controls pancreatic homeostasis by affecting the macrophage-mediated inflammatory response in the pancreas.  相似文献   

17.
18.
Intra-acinar cell nuclear factor-kappaB (NF-kappaB) and trypsinogen activation are early events in secretagogue-induced acute pancreatitis. We have studied the relationship between NF-kappaB and trypsinogen activation in rat pancreas. CCK analogue caerulein induces early (within 15 min) parallel activation of both NF-kappaB and trypsinogen in pancreas in vivo as well as in pancreatic acini in vitro. However, NF-kappaB activation can be induced without trypsinogen activation by lipopolysaccharide in pancreas in vivo and by phorbol ester in pancreatic acini in vitro. Stimulation of acini with caerulein after 6 h of culture results in NF-kappaB but not trypsinogen activation. Protease inhibitors (AEBSF, TLCK, and E64d) inhibit both intracellular trypsin activity and NF-kappaB activation in caerulein stimulated acini. A chymotrypsin inhibitor (TPCK) inhibits NF-kappaB activation but not trypsin activity. The proteasome inhibitor MG-132 prevents caerulein-induced NF-kappaB activation but does not prevent trypsinogen activation. These findings indicate that although caerulein-induced NF-kappaB and trypsinogen activation are temporally closely related, they are independent events in pancreatic acinar cells. NF-kappaB activation per se is not required for the development of early acinar cell injury by supramaximal secretagogue stimulation.  相似文献   

19.
20.
Group B coxsackieviruses are associated with chronic inflammatory diseases of the pancreas, heart, and central nervous system. Chronic pancreatitis, which can develop from acute pancreatitis, is considered a premalignant disorder because it is a major risk factor for pancreatic cancer. To explore the genetic events underlying the progression of acute to chronic disease, a comparative analysis of global gene expression during coxsackievirus B4-induced acute and chronic pancreatitis was undertaken. A key feature of acute pancreatitis that resolved was tissue regeneration, which was accompanied by increased expression of genes involved in cell growth, inhibition of apoptosis, and embryogenesis and by increased division of acinar cells. Acute pancreatitis that progressed to chronic pancreatitis was characterized by lack of tissue repair, and the expression map highlighted genes involved in apoptosis, acinoductular metaplasia, remodeling of the extracellular matrix, and fibrosis. Furthermore, immune responses appeared skewed toward development of alternatively activated (M2) macrophages and T helper 2 (Th2) cells during disease that resolved and toward classically activated (M1) macrophages and Th1 cells during disease that progressed. Our hypothesis is that growth and differentiation signals coupled with the M2/Th2 milieu favor acinar cell proliferation, while diminished growth signals and the M1/Th1 milieu favor apoptosis of acinar cells and remodeling/proliferation of the extracellular matrix, resulting in fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号