首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Microbiota analysis of blown pack spoiled salami revealed five distinguishable Lactobacillus isolates we could not assign to a known species. Two of the isolates (TMW 1.2172T and TMW 1.1920) are rod-shaped, whilst three isolates (TMW 1.2098T, TMW 1.2118 and TMW 1.2188) appear coccus shaped or as short rods. All isolates are Gram-stain positive, facultative anaerobic, catalase and oxidase negative, non-motile and non-sporulating. Phylogenetic analysis of the 16S rRNA, dnaK, pheS and rpoA gene sequences revealed two distinct lineages within the genus Lactobacillus (L.). The isolates are members of the Lactobacillus alimentarius group with Lactobacillus ginsenosidimutans DSM 24154T (99.4% 16S similarity), Lactobacillus versmoldensis DSM 14857T (97.9%) and Lactobacillus furfuricola DSM 27174T (97.7%) as phylogenetic closest related species and L. alimentarius DSM 20249T (97.7%) and Lactobacillus paralimentarius DSM 13961T (97.5%) as closest relatives, respectively. Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the isolates and their close related type strains are lower than 80% and 25%, respectively. For both designated type strains, the peptidoglycan type is A4α l-Lys-d-Asp and the major fatty acids are C16:0, C18:1ω9c and summed feature 7. Based on phylogenetic, phenotypic and chemotaxonomic analysis we demonstrated that the investigated isolates belong to two novel Lactobacillus species for which we propose the names Lactobacillus salsicarnum with the type strain TMW 1.2098T = DSM 109451T = LMG 31401T and Lactobacillus halodurans with the type strain TMW 1.2172T = DSM 109452T = LMG 31402T.  相似文献   

2.
Four bacterial strains designated 410T, 441, 695T and 736 were isolated from maize root in Beijing, P. R. China. Based on 16S rRNA gene phylogeny, the four strains formed two clusters in the genus Caulobacter. Since strain 441 was a clonal variety of strain 410T, only three strains were selected for further taxonomic studies. The whole genome average nucleotide identity (ANI) value between strains 410T and 695T was 94.65%, and both strains shared less than 92.10% ANI values with their close phylogenetic neighbors Caulobacter vibrioides DSM 9893T, Caulobacter segnis ATCC 21756T and Caulobacter flavus CGMCC 1.15093T. Strains 410T and 695T contained Q-10 as the sole ubiquinone and their major fatty acids were C16:0, 11-methyl C18:1ω 0, 11-methyl C18: 1ω7c, summed feature 3 (C16:1ω7c and/or C16:1ω 1ω7c and/or C16: 1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω 1ω7c and/or C18: 1ω6c). Their major polar lipids consisted of glycolipids and phosphatidylglycerol, and phenotypic tests differentiated them from their closest phylogenetic neighbors. Based on the results obtained, it is proposed that the three strains represent two novel species, for which the names Caulobacter zeae sp. nov. (type strain 410T = CGMCC 1.15991 = DSM 104304) and Caulobacter radicis sp. nov. (type strain 695T = CGMCC 1.16556 = DSM 106792) are proposed.  相似文献   

3.
A taxonomic study of 24 Gram-stain-negative rod-shaped bacteria originating from the Antarctic environment is described. Phylogenetic analysis using 16S rRNA gene sequencing differentiated isolated strains into two groups belonging to the genus Flavobacterium. Group I (n = 20) was closest to Flavobacterium aquidurense WB 1.1-56T (98.3% 16S rRNA gene sequence similarity) while group II (n = 4) showed Flavobacterium hydatis DSM 2063T as its nearest neighbour (98.5–98.9% 16S rRNA gene sequence similarity). Despite high 16S rRNA gene sequence similarity, these two groups represented two distinct novel species as shown by phenotypic traits and low genomic relatedness assessed by rep-PCR fingerprinting, DNA-DNA hybridization and whole-genome sequencing. Common to representative strains of both groups were the presence of major menaquinone MK-6 and sym-homospermidine as the major polyamine. Common major fatty acids were C15:0 iso, C15:1 iso G, C15:0 iso 3-OH, C17:0 iso 3OH and Summed Feature 3 (C16:1 ω7c/C16:1 ω6c). Strain CCM 8828T (group I) contained phosphatidylethanolamine, three unidentified lipids lacking a functional group, three unidentified aminolipids and single unidentified glycolipid in the polar lipid profile. Strain CCM 8825T (group II) contained phosphatidylethanolamine, eight unidentified lipids lacking a functional group, three unidentified aminolipids and two unidentified glycolipids in the polar lipid profile. These characteristics corresponded to characteristics of the genus Flavobacterium. The obtained results showed that the analysed strains represent novel species of the genus Flavobacterium, for which the names Flavobacterium circumlabens sp. nov. (type strain CCM 8828T = P5626T = LMG 30617T) and Flavobacterium cupreum sp. nov. (type strain CCM 8825T = P2683T = LMG 30614T) are proposed.  相似文献   

4.
A group of thirteen bacterial strains was isolated from rock samples collected in a deglaciated northern part of James Ross Island, Antarctica. The cells were rod-shaped, Gram-stain-negative, non-motile, catalase positive, and produced moderately slimy, ultraviolet light (UVC)-irradiation-resistant and red–pink pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, extensive biotyping, fatty acid profile, chemotaxonomy analyses, and whole genome sequencing were applied in order to clarify the taxonomic position of these isolates. Phylogenetic analysis based on the 16S rRNA gene indicated that all isolates constituted a coherent group belonging to the genus Hymenobacter. The closest relatives to the representative isolate P5136T were Hymenobacter psychrophilus BZ33rT and Hymenobacter rubripertinctus CCM 8852T, exhibiting 97.53% and 97.47% 16S rRNA pairwise similarity, respectively. Average nucleotide identity calculated from the whole-genome sequencing data supported the finding that P5136T represents a distinct Hymenobacter species. The major components in fatty acid profiles were Summed Feature 3 (C16:1 ω7c/C16:1 ω6c), C16:1 ω5c, C15:0 iso and C15:0 anteiso. The cellular quinone content contained unanimously menaquinone MK-6 and MK-7 (ratio 1:5.1). The predominant polar lipid was phosphatidylethanolamine, and moderate to minor amounts of two unknown polar lipids, two unknown aminolipids, one unknown glycolipid and two unknown glycophospholipids were present. The G + C content of genomic DNAs is 60.31 mol%. Based on all the obtained results, we propose a novel species for which the name Hymenobacter amundsenii sp. nov. is suggested, with the type strain P5136T (= CCM 8682T = LMG 29687T).  相似文献   

5.
Three strains of rhizobia isolated from effective root nodules of pea (Pisum sativum L.) collected from the Indian trans-Himalayas were characterized using 16S rRNA, atpD and recA genes. Phylogeny of the 16S rRNA genes revealed that the newly isolated strains were members of the genus Rhizobium with ≥99.9% sequence similarity to the members within the “Rhizobium leguminosarum” group. Phylogenetic analyses based on the concatenated sequences of atpD and recA gene, and 92 core genes extracted from the genome sequences indicated that strains JKLM 12A2T and JKLM 13E are grouped as a separate clade closely related to R. laguerreae FB206T. In contrast, the strain JKLM 19E was placed with “R. hidalgonense” FH14T. Whole-genome average nucleotide identity (ANI) values were 97.6% within strains JKLM 12A2T and JKLM 13E, and less than 94% with closely related species. The digital DNA-DNA hybridization (dDDH) values were 81.45 within the two strains and less than 54.8% to closely related species. The major cellular fatty acids were C18:1w7c in summed feature 8, C14:0 3OH/C16:1 iso I in summed feature 2, and C18:0. The DNA G + C content of JKLM 12A2T and JKLM 13E was 60.8 mol%. The data on genomic, chemotaxonomic, and phenotypic characteristics indicates that the strains JKLM 12A2T and JKLM 13E represent a novel species, Rhizobium indicum sp. nov. The type strain is JKLM 12A2T (= MCC 3961T = KACC 21380T = JCM 33658T). However, the strain JKLM 19E represents a member of “R. hidalgonense” and the symbiovar viciae.  相似文献   

6.
Twelve Acetobacter pasteurianus-related strains with publicly available genomes in GenBank shared high 16S rRNA gene sequence similarity (>99.59%), but average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) values and multilocus sequence- and genome-based relatedness analyses suggested that they were divided into four different phylogenetic lineages. Relatedness analyses based on multilocus sequences, 1,194 core genes and whole-cell MALDI-TOF profiles supported that strains LMG 1590T and LMG 1591 (previously classified as the type strains of A. pasteurianus subsp. ascendens and paradoxus, respectively) and strain SLV-7T do not belong to A. pasteurianus. Strain SLV-7T, isolated from Korean traditional vinegar, shared low ANI (<91.0%) and in silico DDH (44.2%) values with all other Acetobacter type strains analyzed in this study, indicating that strain SLV-7T represents a new Acetobacter species. The phenotypic and chemotaxonomic analyses confirmed these results and therefore a new species named Acetobacter oryzifermentans sp. nov. is proposed with SLV-7T (= KACC 19301T = JCM 31096T) as the type strain. Strains LMG 1590T and LMG 1591 shared high ANI (99.4%) and in silico DDH (96.0%) values between them, but shared low ANI (<92.3%) and in silico DDH (<49.0%) values with other type strains analyzed in this study, indicating that strains LMG 1590T and LMG 1591 should be reclassified into a new single species that should be named Acetobacter ascendens sp. nov., comb. nov., with LMD 51.1T (= LMG 1590T = NCCB 51001T) as its type strain.  相似文献   

7.
Analysis of spoilage-associated microbiota of modified-atmosphere packaged poultry meat revealed four different bacterial isolates that could not be assigned to known species. They showed a Gram-negative staining behavior, were facultatively aerobic, non-motile with variable cell morphology. Phylogenetic analysis of 16S rDNA and gyrB, rpoD and recA revealed a distinct lineage within the genus Photobacterium with Photobacterium (P.) iliopiscarium DSM 9896T, P. phosphoreum DSM 15556T, P. kishitanii DSM 19954T, P. piscicola LMG 27681T and P. aquimaris DSM 23343T as closest relatives.The designated type strain TMW 2.2021T is non-luminous and grew at 0–20 °C (optimum 10–15 °C), within pH 5.0–8.5 (optimum 6–8) and in the presence of 0.5–3% (w/v) NaCl (optimum 1%). Major cellular fatty acids of TMW 2.2021T were summed feature 3 (C16:1ω7c/iso-C15 3-OH), C16:0, C18:1ω7c and summed feature 2 (C12:0 aldehyde and C10.928 unknown). Quinone analysis revealed Q-8 as sole respiratory ubiquinone. The genome of TMW 2.2021T has a size of 4.56 Mb and a G + C content of 38.49 mol%. The ANI value between TMW 2.2021T and the type strain of closest relative P. iliopiscarium DSM 9896T was 91.43%. Fingerprinting on the base of M13-RAPD-PCR band pattern and MALDI-TOF MS profiles allowed intraspecies differentiation between our isolates but also supported their distinct lineage to a novel species. Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, strain TMW 2.2021T and further strains represent a novel species of the genus Photobacterium, for which the name Photobacterium carnosum sp. nov. is proposed. The type strain is TMW 2.2021T (=DSM 105454T = CECT 9394T).  相似文献   

8.
Four strains, coded as UPM1132, UPM1133T, UPM1134 and UPM1135, and isolated from nodules of Pisum sativum plants grown on Ni-rich soils were characterised through a polyphasic taxonomy approach. Their 16S rRNA gene sequences were identical and showed 100% similarity with their closest phylogenetic neighbors, the species included in the ‘R. leguminosarum group’: R. laguerreae FB206T, R. leguminosarum USDA 2370T, R. anhuiense CCBAU 23252T, R. sophoreae CCBAU 03386T, R. acidisoli FH13T and R. hidalgonense FH14T, and 99.6% sequence similarity with R. esperanzae CNPSo 668T. The analysis of combined housekeeping genes recA, atpD and glnII sequences showed similarities of 92-95% with the closest relatives. Whole genome average nucleotide identity (ANI) values were 97.5-99.7% ANIb similarity among the four strains, and less than 92.4% with closely related species, while digital DNA-DNA hybridization average values (dDDH) were 82-85% within our strains and 34-52% with closely related species. Major fatty acids in strain UPM1133T were C18:1 ω7c / C18:1 ω6c in summed feature 8, C14:0 3OH/ C16:1 iso I in summed feature 2 and C18:0. Colonies were small to medium, pearl-white coloured in YMA at 28 °C and growth was observed in the ranges 8-34 °C, pH 5.5-7.5 and 0-0.7% (w/v) NaCl. The DNA G + C content was 60.8 mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains UPM1132, UPM1133T, UPM1134 and UPM1135 into a novel species of Rhizobium, for which the name Rhizobium ruizarguesonis sp. nov. is proposed. The type strain is UPM1133T (=CECT 9542T = LMG 30526T).  相似文献   

9.
Two Gram-stain-negative, facultative anaerobic, motile, rod-shaped strains, S-B4-1UT and JOB-63a, forming small whitish transparent colonies on marine agar, were isolated from a sponge of the genus Haliclona. The strains shared 99.7% 16S rRNA gene sequence identity and a DNA-DNA hybridization value of 100%, but were differentiated by genomic fingerprinting using rep-PCRs. 16S rRNA gene sequence phylogeny placed the strains as a sister branch to the monophyletic genus Endozoicomonas (Oceanospirillales; Gammaproteobacteria) with 92.3–94.3% 16S rRNA gene sequence similarity to Endozoicomonas spp., 91.9 and 92.1% to Candidatus Endonucleobacter bathymodiolin, and 91.9 to 92.1% to the type strains of Kistimonas spp. Core genome based phylogeny of strain S-B4-1UT confirmed the phylogenetic placement. Major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c) and 8 (C18:1 ω7c/C18:1 ω6c) followed by C10:0 3-OH, C16:0, and C18:0. The G + C content was 50.1–51.4 mol%. The peptidoglycan diamino acid of strain S-B4-1UT was meso-diaminopimelic acid, the predominant polyamine spermidine, the major respiratory quinone ubiquinone Q-9; phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine were major polar lipids. Based on the clear phylogenetic distinction, the genus Parendozoicomonas gen. nov. is proposed, with Parendozoicomonas haliclonae sp. nov. as type species and strain S-B4-1UT (= CCM 8713T = DSM 103671T = LMG 29769T) as type strain and JOB-63a as a second strain of the species. Based on the 16S rRNA gene sequence phylogeny of the Oceanospirillales within the Gammaproteobacteria, the Endozoicomonaceae fam. nov. is proposed including the genera Endozoicomonas, Parendozoicomonas, and Kistimonas as well as the Candidatus genus Endonucleobacter.  相似文献   

10.
Four bacterial strains identified as members of the Acidovorax genus were isolated from two geographically distinct but similarly contaminated soils in North Carolina, USA, characterized, and their genomes sequenced. Their 16S rRNA genes were highly similar to those previously recovered during stable-isotope probing (SIP) of one of the soils with the polycyclic aromatic hydrocarbon (PAH) phenanthrene. Heterotrophic growth of all strains occurred with a number of organic acids, as well as phenanthrene, but no other tested PAHs. Optimal growth occurred aerobically under mesophilic temperature, neutral pH, and low salinity conditions. Predominant fatty acids were C16:1ω7c/C16:1ω6c, C16:0, and C18:1ω7c, and were consistent with the genus. Genomic G + C contents ranged from 63.6 to 64.2%. A combination of whole genome comparisons and physiological analyses indicated that these four strains likely represent a single species within the Acidovorax genus. Chromosomal genes for phenanthrene degradation to phthalate were nearly identical to highly conserved regions in phenanthrene-degrading Delftia, Burkholderia, Alcaligenes, and Massilia species in regions flanked by transposable or extrachromosomal elements. The lower degradation pathway for phenanthrene metabolism was inferred by comparisons to described genes and proteins. The novel species Acidovorax carolinensis sp. nov. is proposed, comprising the four strains described in this study with strain NA3T as the type strain (=LMG 30136, =DSM 105008).  相似文献   

11.
Polyphasic analysis of ten isolates of the red-pigmented bacteria isolated from ten Arthrospira cultures originating from different parts of the world is described. The 16S rRNA analysis showed <95 % identity with the known bacteria on public databases, therefore, additional analyses of fatty acids profiles, MALDI-TOF/MS, genome sequencing of the chosen isolate and following phylogenomic analyses were performed. Gram-stain-negative, strictly aerobic rods were positive for catalase, negative for oxidase, proteolytic and urease activity. Major fatty acids were 15 : 0 iso, 17:0 iso 3 OH and 17:1 iso w9c/16:0 10-methyl. The whole phylogenomic analyses revealed that the genomic sequence of newly isolated strain DPMB0001 was most closely related to members of Cyclobacteriaceae family and clearly indicated distinctiveness of newly isolated bacteria. The average nucleotide identity and in silico DNA–DNA hybridisation values were calculated between representative of the novel strains DPMB0001 and its phylogenetically closest species, Indibacter alkaliphilus CCUG57479 (LW1)T (ANI 69.2 % is DDH 17.2 %) and Mariniradius saccharolyticus AK6T (ANI 80.02 % isDDH 26.1 %), and were significantly below the established cut-off <94 % (ANI) and <70 % (isDDH) for species and genus delineation.The obtained results showed that the analysed isolates represent novel genus and species, for which names Arthrospiribacter gen nov. and Arthrospiribacter ruber sp. nov. (type strain DPMB0001 = LMG 31078 = PCM 3008) is proposed.  相似文献   

12.
In this study we analysed three bacterial strains coded L10.10T, A4R1.5 and A4R1.12, isolated in the course of a study of quorum-quenching bacteria occurring in Antarctic soil. The 16S rRNA gene sequence was identical in the three strains and showed 99.7% pairwise similarity with respect to the closest related species Pseudomonas weihenstephanensis WS4993T. Therefore, the three strains were classified within the genus Pseudomonas. Analysis of housekeeping genes (rpoB, rpoD and gyrB) sequences showed similarities of 84-95% with respect to the closest related species of Pseudomonas, confirming its phylogenetic affiliation. The ANI values were less than 86% to the closest related species type strains. The respiratory quinone is Q9. The major fatty acids are C16:0, C16:1 ω7c/ C16:1 ω6c in summed feature 3 and C18:1 ω7c / C18:1 ω6c in summed feature 8. The strains are oxidase- and catalase-positive. Growth occurs at 4–30 °C, and at pH 4.0–10. The DNA G+C content is 58.2–58.3 mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains L10.10T, A4R1.5 and A4R1.12 into a novel species of Pseudomonas, for which the name P. versuta sp. nov. is proposed. The type strain is L10.10T (LMG 29628T, DSM 101070T).  相似文献   

13.
Two marine bacterial strains designated Y2-1-60T and GM1-28 were isolated from sediments of cordgrass and mangrove along the Luoyang estuary in Quanzhou Bay, China, respectively. Both strains were Gram-staining-negative, straight rod-shaped, non-flagellum, facultatively anaerobic, nitrogen-fixing, and did not contain carotenoid pigment. Catalase activities were found to be weak positive and oxidase activities negative. The 16S rRNA gene sequences of the two strains were identical and had maximum similarity of 98.0% with Maribellus luteus XSD2T, and of <94.5% with other species. ANI value (96.9%) and DDH estimate (71.5%) between the two strains supported that they belonged to the same species. ANI value and DDH estimate between the two strains and M. luteus XSD2T was 74.3% and 19.4%, respectively, indicating that they represent a novel species. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis indicated that strains Y2-1-60T and GM1-28 formed a monophyletic branch within the genus Maribellus. The respiratory quinone was menaquinone MK-7. The major fatty acid (>10%) consisted of iso-C15:0, and iso-C17:0 3-OH. The polar lipids consisted of phosphatidylethanolamine and several unidentified lipids. The genomic G + C contents were 41.9–42.0 mol%. Gene annotation revealed that strains Y2-1-60T and GM1-28 contained a set of nif gene cluster (nifHDKENB) responsible for nitrogen fixation. Based on the above characteristics, strains Y2-1-60T and GM1-28 represent a novel species within the genus Maribellus. Thus, Maribellus sediminis sp. nov. is proposed with type strain Y2-1-60T (=MCCC 1K04285T = KCTC 72884T), isolated from cordgrass sediment and strain GM1-28 (=MCCC 1K04384 = KCTC 72880), isolated from mangrove sediment.  相似文献   

14.
Ten bacterial isolates belonging to the genus Vagococcus were obtained from Malian sour milk fènè produced from spontaneously fermented cow milk. However, these isolates could not be assigned to a species upon initial comparative 16S rRNA gene sequence analysis and were therefore further characterized. Rep-PCR fingerprinting of the isolates yielded four strain clusters represented by strains CG-21T (=DSM 21459T), 24CA, CM21 and 9H. Sequence identity of the 16S rRNA gene of DSM 21459T to its closest relative species Vagococcus penaei was 97.9%. Among the four rep strain clusters, DSM 21459T and 24CA shared highest 16S rRNA gene sequence identity of 99.6% while CM21 and 9H shared 98.6–98.8% with DSM 21459T and V. penaei CD276T. DSM 21459T and 24CA were thus subjected to a polyphasic typing approach. The genome of DSM 21459T featured a G + C content of 34.1 mol% for a 2.17-bp chromosome and a 15-kbp plasmid. Average nucleotide identity (ANI) of DSM 21459T to Vagococcus fluvialis bH819, V. penaei CD276T were 72.88%, 72.63%, respectively. DNA–DNA hybridization (DDH) similarities of strain DSM 21459T to other Vagococcus species were <42.0%. ANI and DDH findings strongly supported the 16S rRNA gene phylogenetic tree delineations. The fatty acid patterns of DSM 21459T was palmitic acid (C 16:0, 24.5%), oleic acid (C 18:1-ω9c, 32.8%), stearic acid (C 18:0, 18.9%). General physiological characterization of DSM 21459T and 24CA were consistent with those of the genus Vagococcus. Strain DSM 21459T and further strains are therefore considered to belong to a novel species, for which the nomenclature Vagococcus teuberi sp. nov. is proposed. The type strain is named CG-21T (=DSM 21459T and LMG 24695T).  相似文献   

15.
Cryobacterium and Arthrobacter are members of Actinobacteria, and are often found in cold environments. In this study, 48 Cryobacterium strains, including 9 type strains and 39 new isolates collected from glaciers in China were subjected to multilocus sequence analysis (MLSA). Phylogenetic analysis revealed that Cryobacterium comprised four cold-adapted clusters. Also, 19 potential novel Cryobacterium species were found using 0.065 as the cut-off point of genetic distance between the concatenated gene sequences. Additionally, three Cryobacterium strains (TMN-42T, TMN-39-1 and TMB1-8) and two Arthrobacter strains (HLT2-12-2T, TMN-18) isolated from glaciers were subjected to taxonomic analysis. Based on 16S rRNA gene sequences, MLSA data and average nucleotide identity (ANI) values, they represented a novel Cryobacterium species and a novel Arthrobacter species. Specifically, strain TMN-42T was most closely related to the type strains of Cryobacterium arcticum and Cryobacterium psychrotolerans with 83.79% and 77.78% ANI values, respectively. The ANI values between strain HLT2-12-2T and its closely relatives Arthrobacter psychrochitiniphilus GP3T and Arthrobacter alpinus S6-3T were 76.66% and 77.94%, respectively. Therefore, we propose two novel species, Cryobacterium zongtaii sp. nov. (TMN-42T = CGMCC 1.9695T = NBRC 111591T) and Arthrobacter glacialis sp. nov. (HLT2-12-2T = CGMCC 1.10025T = NBRC 113092T).  相似文献   

16.
Two strains (JC17T and JC19a) of orange pigmented bacteria were isolated from an estuarine sample. Cells of both the strains were Gram-negative coccobacilli, non-motile, non-spore forming and strictly aerobic. Chemo-organoheterotrophy was the growth mode for both strains and was possible on a wide range of organic compounds. Strains were non-hemolytic and contained low levels of BChl-a and carotenoids. The fatty acids (>1.0%) comprised C18:1ω7c, C16:1ω7c/iso-C15:02OH, C16:0, C16:0 3-OH, C18:12OH, C16:1ω5c, and C19:0 cycloω8c. The genomic DNA G+C content of strain JC17T was 66.2 mol%. A phylogenetic tree based on 16 S rRNA gene sequence analysis showed that strains JC17T and JC19a had the highest similarity to members of the genus Roseomonas and were closely related to Roseomonas cervicalis CIP104027T (96.4%) and Roseomonas ludipueritiae CIP107418T (96.3%) of the family Acetobacteraceae within the class Alphaproteobacteria. Strains JC17T and JC19a shared 100% 16 S rRNA gene sequence similarity, were phenotypically (morphological, physiological, biochemical characters) identical and had closely related genomes (85% DDH). Based on polyphasic taxonomic data, strain JC17T is classified as a novel species of the genus Roseomonas for which the name Roseomonas aestuarii sp. nov. is proposed. The type strain is JC17T (=CCUG 57456T =KCTC 22692T =NBRC105654T).  相似文献   

17.
Two new Vibrio species, Vibrio aestivus and Vibrio quintilis, are described after a polyphasic characterization of strains M22T, M61 and M62T, isolated from seawater collected off a beach on the East coast of Spain (Valencia). All three strains are Gram negative, mesophilic, slightly halophilic, fermentative rods. V. aestivus (M22T = CECT 7558T = CAIM 1861T = KCTC 23860T and M61 = CECT 7559 = CAIM 1862 = KCTC 23861) is oxidase positive, reduces nitrates to nitrites, is negative for Voges Proskauer, arginine dihydrolase and indole and non hydrolytic on most substrates tested. The 16S rRNA gene sequences of M22T and M61 are most similar to Vibrio marisflavi (97.1–97.2%) but phylogenetic analysis using NJ, MP and ML methods display Vibrio stylophorae (96.2% similarity) as sibling species. The three species form a deep clade in the genus Vibrio. Average Nucleotide Identity (ANI) values, determined as a measure of overall genomic resemblance, confirmed that strains M22T and M61 are members of the same species, different to V. marisflavi CECT 7928T.V. quintilis (M62T = CECT 7734T = CAIM 1863T = KCTC 23833T) is aerogenic, arginine dihydrolase and Voges Proskauer positive, oxidase negative and unable to reduce nitrate, traits shared by most species in the Gazogenes clade. It is unpigmented and does not grow on TCBS Agar. 16S rRNA gene similarities to its nearest species, Vibrio aerogenes and Vibrio mangrovi, are 97.6% and 96.0% respectively. Strain M62T and V. aerogenes CECT 7868T display ANI values well below the 95% boundary for genomic species.  相似文献   

18.
Three bacterial isolates (CCBAU 101002T, CCBAU 101000 and CCBAU 101001) originating from root nodules of the herbaceous legume Kummerowia stipulacea grown in the campus lawn of China Agricultural University were characterized with a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that the isolates shared 99.85–99.92% sequence similarities and had the highest similarities to the type strains of Rhizobium mesoamericanum (99.31%), R. endophyticum (98.54%), R. tibeticum (98.38%) and R. grahamii (98.23%). Sequence similarity of four concatenated housekeeping genes (atpD, glnII, recA and rpoB) between CCBAU 101002T and its closest neighbor (R. grahamii) was 92.05%. DNA–DNA hybridization values between strain CCBAU 101002T and the four type strains of the most closely related Rhizobium species were less than 28.4 ± 0.8%. The G + C mol% of the genomic DNA for strain CCBAU 101002T was 58.5% (Tm). The major respiratory quinone was ubiquinone (Q-10). Summed feature 8 (18:1ω7cis/18:1ω6cis) and 16:0 were the predominant fatty acids. Strain CCBAU 101002T contained phosphatidylcholine and phosphatidylethanolamine as major polar lipids, and phosphatidylglycerol and cardiolipin as minor ones. No glycolipid was detected. Unlike other strains, this novel species could utilize dulcite or sodium pyruvate as sole carbon sources and it was resistant to 2% (w/v) NaCl. On the basis of the polyphasic study, a new species Rhizobium cauense sp. nov. is proposed, with CCBAU 101002T (=LMG 26832T = HAMBI 3288T) as the type strain.  相似文献   

19.
Two Gram-negative strains obtained from tank water in a scallop hatchery in Norway, were phenotypically and genotypically characterized in order to clarify their taxonomic position. On the basis of 16S rRNA gene sequence analysis, these isolates, ATF 5.2T and ATF 5.4T, were included in the genus Halomonas, being their closest relatives H. smyrnensis and H. taeanensis, with similarities of 98.9% and 97.7%, respectively. Sequence analysis of the housekeeping genes atpA, ftsZ, gyrA, gyrB, mreB, rpoB, rpoD, rpoE, rpoH, rpoN and rpoS clearly differentiated the isolates from the currently described Halomonas species, and the phylogenetic analysis using concatenated sequences of these genes located them in two robust and independent branches. DNA–DNA hybridization (eDDH) percentage, together with average nucleotide identity (ANI), were calculated using the complete genome sequences of the strains, and demonstrate that the isolates constitute two new species of Halomonas, for which the names of Halomonas borealis sp. nov. and Halomonas niordiana sp. nov. are proposed, with type strains ATF 5.2T (=CECT 9780T = LMG 31367T) and ATF 5.4T (=CECT 9779T = LMG 31227T), respectively.  相似文献   

20.
Polyphasic taxonomic analysis was performed on a novel bacterium, designated UR159T, isolated in 2016 from human blood of a septic patient hospitalized in France. Preliminary 16S rRNA gene sequence-based phylogenetic analysis indicated that strain UR159T belonged to the family Flavobacteriaceae, forming a distinct phyletic line distantly related (<94% sequence similarity) to known species of the family. Further phenotypic, chemotaxonomic and genomic analyses were performed. Cells were non-motile, oxidase-negative, catalase-positive Gram-negative rods. It was strictly aerobic yielding yellow-pigmented colonies, and was metabolically rather inert. Major fatty acids were iso-branched fatty acids, predominantly iso-C15:0 (55.5%) and iso-C17:1ω9c (8.8%). Whole genome sequencing revealed a 2.3-Mbp genome encoding a total of 2262 putative genes with a genomic DNA G + C content at 37.6 mol%. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between strain UR159T and the most closely related members of the Flavobacteriaceae family were <75% and <39%, respectively, much below the established cut-offs for ANI (<95–96%) and isDDH (<70%) for species and genus delineation. Average Amino Acid Identity (AAI) percentages were also estimated and were lower than 65% (cut-off proposed for genus delineation for uncultivated prokaryotes) in all cases, except for F. marinum that was just at the limit (65.1%). Based on these findings, we propose it as a new genus and species, Avrilella dinanensis gen. nov., sp. nov. (type strain UR159T = CIP 111616T = DSM 105483T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号